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Abstract: 

The main objective of this paper is to consider the development of the diffusion in     by using any 

arbitrary function a(t),in which the existence and the uniqueness theorem of the solution have been proved. 

1-  Introduction:  

Rabab Ahamed.Shanab.et al.in [1],extend the work of Kalita et  al [1], in which they solve the steady 

convection-diffusion equation with variable coefficients on non-uniform grid.The approach is based on using 

fourth order taylor series expansion to approximate the derivatives appearing in the convection diffusion 

equation.Then the original convection-diffusion equation is used again to replace the resulting higher order 

derivative terms,which leads to a higher order scheme on a compact stencil of nineteen grid points.the 

effectiveness of this method is seen from the fact that it can  handle the singularity perturbed problems by 

employing a flexible discretized grid that can be adapted to the singularity in the domain.Four difficult test cases 

are chosen to demonstrate the accuracy of the present scheme. 

In [2],the diffusion of suddenly occurring local high temperature in homogeneous half-infinite space is 

studied in the cases of one, two and three-dimensional half space.  

In [3],the combination of the time-parallel “parallel full approximation scheme in space and time” with 

a parallel multigrid method  in space, resulting in a mesh-based solver for the three-dimensional heat equation 

with a uniquely high degree of efficient concurrency.  

In [4],the anthors are concerned with the numerical solution of a two-dimensional space-time fractional 

differential equations used to model the dynamic properties of complex systems governed by anomalous 

diffusion.The space-time fractional anomalous diffusion equation is defined by replacing the second order space 

derivatives and the first order time derivatives with Riesz and Caputo operators,respectively. 

In [5],the anthors are introduce Fourier spectral methods as an attractive and easy-to-code alternative 

for the integration of fractional-in-space reaction diffusion equations.The main advantages of the proposed 

schemes is that they yield a fully diagonal representation of the fractional operator,with increased accuracy and 

efficiency when compared to low-order counterparts, and a completely straightforward extension for two and 

three spatial dimensions. The transmission of linguistic change within a speech community is characterized by 

incrementation within a faithfully reproduced pattern characteristic of the family tree model, while diffusion 

across communities shows weakening of the original pattern and a loss of structural features, It is proposed that 

this is the result of the difference between the learning abilities of children and adults,Evidence is drawn from 

two studies of geographic diffusion. 

In [6],the space-time neutron diffusion equations with multi-group of delayed neutrons are  a couple of 

the nonlinear partial differential equations, The finite difference method is used to reduce the partial differential 

equations into ordinary differential equations.This ordinary differential  equations are rewritten in a matrix form. 

In [7] and [8],the atmospheric air pollution turbulent fluxes have been assumed to be proportional to the 

mean concentration gradient.This assumption, along with the equation of continuity, leads to the advection-

diffusion equation.Also many models simulating air pollution dispersion are based upon the solution (numerical 
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or analytical) of the advection-diffusion equation assuming turbulence parameterization for realistic physical 

scenarios. 

In [9],the anthors proved that the temperature distribution in the limit one – dimensional rod with time – 

averaged sources of heat is the uniform asymptotic approximation of the temperature distribution in the initial 

problem in an arbitrary sub domain of the plane rod and in an arbitrary time interval , which are located at a 

positive distance from the ends of the rod and the initial time instance , respectively , of course ,the temperature 

in the one – dimensional rod , which is a function of the longitudinal coordinate x and the time t , is identified 

with a function of (x,y,t),which is independent of the transversal coordinate y of the plane rod. 

In [10],the anthors are obtained an asymptotic expansion, containing regular boundary corner functions 

in the small parameter, for the solution of a second order partial differential equation, they are constructed the 

asymptotic expansion un(x, t, ԑ) for the modified problem and prove that it is the unique solution.also,they  have 

proved that the solution is valid uniformly in the considered domain,and the asymptotic approximation is within 

O(ԑ
n+1

). 

The development of the wave equation with some conditions is considered and proved that the 

existence and the uniqueness of solution by using the reflection method, in [11]. 

In [12],a modification of an initial – boundary – value problem in the critical case for the heat – 

conduction equation in a thin domain have been considered in which they are justify asymptotic expansions of 

the solution of the problems with respect to a small parameter ԑ>0,also they proved that the solution is uniform 

in the domain and the asymptotic approximation is within O(ԑ
n+1

). 

In [13],the asymptotic first – order solution of a partial differential equation with small parameter have 

been constrncted,and they have proven that the solution is unique and uniform in the domain.   

In this work,we study Cauchy problem for the development of the diffusion equation in   depending on 

arbitrary function a(t), also we give some applications. 

