

Ethno-Medicinal Study of Plants Used for Treatment of Human and Livestock Ailments by Traditional Healers in Goba Woreda, Bale Zone, Oromia, Ethiopia

Habtamu Tedila* Getu Dida

College of Natural and Computational Science Department of Biology (Stream of Applied Microbiology and Botanical science), Madda Walabu University, PO box 247, Bale Robe, Ethiopia

Abstract

The investigation of traditional medicinal plants was performed in Bale district from August to October 2018 in three kebeles Kedu, Elasa and Aloshe Tilo. In the study area diverse medicinal plant were used to treat many human and livestock disease. The data were collected from the informants through semi-structured interview, discussion and collected plant samples from the study areas that were used to treat different human and livestock ailments. A total of 21 informants were selected that consist of seven informants from each kebele of which 16 were males and 5 females. Among the informants six of them were key informants selected by purposive sampling method. A total of 35 medicinal plant species were collected from the study area and identified using the Flora of Ethiopia and Eritrea (volume 3, 1989). The medicinal plant collected was used to treat six disease categories. Namely, dermatological, respiratory, ureno-genital, gastro-intestinal, febrile and livestock disease. The frequently applied plant part was leaf (58%) followed by root (25%). Traditional healers commonly used the juice of fresh leaf and root of medicinal plants. To prepare it fresh part of the plant was crushed and the juice applied orally, nasally or dermally. However, these plant species were threatened by the activities of the community like expansion of agriculture, overgrazing, cultivation of eucalyptus tree as cash plant and application of the root of medicinal plant was a factor that needs risk of extinction. To conserve the biodiversity of the area and preserve the medicinal plants it was recommended to make aware of the society and to develop in -situ and ex-situ conservation of medicinal plants.

Keywords: Human diseases, Livestock ailments, Traditional medicinal plants, traditional healer.

DOI: 10.7176/ALST/71-03

1. INTRODUCTION

Million years back, plants have been used in the health care systems of mankind (Khandel *et al.*, 2012). Even today, plants remain the source for majority (80%) of people in developing countries to alleviate health problems. Despite the notable progress in the synthetic of organic chemistry, more than 25% of agreed medicine of developed countries is also directly or indirectly derived from plants (Hostettmann and Marston, 2002). Furthermore, many of the major modern drugs such as quinine, salicylic acid, Artemisia have been discovered from traditional knowledge of communities (Yadav, 2013). Besides their use in preventing and curing various ailments, some medicinal plants are serving as export commodities, source of considerable income for farmers (Assefa and Abebe, 2014).

Ethiopia located in the horn of Africa is believed to be home for about 6,500 species of higher plants of which 12% are endemic(UNEP, 1995) making the country among the most diverse floristic regions of the world. Since Ethiopia is home to several languages, cultures and beliefs (Gidey, 2001), several traditional knowledge and use of medicinal plant practices are highly expected (Getaneh and Girma, 2014).

Studies show that, 80% human and 90% livestock in Ethiopia rely on traditional medicine for their primary health care systems (Yadav, 2013). Not only Ethiopians but also around 60% of world population depends on traditional medicine (Khandel *et al.*, 2012). In developed countries such as United States, plant drugs constitute as much as 25% of the total drugs, while in fast developing countries such as China and India, the contribution is as much as 80% (Joy *et al.*,1998). The reason for highly reliance on traditional medicine in developing countries particularly in Ethiopia is cultural acceptability, effectiveness against certain type of ailments, accessibility and affordability as compared to modern medicine (Awas and Demissew, 2009; Yirga,2010; Megersa*et al.*,2013). Regardless of its contribution to the society, traditional medicine has been given a little attention in modern research and less effort has been made to promote the practice in Ethiopia (Gidey, 2001). Due to natural and anthropogenic factors, the biodiversity as well as medicinal plants are being depleted in an alarming rate (Megassa et al., 2013).

