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Abstract 

In this paper, we will manipulate the cubic spline to develop a collocation method (CSCM) and the 

generalized Newton method for solving the nonlinear Troesch problem. This method converges quadratically 

if a relation-ship between the physical parameter and the discretization parameter h is satisfied. An error 

estimate between the exact solution and the discret solution is provided. To validate the theoretical results, 

Numerical results are presented and compared with other collocation methods given in the literature. 
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1. Introduction 

   Consider a two-point boundary value problem, Troesch’s problem, as follows: 

 

 

 

                      

where is a positive constant. Troesch’s problem is discussed by Weibel and arises in the investigation of the 

confinement of a plasma column by radiation pressure [1] and also in the theory of gas porous electrodes [2,3]. 

The closed form solution to this problem in terms of the Jacobian elliptic function has been given [4] as 
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where ),0('u  the derivative of u  at 0, is given by the expression ,12=)0(' mu   with m being the 

solution of the transcendental equation 
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From (1), it was noticed that a pole of )(tu occurs at a pole of ))0('
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It also has an equivalent definition given in terms of a lattice. 

  Troesch’s problem has been solved by another method. M. Zarebnia et al. [4] have introduced an 

sinc-Galerkin method for solving this problem; their method is based on the modified homotopy 

perturbation technique. They have compared this method with homotopy perturbation method (HPM), 

Laplace method, perturbation method and spline method. The discontinuous Galerkin finite element (DG) 

method is applied for solving Troesch’s problem by H. Temimi [5]. Mohamed El-Gamel [6] have 

introduced an efficient algorithm based on the sinc-collocation technique, they have compared this method 

with the modified homotopy perturbation technique (MHP), the variational iteration method and the 

Adomian decomposition method. M. Zarebnia, M. Sajjadian [7] have introduced an efficient algorithm 

based on The sinc-Galerkin method, they have compared this method with [5, 6]. In another article, 

Mustafa Inc, Ali Akgül [13] have introduced the reproducing kernel Hilbert space method (RKHSM) is 

applied for solving Troesch’s problem. They have compared this method with the homotopy perturbation 

method (HPM), the Laplace decomposition method (LDM), the perturbation method (PM), the Adomian 

decomposition method (ADM), the variational iteration method (VIM), the B-spline method and the 

nonstandard finite difference scheme (FDS). 

  In this paper we develop a numerical method for solving a one dimentional Troesch’s problem by using 

the CSCM and the generalized Newton method. First, we apply the spline collocation method to 

approximate the solution of a boundary value problem of second order. The discret problem is formulated 

as to find the cubic spline coefficients of a nonsmooth system YY =)( , where 
mm RR : . In order 

to solve the nonsmooth equation we apply the generalized Newton method (see [15, 16, 17], for instance). 

We prove that the CSCM converges quadratically provided that a property coupling the parameter and 

the discretization parameter h is satisfied. 

Numerical methods to approximate the solution of boundary value problems have been considered by 

several authors. We only mention the papers [12] and references therein, which use the spline collocation 

method for solving the boundary value problems. 

  The cubic B-spline collocation method is widely used in practice because it is computationally 

inexpensive, easy to implement and gives high-order accuracy. In [12] the authors solved a  the Troesch’s 

problem by using third degree splines, where they considerer the collocation points as the knots of the 

cubic spline space.  In our paper we consider a cubic spline space defined by multiple knots in the 

boundary and we propose a simple and efficient new collocation method by considering as collocation 

points the mid-points of the knots of the cubic spline space. It is observed that the collocation method 

developed in this paper, when applied to some examples, can improve the results obtained by the 

collocation methods given in the literature (see [12], for instance). 

  The present paper is organized as follows. In Section 2, we construct a cubic spline to approximate the 

solution of the boundary problem. Section 3 is devoted to the presentation of the generalized Newton 

method and we show the convergence of the cubic spline to the solution of the boundary problem and 

provide an error estimate. Finally, some numerical results are given in Section 4 to validate our 

methodology.    

  In this paper, we shall apply CSCM to find the approximate analytical solution of the boundary and 

initial value problem of the Troesch problem. Comparisons with the exact solution shall be performed. 

 

2. Cubic spline collocation method 

  In this section, the cubic spline collocation method is developed and implemented for solving the Troesch’s 

problem defined by 
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with ),sinh(= uJ  where is a positive constant. 

