Evaluation and comparison: antipyretic activity in compound products of herbal pharmaceutical industries

Mahmood Ahmad¹, Muhammad Usman Naeem¹, Muhammad Naeem Aamir²

¹Faculty of Pharmacy & Alternative Medicine, the Islamia University of Bahawalpur, Pakistan
²Faculty of Pharmaceutical Sciences, G.C. University, Faisalabad, Pakistan

*E-mail of the corresponding author: naeem.aamir@gcuf.edu.pk

Accepted Date: 26 May 2014

To reduce an elevated body temperature various antipyretics drugs and medicinal plants are used. This study was designed to evaluate the antipyretic claim compound herbal syrups manufactured by three different herbal pharmaceutical companies of Pakistan. Bukharin (Hamdard Laboratories), Fever-X (Qarshi Industries) and Bukharok (Ashraf Laboratories) products were tested in rabbits. The experimental conditions were produced by E. coli suspension in animal model whereas 150 mg/Kg Paracetamol suspension was used as positive control. Doses with concentration of 5 ml/Kg of syrup were administered to check temperature lowering effect. The administration of Bukharin, Fever-X and Bukharok significantly reduced the rectal temperature of animals. It was concluded that Bukharok and Bukharin syrups are good antipyretic drug products as they lowered 3 and 2.5 °C temperature respectively.

Keywords: Antipyretic effect, Herbal Syrups, Comparison with Allopathic Medicine

1. INTRODUCTION

Different plants have been used to cure same or several diseases at a time. Towards the middle of 20th century the contribution of medicinal plants was reduced by one-fourth as the research and development in favor of synthetic chemicals outclassed them to a great extent. Now, this trend is reversing again in favor of plans as the latter, being natural products, have been discovered to possess more balanced, effective least injurious with none or much reduced side effects.

Large numbers of medicinal plants have been evaluated for their potential against various ailments including fever. The organic extract of Cissampelos pareira (Hullatti and Sharada, 2007), Sargassum fulvellum (Kanget al, 2008), Zizyphus oxyphyla (Nisar et al., 2007), Eclipta prostrate (Mazumder et al, 2006), Caesalpinia bonducella (Archana et al, 2005), Strobilanthes cusia (Ho et al., 2003), Premna herbace (Narayanan et al, 2000), Litchi chinensis (Bêrsa et al., 1996) and so many other plants have been tested and found effective in reducing pyrexia. It is evident that antipyretic activity of extracts of crude drugs has been studied extensively but limited research has been conducted on finished herbal products. In present study most frequently prescribed antipyretic herbal products by “Homoeopathic Doctor” “Hakim/Tabib” were selected to determine antipyretic activity, and to compare their antipyretic potential.

2. MATERIALS AND METHODS

2.1 Chemicals

Normal saline (Siza International Pakistan), MacConkey's agar (Merck Germany), Nutrient broth (Merck Germany) and Distilled water (The Islamia University of Bahawalpur)

2.2 Animal selection and ethical approval

Adult healthy male and female rabbits of local strain Oryctolagus cuniculus were selected. The weight of rabbit ranged between 1-1.2 Kg. They were kept in air conditioned animal house and were fed green fodder bread, maize and tap water. The animals were acclimatized in an environment of controlled temperature 22-25 °C and light /dark cycle 12 h each for one week prior the study. The ethics of this study were approved by the Pharmacy Research Ethics Committee, The Islamia University of Bahawalpur, Pakistan (Ref No. 31-2012/PREC dated April 10, 2012).
2.3 Preparation of E. coli suspension

The pure and identified culture of E. coli were obtained on MacConkeys agar from Microbiology laboratory of Quid-e-Azam Medical College Bahawalpur and incubated for 24 h. The colonies were counted under colony counter. One colony was picked and washed in normal saline and spread on agar plate for reculture and incubated for 24 h. The culture was washed with normal saline and then cultured in nutrient broth by incubating for 24 h. A tenfold dilution of the suspended broth culture was prepared with normal saline. The total number of organisms was calculated by multiplying the number of organism in one drop to the number of drops in one ml. Total number of E.coli in 1 mlml was 127x10^7.

2.4 Induction of pyrexia in rabbits

Fever was produced in rabbits by injection of E. coli suspension in the marginal ear vein of rabbit at a concentration of 0.01 ml per Kg body weight (Elmas et al., 2006). Rectal temperature was recorded before and after injection at regular interval during experiment. The pyrexia was produced after injecting 1-2 hrs of E. coli.

2.5 Drug administration

In Pakistan, a number of herbal companies are manufacturing antipyretic products. Three herbal product, Bukharin (Hamdard Laboratories), Fever-X (Qarshi Industries) and Bukharok (Ashraf Laboratories) were selected. The syrup of Bukharin, Fever-X and Bukharok were administered at dose of 5 ml/Kg and 7 ml/Kg to the treatment groups of rabbits. A group of five rabbits was used for evaluation of each dose of a product. Two more groups, one negative control (E. coli suspension) and one positive (Paracetamol suspension, 150mg/Kg), were also studied parallel to test groups.