 

2- Statement of the problem: 

Let us consider the Cauchy problem for the diffusion equation  in    

     ( )    ( )(           )     

  (   )                                                                                                                     (2.1) 

where P = (x,y,z)     and  ( ) and a(t) are a given function so this problem is agen evalization to the Cauchy 

problem with constant coefficients considered in [14]. 

Proposition 2.1. 

  We start first with the following proposition suppose   (x,t),   (y,t) and    (z,t) are solutions of the 

one-dimensional diffusion equation      ( )   =0,where s   {x,y,z}. 

then u(x,y,z,t) = a(t)  (x,t)   (y,t)   (z,t) is a solution of    –  ( )          . 

Proof :  If 

  (       )   ( )  (   )  (   )  (   ) is a solution,then 

     ( )  [           ]      [ ( )       ́( )] 

       ( )         ( )             ( )           ́( ) 

     =      ( )     ( )         ( )               ́( ) 

       ( ) [                       ]  [      ] ́( )  

       ( )[                          ]  [      ] ́( )  

       ( ) [      ]  [      ] ́( ) 

       ( )   [      ] ́( )                                                           ∎ 

As it is known from the theory of partial differential equations. 

 G(x,t) = 
 

√ ( )√ 
 
   

 ( ) 
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is a fundamental solution of the diffusion equation       ( )      

Hence by  proposition  (2.1)  the  function:  

  (   )   (   ) (   ) (   )   

  (   )  
 

√ ( )√ 
 
    

 ( )   
 

√ ( )√ 
 
    

 ( )  
 

√ ( )√ 
 
    

 ( )  

                                   =  
 

√( ( ) ) 
 
 (        )

 ( )  

                                   = 
 

√( ( ) ) 
 
     

 ( ) , where P=(x,y,z) 

is  a solution of        

    ( )                                                                                                         (2.2)         

  (P,t)  is again called the  fundamental  solution  of (2.2).observe  that:     

∫      (   )    = ∫  (
 

  
   )   ∫  (   )  

 

  
∫  (   )
 

  
   

   = ∫
 

√ ( )√ 
 
   

 ( )  
 

  
 ∫

 

√ ( )√ 
 
   

 ( )  
 

  
  ∫

 

√ ( )√ 
 

  

 ( )  
 

  
 

  =   
√ ( ) 

√ ( ) 
  

√ ( ) 

√ ( ) 
 

√ ( ) 

√ ( ) 
                                                       (2.3)          

The  case  when  the  initial  data  ( ) is  a function  with  separable  variables will be considered,as:                                                                                

                         ( )    ( ) ( ) ( )                                                                       (2.4) 

where  ( )  ( )    ( ) are integrable functions about the variables x,y,z .  

Proposition 2.2. 

           Suppose that  ( ) is a function with separable  variables (2.4) , where             are bounded and 

continuous  function.Then:                                          

                        u(P,t)  =  ∫     (     ) ( )                                                         (2.5)                   

With    (     )                           eq.(2.4)     

Proof :  

Separating the surface integral yields to    

u(P,t) =∫   (     ) ( )  
              

=∫  (  
 

  
    ) ( )    ∫  (     ) ( )    

 

  
×∫  (     ) (

 

  
 )   

=∫
 

√ ( )√ 
 
 (   ) 

 ( )   
 

  
 ∫

 

√ ( )√ 
 
 (   ) 

 ( )   
 

  
  ∫

 

√ ( )√ 
 
 (   ) 

 ( )   
 

  
 

=   
√ ( ) 

√ ( ) 
  

√ ( ) 

√ ( ) 
 

√ ( ) 

√ ( ) 
   

=    (   )  (   )  (   )  

By using theorem (4.7) [14], and  proposition (2.1)  it follows that:    

    ( )           (   )      (   ) 

and 

         (   )           (   )          (   )          (   ) , Let a(t)= t  
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Then: 

          (   )  
 

√ ( )√ 
 
   

 ( )   

        (   )  
 

√ √ 
 
   

 = 
 

 
  

   

   ∞.    = ∞.0 = 0 

          (   )  
 

√ ( )√ 
 
   

 ( )    

         (   )  
 

√ √ 
 
   

   =  
 

 
  

   

   ∞.    = ∞.0 = 0 

         (   )  
 

√ ( )√ 
 
   

 ( )   

        (   )  
 

√ √ 
 
   

 =  
 

 
  

   

   ∞.    = ∞.0 = 0 

Then:  

         (   )            (   )          (   )          (   )  