The current loss of medicinal plants in the country links with the missing of valuable indigenous knowledge associated with the plants (Zenebe *et al.*,2012). Among natives of various countries, knowledge of medicine has been Passed orally from one generation to the next by priests and medicine men (Getahun, 1976). But, due to the fact that cultural systems are highly fragile the skills are likely to be lost in the transfer process (Getaneh and Girma, 2014). Furthermore, the local communities encounter cultural changes due to development activities in

areas where these communities reside and both the medicinal plants and the associated indigenous knowledge could vanish forever(Belayneh *et al.* 2012). This also holds true in Ethiopia where written records in this field are almost absent even though the country has had a written language for over thousand years (Agisho *et al.*, 2014). In Ethiopia medicinal plants and knowledge of their use provided a vital contribution to human and livestock health care needs throughout the country the reason why medicinal plants are demanded in Ethiopia is due to culturally linked traditions (Kibebew, 2001). Ethiopia geographical diversity with different habitats and vegetation type's favors medicinal plant growth and utilization (Gebeyehu *et al.*, 2013). Multiple geographical diversity of the country coupled with multiethnic group make it home for wide traditional medicine. The practice of traditional medicine in the country is not only concerned with curing of diseases but also with the protection and promotion of human physical, spiritual, social, mental and material well-being.

The knowledge involves traditional diagnosis, collection of raw materials, preparation of remedies and its prescription to the patients (WHO, 2002). Indigenous knowledge on remedies in many countries including Ethiopia, pass from one generation to the other generation verbally with great secrecy (Janzen, 1981). The complex knowledge, beliefs, and practice generally known as indigenous knowledge or traditional knowledge, develop and change with time. It includes time tested practices that developed in the process of interaction of human with their environment (Hunde et al., 2004). Indigenous people refer to people who follow traditional, non-industrial life style in area that they have occupied for generations (Balick and Cox, 1996). Indigenous knowledge is a result many generation long years' experience careful observation and trial and error experiments (Martin, 1995). Traditional people around the world possess unique knowledge of plant resources on which they depends for food, medicine and general utility (Martine, 1995, Khanal 2006 cited in Alemayehu, 2013). The knowledge helps them to identify and use many plants for traditional medicine to treat different human and livestock diseases.

The world health organization (WHO, 2002) defined traditional medicine as the total combination of knowledge and practice that can be formally explained are used in prevention and elimination of physical, mental, or social imbalance and relaying exclusively on practical experience and observation handed down from generation to generation whether, verbally or in writing (Amenu,2007). Traditional medicine as a major African socio cultural heritage, obviously in existence for several hundreds of years, and the first choice of health care treatment for at least 80% of Africans who suffer fever and other common ailment (Elujoba et al., 2005).

Ethiopia is a country characterized by a wide range of climate and ecological condition, possesses enormous diversity of flora and fauna (Pankhurst, 2006). The country possesses a wide range potentially useful medicine plants, more extensive indeed than available in many other parts of the world (Yirga and Zeraburk. 2005). Popular knowledge of plant used by human is based on thousands of years of experience by trial and error people learn how to recognize and use plants, including those with a magic-religious function. In Ethiopia, even though the traditional medicinal practitioners are the best sources of information secret, only to be passed orally to their older son, at their oldest age (Janzen 1981) Due to its long period of practice and existence, traditional medicine has become an integral part of the culture of Ethiopian people (Amenu. 2007). According to (Abebe, 2001), there is a large magnitude of use and interest in medicinal plant in Ethiopia due to acceptability and bio medicinal benefits. In Ethiopia the long history use of medicinal plants is reflected in various medico –religious manuscripts produced on parchments and believed to have originated several centuries ago (Kibebew, 2001). Medicinal text books written in Geez and Arabic in Ethiopia between the 17 & 18 centuries employs that plants have been used as a source of traditional medicine in Ethiopia health care system. In Ethiopia little emphasis has been given to traditional medicinal studies over the past decades (Hunde, et al., 2004). There for it can be said that ethinobotanical studies are merely at the start in Ethiopia there have been some attempts in investigating medicinal plants uses and there is as yet, no in depth study on the relation between medicinal plants and indigenous knowledge on sustainable management of such plant species.

2. Materials and Methods

2.1. Description of the study area

The study was conducted from October 2016 to February 2017 in three kebeles Kedu, Elasa and Aloshe Tilo in Goba districts of Bale zone, Oromia Regional State, South Eastern Ethiopia. Goba district was located at 445 km south east of Addis Ababa. The area was situated at 7°00° N and 39°58° E Latitude and longitude respectively. The area has a typical vegetation type of undifferentiated Afromontane forests in Ethiopia and has a mean annual rainfall and temperature of 1218.64 mm and 10.26 °C, respectively. The economic activities of the local people were primarily based upon mixed farming that involves pastoralism and cultivation of crops such as wheat and barley.

2.2. Data Sources

The traditional medicinal plant data were obtained from primary and secondary sources. The primary data were obtained by collecting of fresh specimens data in the study area. The secondary sources were obtained by

referring to previous studies in the country and literature review.