2.6 Statistical analysis

The results were evaluated using one-way Analysis of Variance (ANOVA) test between two mean control and test groups followed by students t-test. Significant level was taken at p< 0.05 (Arul et al., 2005).

3. RESULTS

In rabbits the initial rectal temperature 99.9±0.139 °F and increased to 104.2±0.144 °F after 1 hr of E. coli injection. In subsequent two hrs observed rectal temperature was 104±0.087 °F and 103.8±0.792 °F. In positive group the rectal temperature after 1, 2, 3 and 4 hr was 104.2±0.162, 103.7±0.156, 102.2±0.185 and 100.4±0.196 °F followed by initial 100.4±0.271 °F. In the group of rabbits given Bukharin, the decline in temperature ranged from 104.1±0.169 to 101.6±0.139 °F over the period of three hour after drug administration. In rabbits group treated with Fever-X initially the temperature was 101.7±0.434 °F and it increased to 103.5±0.287 °F after 1 hr of E. coli injection. Administration of Fever-X reduced the rectal temperature to 101.4±0.36 °F in next three hours. In final group treated with Bukharok the rectal temperature before E. coli injection was 99.7±0.472 °F with raise in 4 degree in first hour. Bukharok administration reduced the temperature to 102.4±0.499, 101.8±0.142 and 100.2±0.178 °F in 2nd, 3rd and 4th hour of study (Figure 1).

![Figure 1: Comparison of temperature change before and after administration of herbal products](image)

4. DISCUSSION

Infection, tissue damage, inflammation or other pathological condition may result in fever. In fever set point in hypothalamus is elevated and to reduce an elevated body temperature various antipyretics drugs and medicinal plants are used. Bacteria-induced pyrexia involved production of prostaglandins. Most of the antipyretic drugs inhibit prostaglandin biosynthesis by inhibiting COX-2 which is mediator of fever production in body (Arokiyaraj et al, 2008).

Bukharin syrup is a compound preparation and its antipyretic activity is because of Azadirachta indica, Achillea millefolium (El-Sadek et al, 2007), Atemisia absinthium, Aconitum heterophyllum (Santosh et al, 2010), Adhatoda vasika (Wahid et al, 2010), Bambusa arundinacea, Cuscuta reflexa (Sanjib and Bodhisattva, 2010), Foeniculum vulgare - (Choi and Hwang, 2004), Glycyrrhiza glabra (Vijay et al, 2011), Tinospora cordifolia (Singh, 2010), Fumaria officinalis. In addition to these antipyretic drugs
Bukharin syrup also contains three antibacterial activity herbs i.e. Berberis lyceum (Altaf et al., 2011), Nymphaea lotus (Akinjogunla et al., 2009) and Sisymbrium irio.

Medicinal plants in Fever-X syrup that have antipyretic activity include Melia azadirachta, Swertia chirata, Sokamum nigrum (Zakaria et al., 2009), Glycyrrhiza glabra (Shahid et al., 2009), Tinospora cordifolia (Singh, 2010) and Fumaria officinalis. Whereas, Sisymbrium irio has shown antibacterial activity.

Bukharok syrup exhibited good antipyretic effects because it also contained five antipyretic herbal drugs; Glycyrrhiza glabra (Vijay et al., 2011), Tinospora cordifolia (Singh, 2010) Fumaria officinalis, Azadirachta indica and Berberis aristata (Shahid et al., 2009). Antibacterial activity of Cichorium intybus and Pterocarpus santalinus (Nandagopal and Ranjitha, 2007; Manjunatha, 2006) also facilitated the reduction in pyrexia.

The phytochemicals in these products, such as flavonoids, steroids, glycosides, saponins, alkaloids and anthraquinones, have been reported as good antipyretic in various studies. Therefore, the effectiveness of herbal syrups may be due to availability of such photochemical constituents which caused an inhibitory effect on prostaglandin biosynthesis in the central nervous system (Reanmongkol et al., 2007; Ebrahimzadeh et al., 2006; Math et al., 2011).

4. CONCLUSION

The selected herbal products, Bukharine, Fever-X and Bukharok, possess significant antipyretic activity. Both Bukharok and Bukharin syrups are good antipyretic drug products and are effective to treat pyrexia as they can reduce the elevated temperature normal within 3 hours. The study also confirmed the claim of herbal pharmaceutical companies about their medicines.

Conflict of Interests

Authors declared no competitive interests for the presented work.

References

Manjunatha BK (2006). Antibacterial activity of

The IISTE is a pioneer in the Open-Access hosting service and academic event management. The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage:
http://www.iiste.org

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.

Prospective authors of journals can find the submission instruction on the following page: http://www.iiste.org/journals/ All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Paper version of the journals is also available upon request of readers and authors.

MORE RESOURCES

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digital Library, NewJour, Google Scholar