                           =  ( ) ( ) ( )   ( )                                                                       ∎ 

 Proposition (2.2) can  be  extended  for  any  initial  data   which is a finite linear  combination  of  

functions  with separable variables  of  the  form: 

  ( )  ∑   
 
     ( )   ( )  ( )                                                                     (2.6)                                              

Let us show that any continuous and bounded function on   can be uniformly approximated by 

functions of type (2.6) on bounded domains.Now if f is a bounded function on [0,1],then we may define:  

                          ( )      ∑ (  
  ( )

)  (
  ( )

 
) 

       ( ) (   )      ( ) 

 

Theorem 2.1. (Bernstein): 

 Let f ( x )    C[0,1]. Then   (x) →f(x) uniformly  for  x  [0,1]  

 as  n →+ ∞ .                                                 

Proposition 2.3. 

Let   (P)   C([   ] )   ( )   M  and    > 0. there  exists     

 a function with separable variables   (P)  C([   ] ),such that:    ( )               ( )    ( )      if   

P  [   ]   

Proof :   

                          (   )                                                                           

| (     ) – ∑ (  
  ( )

)  
   (

  ( )

 
    )    ( )(   )    ( )|  

    

 
 

for (x,y,z) [   ]     

By the same way there exists     , such that: 

 | (
  ( )

 
    )  ∑ (  

 
) (

  ( )

 
 
 

  
  )   (   )      

   |  
   

 
            

for (y,z)    [    ] .       

Let    (     )  ∑ ∑ (  
  ( )

)
  
   

 
   (  

 
) 

 (
  ( )

 
  
 

  

   )    ( )(    )    ( )  (   )      

We have that    (      )   ([   ] ) is a function with separable  

 variables  and 
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  (     )    (     )  | (     )  ∑ (  
  ( )

) (
  ( )

 
    )    ( )(   )    ( ) 

   |  ∑ (  
  ( )

)    ( )(   
   

 )    ( ) | (
  ( )

 
    )  ∑ (  

 
) (

  ( )

 
 
 

  
  )   (   )      

   |  
  

 
 

  

 
∑ (  

  ( )
)    ( )(   )    ( )   

   

   

 
 

   

 
      

By the construction of   (     )           (     )               ■ 

It is remark able that if we let R> 0, they rescaling  the  variables  (x,y,z) with (
   

  
 
   

  
 
   

  
)  

and one can prove that every function  (x,y,z)   C([     ] ) can be uniformly approximated by a function 

  (     )   ([    ] ) with separable variables. 

Theorem 2.2.  

 Suppose  (P)  (  )     (  )  then the function 

                                (   )  ∫     (     ) ( )   

is a solution of the diffusion equation (2.2) on    and 

                                        (   )   ( )                                                                (2.7)                                  

on a uniformly bounded subset of     

 

Proof : 

         By Proposition (2.2)  it  follows  that u(P,t ) satisfies (2.2) 

 Let us show  that  (2.7)  holds. Suppose   > 0 and  B ⊂        a bounded set.Making the change  of variables  Q 

= P - 2√ ( )   ,we  have       

u(p,t) = 
 

√  
  ∫        (   √ ( )    )            

  
P=(x,y,z)                                     (2.8) 

where  ́=( p,q,r)     .   Let     ( )                       

 ( )  
  [      ]  ̃( )       ( )   

There exist  R> 0  and    ( )   ([    ] )  with  separable  variables 

such that:    
 

√  
∫   |  |

 ̃( ) 
   < 

  

  
       ⊂ [     ]                                                               (2.9) 

 →(
 

√  
  ∫       

 ̃( ) 
       

  

  
 ,    

 

√  
  ∫       

 ̃( ) 
       

  

  
  , 

→
 

√  
∫       

 ̃( ) 
    

  

  
 )                                         

→  ( )    ( )  
  

  
       [    ]                                                                 (2.10)              

→(  ( )    ( )  
  

  
        [      ]              

→  ( )    ( )  
  

  
       [      ]          

→   ( )    ( )  
  

  
       [      ]  ) 

By continuity of ϕ(P) there  exists  δ >0 such that if t   (0,δ) ,then: 

      ́  ( ) 
| (   √ ( )  ́)   ( )|  

  

 
        ( )                              (2.11) 

(|      ( ) | (   √ ( )  )   ( )|  
  

 
        ( )        ( ) | (   √ ( )  )   ( )|  

  

 
        ( )        ( ) | (   √ ( )  )   ( )|  

  

 
        ( ) |)  

  

 
        ( )       

Finally  for  P   B ⊂   ( )   and  t   (0,δ), by (2.9),(2.10)  and (2.11), we have 