2.3. Methods of Data Collection

2.3.1. Semi-structured Interviewer Administered Questionnaire

Lists of questions were prepared that covered in the discussion with the informants in a particular order. The interview was done and around these questions and some issues were raids depending on responses of informant. The language that was used frequently with the informants was Oromiffa (common language of the woreda) and Amharic. During the interview the information regarding local name of the medicinal plants, parts used, methods of preparation and mode of application were gathered.

2.4. Plant Specimen Collection and Identification

The available plant specimens were collected for each plant species and identification of some common and well known species was made in the field including the local name, specific name and habitat. The identification was done by using taxonomic key and volume 3 of the Flora of Ethiopia and Eriterea (Hedberg ,1989).

2.5. Data Analysis

In order to assess the distribution of the medicinal plants in the area, vegetation survey was carried out. It also provided one way of summarizing the knowledge of vegetation pattern. As the study encompasses large - scale area quadrant were used and a visual identification of the community type were established based on the dominance of some species. The community name was derived based on the tree or shrub with high synoptic value.

2.5.1. Descriptive Statistics

A descriptive statistical method percentage was employed to analyze and summarize the data on medicinal plants and associated knowledge. The most useful information gathered on medicinal plants reported by local people. medicinal value, application, method of preparation, route of application, disease treated, dosage, parts and habits used were analyzed through descriptive statistical analysis.

3. Results

For identification purpose the leaf sample of 35 medicinal plants were collected and among these 27 species were used for the treatment of human diseases while six species were used for livestock treatment. The rest two species were used to treat both human and livestock diseases. The traditional practitioners collected (41.6%) of the medicinal plants from home gardens and (58.4%) from the natural habitat. Among the medicinal plants 18 species were herbs followed by 13 species shrubs and other four species were trees.

Table 1: List of Traditional medicinal plant species used to treat human and livestock disease

Table	Table 1: List of Traditional medicinal plant species used to treat human and livestock disease									
S.No	Botanical Name	Local Name	Type	Human/Liv estock	Ailment treated					
1	Cacumisfici folius	Yemdir embauy	Herb	Human	Sudden stomach aech					
2	Clerodendrummy ricoides	Misrich	Shrub	Human	Allergic					
3	Acokanthera schimperi	Merenz	Tree	Human	Hepatitis					
4	Ajugainteg pifolia	Aqourarach	Herb	Human	Tonsillitis					
5	Aloe vera	Eret	Herb	Human	Wound					
6	Artemisia afra	Ariti	Herb	Human	Abdominal problem					
7	Asparagus scaberulus	Keskeso	Herb	Human	Burring wound					
8	Asparagus spp.	Serittee	Shrub	Human	Allergic					
9	Achyranthe saspera	Telenji	Herb	Livestock	Abagorba					
10	Calpurnia aurea	Digita	Shrub	Livestock	Cattle lice					
11	Clematis hirsute	Azoareg	Shrub	Human	Abdominal problem					
12	Acmellacau lirhiza	Yemdirberbere	Herb	Human	Tonsillits					
13	Croton macrostachyus	Bisana	Tree	Human	Wring worm					
14	Datura stramonium	Astenagir	Herb	Human	Dandruf					
15	Echinoops kabaricho	Kabaricho	Shrub	Both	Febrile illness					
16	Ecualptus globules	Nechbeharzaf	Tree	Livestock	Abagorba					
17	Foeniculum volgare	Insilal	Herb	Both	Urination problem					
18	Jasmrnum gusscaqberulus	Tembelel	Shrub	Human	Allergic					
19	Juniprus procera	Yeabeshatid	Tree	Human	Wound					
20	Kasanechea maerantha	Endwhula	Herb	Human	Boil					
21	Kasanechea maerantha	Endwhula	Herb	Human	Tonsillits					
22	Leggerato mentosa	Chikugn	Herb	Human	Common cold& Influenza					
23	Lepldium sativum	Feto	Herb	Human	Abdominal problem					
24	Leucusma rtinicensis	Raskemir	Shrub	Human	Febrile illness(much)					
25	Nicotina tobacum	Timbaho	Herb	Livestock	Leech infection					
26	Ocimum gratissimum	Damakese	Shrub	Human	Febrile illness					
27	Osyris quadripartita	Keret	Shrub	Livestock	Cattle skin lesion					
28	Phytolacca dodecandre	Indod	Shrub	Human	Gonorrhea					
29	Rhusre tinorrhoea	Tilem	Shrub	Human	Hepatitis					
30	Rumex absyssinica	Mekimeko	Herb	Human	Wring worm					
31	Rummex crispus	Tult	Herb	Human	Stomach aech					
32	Strychno sinnocua	Engochit	Shrub	Human	Abdominal problem					
33	Rutacha chlepensis	Tenadam	Herb	Human	Abdominal problem					
34	Verbana of icinalis	Ajo	Herb	Livestock	Abagorba					
35	Withania sominfera	Gizawa	Shrub	Human	Febrile illness					

