www.iiste.org

Determination the Pathogenicity of Citrobacter freundii by Using Three Types of Antigens in Najaf City

Dheyaa Shnan Al-Jamell * (Ph.D) College of Dentistry/Kufa University/ Iraq/ Najaf/ / Kufa , P.O. BOX 21

> Azhar Ammran AL-Thahab (Ph.D) College of Science /Babylon University

Salman Azez Al-Jubori (Ph.D) .College of Medicine /Kufa University

Qusay Abdulmuttaleb Al-Jabery (B. Sc.) College of Science/ Kufa University

Abstract

Background: This study has been included stool and urine samples were collected from children under six years of ages collected from three hospitals in Al-Najaf city (Al-Sadr Teaching, Al-Hakeem, and Al-Zahra Maternity and Children) ,*Citrobacter freundii* isolated from clinical sample. The Suckling Mice Assay (SMA) and Rabbit ligated ileal loop assay (RIL) have been tested to detect production of heat stable and heat labile enterotoxins by bacteria. **Material and Methods:** Three types of antigens were prepared: Live Bacteria, Crude Enterotoxin and Partially purified enterotoxin(PPET). LD₅₀ for crude and PPET were determined by using white mice (20-25) g, which divided into five groups each group consist of five mice. **Results** LD₅₀ of bacterial Suspension, crude enterotoxin and PPET in mice was 2.04×10^7 cell/mouse, 66.6 µg/mouse and 46.2 µg/mouse respectively. **Conclusion**: *Citrobacter freundii* considered as a potential pathogen that isolated from clinical samples .Bioassay administrated the ability of this species to produce heat stable enterotoxin by using SMA, and heat labile enterotoxin by RIL.

Aim: The aim of this study was to investigate three types of antigens isolated from *Citrobacter freundii* to determination the pathogencity of this bacteria by LD_{50} .

Introduction

Citrobacter freundii is usually considered as a commensal species of the human gut, although some isolates have acquired specific virulence traits that enable them to cause diarrhea. Therefore, virulence factors homologous, and some even identical, to those described in *E. coli* pathotypes were detected in *C. freundii* strains isolated from sporadic cases of infantile diarrhea(Karasawa *et al.*, 2002 and Pereira *et al.*, 2010).

Epidemiological data suggest that strains which secrete heat-stable toxin (ST), alone or in combination with heat-labile toxin (LT), induce the most severe disease among children (Taxt *et al.*, 2010). *C. freundii* complex has been implicated as a cause of gastrointestinal infection and inflammation, acute dysentery, and dyspepsia. Acute symptoms can include profuse, watery diarrhea which is often unaccompanied by abdominal pain, fecal blood, or white blood cells (Guarino *et al.*, 1987 and Washington *et al.*, 2006).

Material and Methods

The three types of antigens was prepared according to Al-Jamell (2011).

Determination of LD₅₀ **for Bacterial Suspension:** LD₅₀ for bacterial suspension was determined by using 25 white mice (20-25) g, which divided into five groups each group consist of five mice. Each group injected intraperitoneally in one of the following bacterial dilution (10^9 , 10^8 , 10^7 , 10^6 and 10^5), and the injected volume was 1ml for each mice. After 5 days LD₅₀ was determined according to Reed and Muench (1938).

Determination of LD₅₀ **for Crude and PPET:** LD₅₀ for crude and PPET were determined by using 25white mice each (20-25) g, which divided into five groups each group consist of five mice (Banno, 2008). Each group injected intraperitoneally in one of the following concentration from both crude and PPET concentration (100, 80, 60, 40, and 20) μ g/ml which prepared in PBS solution and the injected volume was 1ml for each mice. Another group of five mice injected with 1ml of PBS as negative control. After 5 days LD₅₀ was determined according to Reed and Muench (1938).

Result

Median Lethal Dose (LD₅₀) for Live Bacteria: According to reed and Munch (1938), LD₅₀ dose was evaluated through intraperitoneal route in balb/c mice. Five serial concentrations five mice for each of live bacteria were used and the results showed that the LD₅₀ was 2.04×10^7 cell/mouse which equal to 8.16×10^8 cell/kg (Table 1

and fig. 1).

Destarial		Died	Survived	Accumulation values			
Bacterial concentration (cell/ml)	Mortality ratio			Died (D)	Survived (S)	Mortality ratio $\frac{D}{D+s}$	Percent % $\frac{D}{D+s} \times 100$
109	5/5	5	0	11	0	11/11	100
108	4/5	4	1	6	1	6/7	85.71
107	2/5	2	3	2	4	2/6	33.33
106	0/5	0	5	0	9	0/9	0
105	0/5	0	5	0	14	0/14	0
Proportional distanc	e =	• 1		,	pelow 50 perc		

Mortality above 50 percent - Mortality below 50 percent

Table (1): LD₅₀ of Live Bacteria

Median Lethal Dose (LD₅₀) for Crude Enterotoxin

 LD_{50} was evaluated through intraperitoneal route in balb/c mice. Five concentrations of crude enterotoxin were used and the results showed that the LD_{50} was 66.6 µg/ mouse which equal to 2.664 mg/kg (Table 2 and fig. 2).