  (   )   ( )   ∫   (     )   ( )    ( )    
   

    ( )   ( )  
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= 
 

√  
∫     ́  | (   √ ( )  ́)    ( )|   ́
  

    ( )   ( )  =(
 

√  
∫       | (   √ ( )  )  
  

  ( )|       ( )   ( )   
 

√  
∫       | (   √ ( )  )    ( )|
  

   

   ( )   ( )  
 

√  
∫        
  

| (   √ ( )     ( )|        ( )   ( ) ) 

  
  

√  
∫     ́    ́  

 

√  
 ̃( ) 

∫      ́  | (   √ ( )  ́)|
 ( ) 

  ( )  ́                                              

= (
  

√  
∫          

 

√  
 ̃( ) 

 ∫        | (   √ ( )  |
 ( ) 

 

  ( )   
  

√  
∫          

 

√  
 ̃( )  

 ∫        | (   √ ( )  |
 ( ) 

   ( )   ,
  

√  
∫          
 ̃( ) 

 

√  
 ∫        | (   √ ( )  |

 ( ) 

   ( )  )   
 

√  
  ∫   | ́|

 

  ( )    ( ) 
 ̃( ) 

    ́  +    ( )    ( )   = 

 (  
 

√  
  ∫         ( )    ( )  ̃( ) 

  +   ( )   ( ) , 

   
 

√  
  ∫         ( )    ( )  ̃( ) 

   +   ( )    ( )  , 

    
 

√  
  ∫         ( )    ( )  ́( ) 

   +   ( )    ( ) ) 

              
  

   
   

  

 
    

  

 
  +  

   

 
 =         

Which  completes   the  proof .                                                      ∎ 

 

3- Study some application about diffusion equation: 

   In this section, some real life problems will be considered as an illustrative examples in order to show 

the validity of the results of this paper.  

Problem  3.1. 

           To solve  the  diffusion equation  with  constant  dissipation: 

{  
    ( )                           

 (   )   ( )                                                 
 

where   b > 0  is a constant.    

Solution:  

  Suppose  a(t) =   , also b = 2, make the  change  of  variables  

 u(x,t)  =      (   )  

Let  u =       (   ).then:   

          v(x,t) +       (x,t)      and         =          (x,t)    

Substituting these  into  the  PDE  for  u we  get: 

              the initial condition for  m  is 

v(x,0)  =     ( ) u(x,0)  =  ϕ(x) the solution for  u  is 

u(x,t) =     ∫  (     )
  

 
 ( )   

u(x,t)=     ∫  
  

 
 ( )           

 where  Y =  (     )   

 u(x,t) =  50      Yϕ 
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Fig(3.1) 

The salution of problem (3.1) 

 

Problem  3.2. 

To solve     ( )       (   )      (   )     on  the half-line   

0 <     . 

 

Solution: 

Let  u  be the  solution  of  the  problem  and  let  v =u-1  then  v  satisfies      ( )    , v(0,t)  = 

u(0,t) – 1 = 0, 

v(x,0)  = u(x,0) – 1= −1 , let  a(t)=      

this  a  standard  IBVP with  the  Dirichlet  boundary  condition. The Solution  is       v(x,t)  = 

 

√ ( )√ 
∫ [ 

 (   ) 

 ( )    
 (   ) 

 ( ) ] (  )  
 

 
  

= 
 

   √    √ 
∫ [ 

 (   ) 

√       
 (   ) 

√    ] (  )  
 

 
 

Let (x-y) /√        

 and (x+y)/ √      =q then  the  result  becomes 

v(x,t)= 
 

√ 
[∫     

   
 

√ 
∫     

  ]
 

 

√    

  
 

√    

 

        = 
 

√ 
[ ∫     

   ∫     
  ]

 
 

√    

 

√    
  

 

        =  
  

√ 
∫     

   
 

√    
  

 

√ 
∫     

  
 

 

√    

  

        =  
 

 
(      [

 

√ (   )
])  

 

 
    [

 

√ (   )
] 
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Fig (3.2) 

The solution of problem (3.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (3.3) 

The solution of problem (3.2) 

 

4- Fourier Method for the Diffusion Equation in Higher Dimensions: 

In  this  section, the  Fourier  method  to  the   diffusion    equation will be applied. which means to 

consider. 

    ( )   

in      × (0,∞),  where     ⊂   is a bounded  domain  with  standard  initial  and boundary   conditions  on  ∂   . 