Medicinal plant parts used, method of Preparation and rout of application

Most remedies (58.3%) were prepared from leaves followed by root (25%). The majority (88.8%) of remedies were prepared from fresh plant parts (leaf or root) followed by dried plant parts; the leaf or root powder (11.2%) and most common of remedial preparation was squeezing of the fresh leaf or root (33%) followed by powdering (13%) most of these medicine prepared remedies were applied orally (38.8%) followed by dermal (33.3%) and nasal (11.1%). (Table 2).

			method of preparation and rout of application	
SN	Botanical Name	Parts used	Method of preparation	Rout of
				application
1	Achyranthe saspera	Leaf	Fresh leaf crushed	Orally
2	Acmellacau lirhiza	Flower	Chewing fresh flower	Orally
3	Acokanthera schimperi	Fresh leaf	Fresh leaf juice with honey	Orally
4	Ajugaintegpi folia	Leaf	Fresh leaf	juice Nasally or orally
5	Aloe vera	Leaf	Covering with internal part	Topically
6	Artemisia afra	Shoot	Fresh shoot socked in water	Orally
7	Asparagus scaberulus	Leaf	Polishing dry leaf powder	Topically
8	Asparagus spp.	Leaf	Fresh leaf juice	Topically
9	Cacumisfici folius	Root	Root powder with water / coffee	Orally
10	Calpurnia aurea	Leaf	Fresh leaf juice	Topically
11	Clematis hirsute	Root	Crushing fresh root &socked in water	Orally
12	Clerodendrummy ricoides	Leaf	Fresh leaf juice	Topically
13	Croton macrostachyus	Young leaf	Fluid in young leaf	Topically
14	Datura stramonium	Leaf	Fresh leaf juice	Topically
15	Echinoops kabaricho	Root	Root smoke	Nasally/orally
16	Ecualptus globules	Leaf	Fresh leaf crushed	Orally
17	Foeniculum volgare	Leaf	Fresh leaf juce	Orally
18	Jasmrnumgussca	Leaf	Fresh leaf juice	Topically
10	gberulus	Lear	Tresh lear juice	Topically
19	Juniprus procera	Dry leaf	Polishing dry leaf powder	Topically
20	Kaanchea macrantha	Leaf	Covering with hot fresh leaf	Topically
21	Kasanechea maerantha	Root	Fresh root crushed and socked in water	Nasally
22	Leggerato mentosa	Leaf	Fresh leaf boiled with milk	Orally
23	Leggerato mentosa Lepldium sativum	Seed	Seed powder with water	Orally
24	Leucusma rtinicensis	Leaf	Fresh leaf juice with water drop	Nasally
			· · · · · · · · · · · · · · · · · · ·	•
25	Nicotina tobacum	Leaf	Fresh leaf juice	Orally or nasally
26	Ocimum gratissimum	Leaf	Fresh leaf juice with water drop	Nasally or orally
27	Osyrisqua dripartita	Leaf	Fresh leaf juice	Topically
28	Rhmnus prinoids	Leaf	Chewing	Orally
29	Rhusretino rrhoea	Leaf	Fresh leaf socked in water	Orally
30	Rumex absyssinicus	Root	Root powder with butter	Topically
31	Rummex crispus	Root	Chewing fresh/dry root	Orally
32	Ruta chalepensis	Shoot &fruit	Fresh shoot socked in water	Orally
33	Strychno sinnocua	Root	Fresh root crushed &socked in water	Orally
34	Verbana of icinalis	Leaf	Fresh leaf crushad&mixed with the above two	Orally
35	Withania sominfera	Root	Dry root smoke	Orally &nasally

Traditional medicinal plants used to treat different disease categories **Dermatological diseases**

The skin can be exposed to much pathogenic infection mainly to different fungal diseases such as ringworm, dandruff and skin allergic. The society in the study area used a number of medicinal plants to treat these and other dermatological ailments. About 10 (27%) traditional medicinal plant identified used to treat different dermatological diseases. The fresh leaf is the most common parts of the plant for this purpose (Table 3).