It is easy to see that J  is a nonlinear continuous function on u ; and for any two functions u  and v , J  

satisfies the following Lipschitz condition:  
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  In order to implement the cubic spline collocation method, we first create a subdivision of the interval 

(0,1) 
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piecewise polynomials of degree 3  over the subdivision   and of class 
2C  everywhere on I  and 

class 
0C  everywhere on .

_
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 . Let iB , 1,3,=  ni  , be the B-splines 

of degree 3  associated with .  These B-splines are positives and form a basis of the space ),(4 IS


.  

Now, we define the following interpolation cubic spline of the solution u  of the nonlinear second order 

boundary value problem (2). 

 

Proposition 3.1: Let u  be the solution of problem (2). Then, there exists a unique cubic spline interpolant 

),(4 ISSp


  of u  which satisfies:  
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Proof:  Using the Schoenberg-Whitney theorem (see [8]), it is easy to see that there exits a unique cubic spline 

which interpolates u  at the points it , 2,0,= ni  .    
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Furthermore, since the interpolation with splines of degree d  gives uniform norm errors of order )( 1dhO  

for the interpolant, and of order )( 1 rdhO 
 for the rth  derivative of the interpolant (see [8], for instance), 

then for any )()( 02


 ICICu  (see [9]), we have  

 1.,1,=(1),),(=)(  niOutGtS ii   (4) 
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where
 

,)(''),(),( iii tutJutG 
 

The cubic spline collocation method, that we present in this paper, constructs numerically a cubic spline 

ii

n

i
BcS

~
=

~
1

3=



 which satisfies the equation (2) at the points it , 2,0,= ni  . It is easy to see that  
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Relations (4) and (5) can be written in the matrix form, respectively, as follows  
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, where A  is a 

matrix independent of h , with the matrix A  is invertible [10]. 

Then, relation (6) becomes  
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Theorem 3.1 Assume that the penalty parameter and the discretization parameter h satisfy the following 

relation:  

 2.<|||| 122



Ah   (8) 

Then there exists a unique cubic spline which approximates the exact solution u  of problem (2).  

Proof:  From relation (7), we have ~

12=
~

C

FAhC  . Let 
11:   nn RR  be a function defined by  

 .=)( ~

12

Y
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To prove the existence of cubic spline collocation it suffices to prove that   admits a unique fixed point. 

Indeed, let 1Y  and 2Y  be two vectors of 
1nR . Then we have  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.2, 2014 

 

69 

 .||||||||||)()(||
21

2

21   YY FFAhYY   (10) 

Using relation (4) and the fact that 1
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From relation (10), we conclude that  
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Then we have  
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 by relation (8). Hence the function admits a unique fixed point.    

In order to calculate the coefficients of the cubic spline collocation given by the nonsmooth system  
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we propose the generalized Newton method defined by  
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where 1nI  is the unit matrix of order 1n  and kV  is the generalized Jacobian of the function 

)
~

(
~

CC  , (see [15, 16, 17], for instance). 

 

3. Convergence of the method 

Theorem 3.1 If we assume that the penalty parameter and the discretization parameter h satisfy the following 

relation  

 1.<|||| 122



Ah   (13) 

then the cubic spline 

~
S  converges to the solution u . Moreover the error estimate  ||

~
|| Su  is of order 

)( 2hO .  

Proof: From (7) and the matrix A is invertible [10], we have  
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Since E  is of order )( 2hO , then there exists a constant 
1K  such that 
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1|||| hkE  . Hence we have  
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On the other hand we have 

 

.|)(
~

)(|
2

|)()(|
2

|)(
~

)(|
2

|))(
~

,())(,(|

22

2

iiii

iiiiii

tStStStu

tStutStGtutG









 

Since S  is the cubic spline interpolation of u , then there exists a constant 2K  such that (see [9]),  
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By using relation (14) and assumption (13) it is easy to see that  
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We have  

 .||
~

||||||||
~

||   SSSuSu  

Then from relations (15), (16) and (17), we deduce that  ||
~

|| Su  is of order )( 2hO . Hence the proof is 

complete.  

Remark 3.1: Theorem 3.1 provides a relation coupling the parameter and the discretization parameter h , 

which guarantees the quadratic convergence of the cubic spline collocation 

~
S to the solution u  of the 

Troesch’s problem (2).   
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4. Numerical examples 

  In this section, we solve Troesch’s problem for different values of the parameter using the computer algebra 

system Matlab and make a comparison between our results and those ones reported in the literature to confirm 

the efficiency and accuracy of our method. 