		Died	Survived	Accumulation values			
Crude toxin concentration (µg/ml)	Mortality ratio			Died (D)	Survived (S)	Mortality ratio $\frac{D}{D+s}$	Percent % $\frac{D}{D+s} \times 100$
100	4/5	4	1	11	1	11/12	91.66
80	3/5	3	2	7	3	7/10	70
60	2/5	2	3	4	6	4/10	40
40	2/5	2	3	2	9	2/11	18.18
20	0/5	0	5	0	14	0/14	0
$\begin{array}{rcl} \mbox{Proportional distance} & \mbox{Proportional} & \mbox{Concentration above 50 percent - Concentration} \\ 50 \mbox{ percent} & \mbox{ distance} & \times & \mbox{ (Concentration above 50 percent - Concentration} \\ & \mbox{ = } & 0.33 & \times & (80{\text{-}}60) & = 6.6 \\ \mbox{ LD}_{50} & \mbox{ Proportional distance 50 percent + Concentration below 50 percent} \\ \mbox{ LD}_{50} & \mbox{ 6.6 + 60 = 66.6 (µg/ml)} \\ & \mbox{ = } & 2.664 \mbox{ mg/kg} \end{array}$							
 16 – 14 – 12 – 10 – 8 – 6 – 4 – 4 – 						Died	

Table (2): LD50 of Crude Enterotoxin

60

40

Crud toxin concentration (µg/ml)

20

Median Lethal Dose (LD50) for PPET

100

80

2

0

LD50 was evaluated through intraperitoneal route using balb/c mice. Five concentrations of PPET were used and

the results showed that the LD_{50} was $46.2\mu g/$ mouse which equal to 1.848mg/kg (Table 3 and fig. 3). Table (3): LD_{50} of PPET

				Accumulat				3
conce	ied toxin entration g/ml)	Mortality ratio	Died	Survived	Died (D)	Survived (S)	Mortality ratio $\frac{D}{D+S}$	Percent % $\frac{D}{D+S} \times 100$
	100	5/5	5	0	16	0	16/16	100
	80	5/5	5	0	11	0	11/11	100
	60	4/5	4	1	6	1	6/7	85.71
	40	2/5	2	3	2	4	2/6	33.33
	20	0/5	0	5	0	9	0/9	0
	portional e 50 percent 18 16	t = $LD_{50} = F$ $LD_{50} = 6$	-	33.33 l × × l distance 50 p 46.2 (μg/ml)	below 50 (60-40)	= 6.2		Concentration
Accumulation values	14 12 10 8 6 4 2 0						Diec Surv	
	10	0 80 Partially pur	ified to				1	

Figure (3): LD₅₀ Value of PPET

The crude enterotoxin showed LD_{50} value (2.664 mg/ml) higher than PPET (1.848 mg/ml), while LD_{50} value of *C. freundii* (Live bacteria) 8.16×10^8 cell/kg (Table 4).

Treatment	LD50 values					
	Per mouse	Per kg				
Live bacteria	2.04×10^7 cell/ml	8.16×10 ⁸ cell/kg				
Crude enterotoxin	66.6 µg/ml	2.664 mg/kg				
PPET	46.2 µg/ml	1.848mg/kg				

Table (4) LD₅₀ Values of C. freundii (Live bacteria) and its Enterotoxins (Crude & PPET)

Discussion

The LD₅₀ of *C. freundii* was about 2.04×10^7 cell/mouse and of crude enterotoxin was about $66.6 \,\mu$ g/mouse and for PPET was $46.2 \,\mu$ g/mouse (table 4-9). Previous study recorded different value for LD₅₀ of *C. freundii* suspension were Al-Muslemawi (2007) revealed that the LD₅₀ of *C. freundii* was about 3.16×10^6 cell/mouse and Iwahi *et al.*, (1992) estimated 10^5 cell/mouse as LD₅₀ for *C. freundii* suspension, the mice die within 2 days. The LD₅₀ evaluated by Toranzo *et al.*, (1994) was more than 5×10^7 and describe the *C. freundii* as low virulence.

The difference in the LD_{50} values of bacterial suspension between different studies may be according to different of strains used and the potential virulence factors like enterotoxin, shiga like toxin, outer membrane proteins, LPS and other virulence factor (Al-Muslemawi, 2007).