Table 3: medicinal plants used to treat human dermatological diseases

SN	Botanical Name	Local Name	Ailments treated	Parts used	Method of preparation	Rout application	of
1	Aloe vera	Eret	Wound	Leaf	Covering with the internal part	Topically	
2	Asparagus scaberulus	Keskeso	Fire wound	Leaf	Polishing dry leaf powder	Topically	
3	Asparagus spp.	Tembelel	Allergic	Leaf	Fresh leaf juice	Topically	
4	Clerodendrum myricoides	Misrich	Allergic	Leaf	Fresh leaf juice	Topically	
5	Croton macrostachyus	Bisana	Ring worm	Leaf	Fluid in young leaf	Topically	
6	Datura stramonium	Astenagir	Dandruf	Leaf	Fresh leaf juice	Topically	
7	Jasmrnumgussca qberulus	Tenbelel	Allergic	Leaf	Fresh leaf juice	Topically	
8	Jinuprus procera	Yabeshatid	Wound	Leaf	Leaf powder	Topically	
9	Kaanchea macrantha	Endwhula	Boil	Leaf	Covering with hot fresh leaf	Topically	
10	Rumex absyssinicus	Mekmeko	Ring worm	Root	Root powder with butter	Topically	

Respiratory diseases

Respiratory diseases were the common health problem to the intended area of the study. People around that area treat the using traditional medicinal plant species. Of the plants identified from the study area six (10%) were used to treat respiratory ailment like tonsillitis, common cold and influenza. (Table 4).

Table 4: Medicinal plants used to treat human respiratory disease

SN	Botanical Name	Local Name	Ailments	Parts	Method of	Rout of
SIN	Dotanicai Name	Local Name				
			treated	used	preparation	application
1	Acmella caulirhiza	Yemdirberbere	Tonsillitis	Flower/	Chewing fresh	Orally
				root	flower or root	
2	Ajugainteg pifolia	Aqourarach	Tonsillitis	Leaf	Fresh leaf juice	Nasally
3	Ecualptus globules	Nechbeharzaf	Common cold	Leaf	Fresh leaf boild	Nasally/orally
4	Kasanechea	Endwhula	Tonsillitis	Root	Fresh root crushed	Nasally
	maerantha				and socked in water	j
5	Leggerato mentosa	Chkugn	Common cold	Leaf	Fresh leaf boiled	Orally
			&Influenza		with water	-
6	Ruta chalepensis	Tenadam	Common cold	Leaf	Fresh leaf boiled	Orally
					with milk/tea	-

Ureno-genital and organ diseases

From the collected plant species four (11%) of them were applied to treat uren-genital and organ diseases. Traditional healers used leaf and root for the treatment of ureno-genital and organ diseases. Crushing fresh leaf or root and preparing juice to be taken orally. (Table 5).

Table 5: Medicinal plants used to treat Ureno genital

	- 40 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4						
SN	Botanical Name	Local Name	Ailments treated	Parts	Method of	Rout of	
				used	preparation	application	
1	Acokanthera schimperi	Merienz	Hepatitis	Leaf	Fresh leaf	Orally	
2	Foeniculum volgare	Insilal	Urinary problem	Leaf	Fresh leaf juice	Orally	
3	Phytolacca dodecandre	Indod	Gonorrhea	Root	Crushing fresh root and socked in water	Orally	
4	Rhusretino rrhoea	Tilem	Hepatitis	Leaf	Fresh leaf socked in water	Orally	
					water		

Gastro intestinal disease

In the study area indigenous people use many traditional medicinal plants to treat gastro-intestinal ailments. Oral application is the most commonly rout of remedies some of these plants are familiar the society in the study area. From identified medicinal plants seven (19.4%) are used to treat these diseases. The root is the common part of the plant to prepare the remedies (Table 6).

Table 6: Medicinal plants used to treat Gastro-intestinal disease

No.	Botanical Name	Local Name	Ailments treated	Parts	Method of	Rout of
				used	preparation	application
1	Artemisia afra	Ariti	Stomachaech	Shoot	Fresh shoot socked	Orally
					in water	
2	Cacumis ficifolius	Ymidrimbauy	Typhoid	Root	Root powder with	Orally
					water / coffee	
3	Lepldium sativum	Feto	Abdomenal problem	Seed	Seed powder with	Orally
	-		_		water	
4	Rummex crispus	Tult	Sudden abdomenal	Root	Chewing fresh root	Orally
			problem			
5	Rutacha lepensis	Tenadam	Stomach aech	Shoot	Fresh shoot socked	Orally
				&fruit	in water	
6	Clematis hirsute	Azoareg	Abdomenal problem	Root	Crushing fresh root	Orally
			•		&socked in water	-
7	Strychno sinnocua	Engochit	Abdomenal problem	Root	Fresh root crushed	Orally
	•		•		&socked in water	-

Febrile disease

Febrile diseases were common in the community they occur frequently, but treated with some medicinal plants. They were effective when applied together. The fresh leaves of these plants squeezed and with water / coffee. (Table 7).