 

   Consider the Troesch’s equation as follows, when parameter =0.5 and 1. 
 

The maximum absolute errors in solutions of this problem are compared with methods in [7,11,12,13,14] for 

10/1=h and tabulated in Tables 1 and 2. The tables show that our results are more accurate. 

Table 1.  Absolute errors for  =0.5. 

x Present RKHSM [13] Wavelet[14] SGM.E[7] HPM.E[11] LM.E[12] PM.E[12] SM.E[12] 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

6.2E-12 

3.8E-11 

5.1E-11 

6.6E-11 

7.8E-11 

8.4E-11 

7.8E-11 

5.4E-11 

3.8E-11 

7.0E-11 

3.4E-09 

4.0E-10 

7.6E-09 

5.0E-09 

2.2E-09 

2.5E-09 

5.0E-10 

6.1E-09 

7.6E-04 

1.5E-03 

2.1E-03 

2.7E-03 

3.0E-03 

3.1E-03 

3.0E-03 

2.4E-03 

1.5E-03 

7.67E-04 

1.49E-03 

2.14E-03 

2.66E-03 

3.00E-03 

3.13E-03 

2.96E-03 

2.44E-03 

1.48E-03 

7.71E-04 

1.50E-03 

2.15E-03 

2.67E-03 

3.02E-03 

3.14E-03 

2.97E-03 

2.45E-03 

1.49E-03 

7.7E-04 

1.5E-03 

2.1E-03 

2.7E-03 

3.0E-03 

3.1E-03 

3.0E-03 

2.4E-03 

1.5E-03 

8.2E-04 

1.6E-03 

2.3E-03 

2.9E-03 

3.2E-03 

3.4E-03 

3.2E-03 

2.7E-03 

1.6E-03 

7.7E-04 

1.5E-03 

2.1E-03 

2.7E-03 

3.0E-03 

3.1E-03 

3.0E-03 

2.4E-03 

1.5E-03 

 

Table 2.  Absolute errors for =1. 

x Present RKHSM [13] Wavelet[14] SGM.E[7] HPM.E[11] LM.E[12] PM.E[12] SM.E[12] 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

3.43E-09 

6.76E-09 

9.21E-09 

2.65E-08 

3.87E-08 

4.43E-08 

3.78E-08 

2.93E-08 

6.32E-09 

4.39E-07 

9.42E-08 

8.29E-07 

2.49E-07 

3.04E-07 

9.91E-07 

4.74E-07 

3.45E-07 

9.41E-07 

2.8E-03 

5.6E-03 

8.2E-03 

1.0E-02 

1.2E-02 

1.3E-02 

1.3E-02 

1.1E-02 

7.4E-03 

2.86E-03 

5.64E-03 

8.22E-03 

1.04E-03 

1.22E-03 

1.32E-03 

1.31E-03 

1.14E-03 

7.39E-03 

3.13E-03 

6.16E-03 

8.96E-03 

1.13E-02 

1.32E-02 

1.42E-02 

1.40E-02 

1.20E-02 

7.76E-03 

2.9E-03 

5.9E-03 

8.2E-03 

1.0E-02 

1.2E-02 

1.3E-02 

1.3E-02 

1.1E-02 

7.4E-03 

3.6E-03 

7.1E-02 

1.0E-02 

1.3E-02 

1.6E-02 

1.7E-02 

1.7E-02 

1.5E-02 

9.7E-03 

2.8E-03 

5.6E-03 

8.2E-03 

1.0E-02 

1.2E-02 

1.3E-02 

1.3E-02 

1.1E-02 

7.4E-03 

 

6. Concluding remarks 

  In this paper, we have consider an approximation of a Troesch equation problem, presented in [2,3]. 

Then we have developed a numerical method for solving each nonsmooth equation, based on a cubic 

collocation spline method and the generalized Newton method. We have shown the convergence of the 

method provided that the physical and the discretization parameters satisfy the relation (13). Moreover we 

have provided an error estimate of order )( 2hO  with respect to the norm .||||   The obtained numerical 

results show the convergence of the approximate solutions to the exact one and confirm the error estimates 

provided in this paper. The analytical results are illustrated with two numerical examples. The proposed 

scheme is simple and computationally attractive, and shows a very high precision comparing with many 

other existing numerical methods. 
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