Such  BVPs  are  as  follows: 

                                     ( )          × (0,∞),             

                                u(x,y,0) = ϕ(x,y) (x,y)  Ω,                                                                                                             

                                 u(x,y,t) =  0  on     ∂Ω × [0,∞) 
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(     )                [   )  

                                 (     )    (     )      

                               
  

  
(     )    (     )              [   ).                          (4.1) 

 

Separating  variables 

                               u(x,y,t)  =  Φ(x,y)T(t) 

 and   substituting   into  (4.1)  we  see  that  Φ  and  T  must  satisfy 

                           a(t)∆u   then a(t)  =  ∆ϕ(x,y)T(t) 

                           a(t)∆u(x,y,t)  = ∆ϕ(x,y)T(t) 

                           ϕ(x,y) ́( )  =  ∆ϕ(x,t)T(t) 

                           
 (   ) ́( ) 

 ( )
  =  

  (   )

 (   )
      

                          
 ́( )

 ( ) ( )
  =  

  (   )

 (   )
      

Where    is  constant . this   leads  to  the  eigenvalue  problem  for  the  Laplacia 

 ∆Φ = λΦ  in Ω,  Suppose  λ  = 3, 

                     With  boundary  condition 

                                      Φ  = 0   on    ∂Ω                                                                      (4.2)      

                                     
  

  
                                                                                   (4.3) 

                                    
   

  
                                                                              (4.4) 

It can be shown that  for  each  one of  the  boundary  conditions      

(4.2)-(4.4)  there   is   an   infinite  sequence  of   eigenvalues   

                                 

and an infinite set  of   orthogonal   eigenfunctions   which  is   complete.      Denote   by     the   eigenfunction   

corresponding  to      with   the   understanding   that  not  all of       are  distinct.   Solving  the   ODE   for   

T(t) 

 ́( )    ( )   ( )     

We  fined   

                                           T(t)  =     
  ( )    

We  are  looking  for  a   solution  of  the  form 

                                        u(x,y,t)=  ∑    
   ( )     (   )

 
    ,                                 (4.5)                                                                                                     

which  satisfies  the  initial   condition  if 

 

                                  ϕ(x,y)  =  ∑     
 
   (   ). 

By  the    orthogonality  of  (  )  it  follows  that 

                                          =   
∫∫  (   )   

(   )    

∫∫    
 

 
(   )     

.                                                   (4.6) 

 

If  we  suppose  ϕ(x,y)     ( ) it  can  be  shown that  the  series (4.5) is   convergent  for   t > 0 and   u(x,y,t ) 

  ϕ( x ,y )  as t 0  in  the  mean-square   sense  in  Ω. 

 

5-  Statement of the Problem Using Fourier Method: 

  This problem may be stated and solved  as follows. 

Problem  5.1.    

To solve the equation      ( )     , t > 0  by using Fourier method Where     a(t) =            ,   

f(x) =            ,      0 < x < L  and  L = 4     then      0 < x < 4  

Solution:    

  (   )  
 

√ ( ) 
∑    

   

 ( )      
    

 

√(    ) 
∑    
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∫  (
 

 
  )    

   

 
   

 

 
∫ (     )
 

 
   

   

 
    

        
  

 
   

   

 
     

 u(x,t) =  
 

√(     ) 
∑

  

 
   

   

 
   

    
   

      →  u(x,t) =  
    

   

       
   

 

 √(    ) 
 

 

 

 

 

 

 

 

 

 

 

 

Fig (5.1) 

The solution of problem (5.1) 

 

Problem  5.2. 

To solve  the equation     ( )       , t > 0 by using  Fourier method  where   a(t) = 3 +  (   )  ,   

f(y) = (   )    ,  0 <  y < L     and     L = 6        then      0 < y < 6  

Solution:    

u(y,t) = 
 

√ ( ) 
∑    

   

 ( )  
    

u(y,t) = 
 

√(     (   ) ) 

∑    

   

(     (   ) )  
    

     
 

 
∫  (
 

 
  )    

   

 
     

     
 

 
∫ (   ) 
 

 
   

   

 
    

        
   

 
 

u(y,t)= 
 

√(     (   ) ) 

∑       
   

 
  

   

(   (   ) )  
     

u(y,t) 
     

   

   (   )    
   

 

√(   (   ) ) 
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Fig(5.2) 

The solution of problem (5.2) 

Problem 5.3. 

To solve  the  equation     ( )         ,t > 0  by  using  Fourier method  where     a(t) =   
   

  
  ,  

f(z) =       ,  0 < z < L    and    L = 3  , 0 < z < 3  

Solution: 
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Fig(5.3) 

The solution of problem (5.3) 
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