Table 7: Medicinal plant used to treat human febrile disease

SN	Botanical Name	Local	Ailments	Parts	Method of	Rout of
511	Botamear Name	Name	treated	used	preparation	application
1	Echinoops	Kebericho	Febrile	Root	Dry root smoke	Nasally/Orally
	kabarichomesfin					
2	Leucusma	Raskemir	Febrile	Leaf	Fresh leaf juice	Orally/nasally
	rtinicensis				withcoffee/water	
3	Ocimum	Damakese	Febrile	Leaf	Fresh leaf juice	Nasally or orally
	gratissimum		illness(much)		with water drop	
4	Withania	Gizawa	Febrile illness	Root	Dry root smoke	Orally &nasally
	sominfera		(much)			

Livestock disease

Breeding livestock is one source of economy besides cultivating crops to the society of the study area. They treat different livestock diseases with a number of traditional medicinal plant species. Traditional healer treat the disease of livestock using medicinal plants six (16.7%) of identified from the study area are used to treat different livestock ailment. (Table 8).

Table 8: Medicinal plant used to treat Livestock disease

SN	Botanical Name	Local	Ailments	Parts	Method of preparation	Rout of
		Name	treated	used		application
1	Achyranthes aspera	Telenji	Abagorba	Leaf	Fresh leaf crushed	Orally
2	Calpurnia aurea	Digita	Cattle lice	Leaf	Fresh leaf juice	Topically
3	Ecualptus globules	Nech	Abagorba	Leaf	Fresh leaf juice	Orally
		beharzaf				
4	Nicotina tobacum	Timbaho	Leech	Leaf	Fresh leaf juice	Orally or
			infection			nasally
5	Osyrisquadripartita	Keret	Cattle skin	Leaf	Fresh leaf juice	Topically
			lesion			
6	Verbana officinalis	Atuch	Abagorba	Leaf	Fresh leaf crushed & mixed	Orally
					with the above two	

Discussion

The society in the study area used many medicinal plants to treat different human and livestock diseases. In the study area traditional medicine is used by traditional healers to solve the health problem of human and livestock. Traditional healers are using local medicinal plants to maintain human and livestock health. In the study area most medicinal plants (80 %) were collected from farm land, grazing land, up land forest, compared to (20 %)

from home garden. The community may not so interest to grow all the medicinal plants in the home garden and ex-situ. This may be due to most medicinal plant is available in the wild area so that the traditional healers harvest them very easily. Medicinal plant species Clerodend rummyyicoi, Asparayus spp. and Jasmrnum gusscaqberulus are used to treat skin allergic mainly they are applied for infants. By cutting seven or nine young leaf from each plant species mixed and squeezed then applied dermally. Juniprus procera and Asparasgus caperulus are used to treat wounds which are caused by burning. The dry leaf powder mixed with butter is applied on the wound to prevent infection. The squeeze of Croton macrostachyus used to treat ring worm. Cover the wound with five to ten hot fresh leaves of Kalaneama crantha is used to discharge the pus. Acmellaca lihizais is used to treat tonsillitis by chewing fresh flower or root. Leggerata mentosa is used to treat common cold and influenza by boiling with milk and taken orally mainly for infants. Traditional healers treat urenogenital and organ ailment using different traditional medicinal plant species. Phytolacca dodecandre is used to treat one of the sexually transmitted diseases gonorrhea. For the treatment of gonorrhea fresh root of the plant crushed the squeeze taken orally. Foeniculum Volga reused to treat urination problem of both human and livestock. It applied by taking the fresh leaf squeeze orally. Crushing the fresh leaf of Rhusterti norrhoea and Ackantheras chimperi squeezed together mixed with honey and taken orally before breakfast to treat hepatitis. Some medicinal plants are familiar to the society in the study area to treat many gastrointestinal ailments. Chewing the fresh root of *Rmmex crispus* used to treat sudden abdominal problem (dingetgna). The root powder of Cacumis ficifolius with water / coffee used to treat typhoid. Most these plants are found easily around home gardens. There are some plant species found around house fences used to treat febrile diseases such as Leucusmarti nicensis and Ocimumgar tissimum fresh leaf squeeze with water/ coffee taken orally. The traditional healers estimate the dosage by taking seven leaves from each plant and mix together and the squeeze given to the paint. The society in the study area also treats livestock diseases by medicinal plants. Nicotina tobacum is used to treat leech infection. Fresh leaf juice taken orally/nasally to with drown the leech from the trachea as it close the trachea and cause cough to the cattle. Crushing Ecualptus globules, Achyranthe sapsera, and Verbana oficinalis together socked in water and taken orally to treat Abagorba. The fresh leaf squeeze of Calpurnia aurea applied dremily to kill cattle lice.