The study of Banno (2008) estimated the LD₅₀ value of *E. coli* PPET (48.75 μ g/mouse). This value was much related to the present study (46.2 μ g/mouse) may be according to resembling of STa enterotoxins of both *E. coli* and *C. freundii*.

Additionally, Pereira *et al.* (2010) identified isolates of *C. freundii* as effective recipient strains for transfer of *E. coli* thermo-stable toxin genes between these species raised considerations about the virulence potential of the bacterial conjugation.

According to Gill (1982), the LD₅₀ value of *E.coli* heat stable and heat labile enterotoxin were250 μ g/kg when the mice injected intravenous, while Abd Al-Hussain (2006) estimate the LD₅₀ value of PPET partially purified from *Plesiomonas Shigelloides* (12.5 μ g/mouse).

References

- Karasawa, T.; Ito, H.; Tsukamoto, T.; Yamasaki, S.; Kurazono, H.; and Faruque, S.M. (2002). Cloning and characterization of genes encoding homologues of the B subunit of cholera toxin and the *Escherichia coli* heat-labile enterotoxin from clinical isolates of *Citrobacter freundii* and *E. coli*. Infect Immun. 70, 7153-7155.
- Pereira, A. L.; Silva, T. N.; Gomes, A. C.; Araujo, A. C.; Giugliano, L. G. (2010). Diarrhea-associated biofilm formed by enteroaggregative *Escherichia coli* and aggregative *Citrobacter freundii*: a consortium mediated by putative F pili. BMC Microbiology 10:57 pp. 1-18.
- Washington, W.; Allen, S.; Janda, W.; Koneman, E.; Procop, G.; Schreckenberger, P.; Woods, G. and Koneman's (2006). Color Atlas and Textbook of Diagnostic Microbiology, 6th edition. Lippincott Williams and Wilkins. pp. 259-260.
- Guarino A., Capano G., Malamisura B., Alessio M., Guandalini S. and Rubino A. (1987). Production of *Eschericia coli* STa-Like heat-stable enterotoxin by *Citrobacter freundii* isolated from humans. J. Clin. Microbiol., 25, 110-114.
- Reed, J. and Muench, H. (1938). A simple method of estimating fifty percent end points. Am.J. Hyg. 27: 493-497.
- Banno, I.S.A.(2008). Effect of ETEC Escherichia coli enterotoxins on cancer cells, cell lines and laboratory animals.Ph.D. Thesis, College of Science, University of Baghdad. Iraq.
- Al-Muslemawi , T. A. J.(2007). Study of Some Biochemical, Biological And Pathological Properties Of Lipopolysaccharide Extracted From Citrobacter freundii. Ph.D. Thesis.College of Science, Baghdad University. Iraq.
- Iwahi, T.; Okonogi, K.; Yamazaki, T.; Shiki, S.H.; Kondo, M.; Miyake, A. and Imada, A. (1992). In vitro and in vivo activities of SCE-2787, a new parenteral cephalosporin with a broad antibacterial spectrum. Antimicrob. Agent. Chemother. 36: 1358-66.
- Toranzo, A.E.; Cutrin, J.M.; Roberrson, B.S.; Nunez, S. Abell, J.M.; Hetrick, F.M. and Baya, A.M. (1994). Comparison of the taxonomy, serology, drug resistance transfer and virulence of Citrobacter freundii strains from mammals and poikilothermic hosts. Appl. Environ. Microbial. 60: 1789-1797.
- Pereira, A. L.; Silva, T. N.; Gomes, A. C.; Araujo, A. C.; Giugliano, L. G. (2010). Diarrhea-associated biofilm formed by enteroaggregative Escherichia coli and aggregative Citrobacter freundii: a consortium mediated by putative F pili. BMC Microbiology 10:57 pp. 1-18.

Gill, D.M. (1982). Bacterial Toxins: a Table of Lethal Amounts. Microbiological Reviews. 46: 86-94

- Abd Al-Hussain, B.A. (2006). Study of Enterotoxin of Plesiomonas shigellosis Locally Isolated. M.Sc thesis. College of Science/Bagdad University.Iraq.
- Al-Jamell, D. S.(2011) Toxigenicity and Immunogenicity of *Citrobacter freundii* locally Isolates. Ph.D.. Thesis. *College of science Babylon University.*
- Taxt, A.; Aasland, R.; Sommerfelt, H.; Nataro, J.; and Puntervoll, P. (2010). Heat-Stable Enterotoxin of Enterotoxigenic *Escherichia coli* as a Vaccine Target. Infect Immun. 70, 1824–1831.