Traditional practitioners in the study area mostly use leaves (63.8 %), for preparing remedies followed by root (22.2%). Most traditional remedies were prepared using fresh materials (leaves and root) compared with dried one. It may be expected that when the plant is dried it may loss some of its content by the effect of temperature change. Traditional healers prepare the traditional remedies using different traditional measurement to estimate the dosage of the remedies like counting the number of leaf or root, using containers for example to treat gonorrhea with *Phytolacca dodecandre* juice they use a coffee cup up to the volume cover the thumb or nail of the healer. In this study area traditional healers used medicinal plants to treat a number of diseases using leaf which might not threatened the plant .Using root however, will lead to extinction. Indigenous people were highly dependent upon plants for multiple applications that threatened diversity of medicinal plants.

In the study area deforestation, over grazing and expansion of agriculture including cultivating eucalyptus tree as cash plant affect the survival of medicinal plants. In the study area the conservation status of medicinal plant is limited, there is to need to aware the society for the proper attention to conserve the biodiversity including medicinal plants for the welfare of future generation in a sustainable manner.

Conclusion

The study area Goba wereda has diverse medicinal plants that were used to treat various human and livestock diseases by the local communities. The wild plant habitats were the main sources of medicinal plants compared to home gardens. Currently medicinal plants availability was at risk due to different human activities such as agricultural expansion and cultivating eucalyptus tree for the source of income were the most visible threats in the study area. The indigenous knowledge of people has to be passed over to the next generation. To conserve the biodiversity of the area and preserve the medicinal plants there was a need to create awareness and develop in – situ and ex-situ conservation of medicinal plants. In particular rare species should be given conservation priority.

REFERENCES

Abebe, Dawit (2001). The role of medicinal plants in healthcare coverageOf Ethiopia. The possible benefits of integration. In; Conservation and sustainable use of medicinal plants In Ethiopia. Pp.6-21.(Medhne Zewdu and Abebe Demissieeds). Proceeding of the National.

Agisho H, Osie M and Lambore T (2014). Traditional medicinal plants utilization, management and threats in Hadiya Zone, Ethiopia. Journal of Medicinal Plants Studies. **2:**94-97.

Alemaehu Getu (2013). Plant biodiversity and ethno botany in Amaro and Gelanawereda Southern Ethiopia with emphasis on .Medicinal and edible plants.Pp.13.

Amenu, Endalew (2007) Use and management of medicinal plants by Indigenous people people of Ejaji

- area(Chelya wereda) West shoa, Ethiopia. An ethno botanical approach. MSc thesis. AAU. Ethiopia.
- Assefa A and Abebe T (2014). Ethnobotanical Study of Wild Medicinal Trees and Shrubs in Benna Tsemay District, Southern Ethiopia. J of Sci & Devel 2(1).
- Awas T and Demissew S (2009). Ethnobotanical study of medicinal plants in Kafficho people, southwestern Ethiopia. In: Proceedings of the 16th International Conference of Ethiopian Studies, (ed. by Svein Ege, Harald Aspen, Birhanu Teferra and Shiferaw Bekele) Trondheim.
- Balick, M. J. and Cox, P. A. R. (1996). Plants People and Culture:he science of Ethno botany. Scientific American Library. New York. USA. Pp.219. emissieeds). Proceeding of the National. Farnsworth NR. Ethnopharmacology and Drug Development. In:Ethno biology and the search for new Drugs. WilyChichester (Ciba Foundation Symposium. Chigago. SA. 1994; 185; 42-59.
- Elujoba A.A., OdeleyeandC O.M.Ogunyemi M.(2005). Traditional medicine development for medical and dental prymery health care delivery system in Africa.Afr. J.Trad.Cam(2005)2(1)46-61.
- Gebeyehu, Getaneh ,Asfaw, Zemede , Enyew, Abiyu (2013). EthnoBotanical study of traditional medicinal plants and Their conservation status in Mecha wereda West Gojam zone. Ethio.J. Biol. Sci.3(2);113-132.
- Getahun A (1976). Some common medicinal and poisonous plants used in ethiopian folk medicine. Addis Ababa. Getaneh S and Girma Z (2014). An ethnobotanical study of medicinal plants in Debre libanos woreda, Central Ethiopia. Afri. J. Sci., 8 (7).
- Gidey M (2001). An Ethnobotanical study of medicinal plants used by the Zay people in Ethiopia.
- Hedberg, I. and Edwards, S. (eds.). ,1989. Flora of Ethiopia and Eritrea.vol.3, Pittosporaceae to Araliaceae.
- Hostettmann K and A Marston (2002). Twenty years of research into medicinal plants: Results and perspectives. Phytochemistry Reviews1: 275–285.
- Hunde Debela, Asfaw Zemede and Kelbessa Ensermu (2004). Use and Management of ethno veterinary medicinal plants usedBy indigenous people in "Boset". Welenchiti area. Ethio.J. Biol. Sci.3(2);113-132.
- Hunde, Debela, Asfaw, Zemede, Kelbessa, Ensermu (2004). Use and management of ethno veterinary medicinal plants used By indigenous people in "Boset". Welenchiti area. Ethio. J.Biol.Sci.3(2);113-132.Dery.B.B.; Ofsynia. R.
- Janzen, J.M. 1981 The Need for a Taxonomy of Health in the Study of Mrican Therapeutics. Social Science and Medicine. 12(2);121-129. Martin, G.J., 1995. Ethnobotany: a method Manual. Chapman and Hall, London.
- Joy P, Thomas J, Mathew S, Skaria, B (1998). Medicinal plants. *Aromatic and Medicinal Plants Research Station*. Kerala agricultural university.
- Khandel A, Ganguly S., Bajaj A., and Khan S. (2012). New Records, Ethno-pharmacological Applications & Indigenous Uses of Gloriosa superba L. (Glory lily) Practices by Tribes of Pachmarhi Biosphere Reserve, Madhya Pradesh, Central India. Nature and Science, **10**(5).
- Kibebew Fassil (2001). Utilization and Conservation of Medicinal plants in Ethiopia. In proceeding of the workshop on Development Utilization of Herbal Remedies in Ethiopia; EthiopianHealth and nutrition Institute. Addis Ababa. 46-52.
- Martin, G. J. (1995). Ethnobotany: A method Manual. A 'People and Plant conservation manual. Champman and Hall.London. Pp.268.
- Megersa M Asfaw, Z Kelbessa, E, Beyene A, and Woldeab B (2013). An ethnobotanical study of medicinal plants in Wayu Tuka District, East Welega Zone of Oromia Regional State, West Ethiopia. *J of Ethnobiology and Ethnomedicine*, 9:68
- Megersa M Asfaw, Z Kelbessa, E, Beyene A, and Woldeab B (2013). An ethnobotanical study of medicinal plants in Wayu Tuka District, East Welega Zone of Oromia Regional State, West Ethiopia. *J of Ethnobiology and Ethnomedicine*, 9:68
- Pankhurt, R., 2006. Traditional Ethiopian knowledge of medicine And surgery; an introduction of sources. OrganizationSocial science research in eastern and southern Africa (OSSREA).
- UNEP (1995). Global biodiversity assessment. United Nations Environment Program. Workshop on Biodiversity Conservation and Sustainable Use of Medicil Plants in Ethiopia. 28 April-01 may 1998. IBCR. Addis Ababa.
- World Health Organisation. Traditional Medicin; WHO: Geneva, 2002; Seehttp;//www.Who.int/medicines/library/ trm/trm Start eng. Pdf. Last accessed26/11/2004.
- Yadav H (2013). Medicinal plants in folk medicine system of Ethiopia. *J. Poisonous. Med.Plant. Res.*, **1**(1):7-11. Yirga G (2010). Assessment of traditional medicinal plants in Endrta District, South-eastern Tigray, Northern Ethiopia. *Afr. J. Plant Sci.*, **4**(7): 255-260.
- Yirga, Gidey and Samuel, Zeraburk (2005). Ethno botanical study of traditional plants in Gindebert district. Western Etiopia.62.
- Zenebe G, Zerihun M, and Solomon Z (2012). An Ethnobotanical Study of Medicinal Plants in Asgede Tsimbila District, Northwestern Tigray, Northern Ethiopia. *Ethnobotany Research & Applications*.