
Advances in Life Science and Technology                                                                                                 www.iiste.org 

ISSN 2224-7181 (Paper) ISSN 2225-062X (Online) DOI: 10.7176/ALST 

Vol.73, 2019 

 

53 

The Supportive Role of Dietary Antioxidants in Antioxidant 

Defence System 
 

Abiodun Olusoji Owoade*      Adewale Adetutu      Olubukola Sinbad Olorunnisola 

Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Nigeria 

 

Abstract 

Reactive oxygen and nitrogen species are generated both endogenously and in response to external factors, such 

as diet and lifestyle, and play a major role in the aetiology of several degenerative diseases. The effect of reactive 

oxygen species (ROS) and reactive nitrogen species (RNS) is balanced by the antioxidant action of enzymatic 

antioxidants such as superoxide dismutase, glutathione peroxidase, catalase, antioxidant compounds such as, 

thioredoxin, lipoic acid and dietary antioxidant such as Vitamin C, Vitamin E, carotenoids, flavonoids. 

Antioxidant defences are extremely important as they represent the direct removal of free radicals, thus 

providing protection for biological sites. However, as this protection may not be sufficient to entirely prevent the 

damage by ROS/RNS, consumption of food rich in dietary antioxidants which offers supportive role in 

antioxidant defence system in removing excessive ROS/RNS become even more important in protecting cell 

biomolecules against oxidative damage.  
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1. Diets and Diseases 

Diets appear to play an important role in human health and in the development of certain diseases such as cancer 

and cardiovascular disease (Rahman, 2001; Liu, 2004). These two diseases are the top causes of death in the 

United States and in most industrialized countries (Liu, 2004). Interestingly, several epidemiological studies 

have consistently shown that diets rich in fruit and vegetables promote health, and attenuate, or delay the onset 

of chronic diseases (Fraga, 2007). Therefore, changes in dietary behaviour, such as increasing consumption of 

fruits, vegetables and whole grains is a practical strategy for significantly reducing the incidence of chronic 

diseases (Liu, 2004). Plant based foods contain significant amounts of bioactive phytochemicals (e.g 

Polyphenols) which may provide desirable health benefits beyond basic nutrition to reduce the risk of chronic 

diseases (Liu, 2004). There is more and more convincing evidence to suggest that the health benefits of 

phytochemicals in fruits and vegetables may be due to their antioxidant action, because oxidative stress induced 

by free radicals is involved in the aetiology of wide range of chronic diseases (Sayre et al., 2001; Jenner, 2003; 

Dalle-Donne et al., 2006). 

 

2. Reactive Oxygen and Nitrogen Species 

Reactive oxygen species (ROS) and Reactive nitrogen species (RNS) are generated in vivo from incomplete 

reaction of oxygen during aerobic metabolism, stimulated host phagocytes, or from exposure to environmental 

agents such as radiation and redox cycling agents (Park et al., 2003). ROS include free radicals (which are 

defined as molecules or molecular fragments containing one or more unpaired electrons) such as superoxide 

(O2
•‾), hydroxyl (OH•), peroxyl (ROO•), hydroperoxyl (HROO•) as well as non-radical species such as hydrogen 

peroxide (H2O2) and hypochlorous acid (HOCl) (Evans et al., 2002; Turko and Murad, 2002). RNS include free 

radicals like nitric oxide (NO•) and nitrogen dioxide (NO•
2), as well as nonradicals such as peroxynitrite 

(ONOO‾), nitrous oxide (HNO2) and alkyl peroxynitrates (RONOO) (Evans et al., 2002; Turko and Murad, 

2002). Reactive oxygen and nitrogen species play a dual role in biological systems, since they can be either 

harmful or beneficial to living systems (Valko et al., 2006). Beneficial effects of ROS which occur at 

low/moderate concentrations include (a) physiological roles in cellular responses to stress, as for example in 

defence against infectious agents and (b) the induction of a mitogenic response (Valko et al., 2006). The harmful 

effect of ROS includes widespread damage to macromolecules leading to lipid peroxidation, protein oxidation 

and DNA base modification and strand breaks (Poli et al., 2004; Stocker and Keaney, 2004). This damage effect 

is termed oxidative and nitrosative stress (Kovacic and Jacintho, 2001; Ridnour et al., 2005). Oxidative and 

nitrosative stress is defined in general as excess formation and/or insufficient removal of highly reactive 

molecules such as reactive oxygen species (ROS) and reactive nitrogen species (RNS) (Turko et al., 2001; 

Maritim et al., 2003). This occurs in biological systems when there is an overproduction of ROS/RNS on one 

side and a deficiency of enzymatic and non-enzymatic antioxidants on the other (Valko et al., 2007). The excess 

ROS are harmful because they can damage cellular lipids, proteins, and DNA which are the most important 

biomolecules in the human body (Orhan et al., 2006). Because of this, oxidative stress has been implicated in the 

development of many ageing-related diseases, like cancer, cataract and heart diseases (Dalle-Donne et al., 2006).  
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3. Antioxidants 

The effect of reactive oxygen and nitrogen species is balanced by the antioxidant action of non-enzymatic 

antioxidants, as well as by antioxidant enzymes. Antioxidant defences helps in direct removal of free radicals 

(prooxidants), thus providing maximal protection for biological sites. Enzymatic antioxidant defences include 

superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT). Non-enzymatic antioxidants are 

represented by ascorbic acid (Vitamin C), α-tocopherol (Vitamin E), glutathione (GSH), carotenoids, flavonoids, 

and other antioxidants. 

 

4. Enzymatic Antioxidants 

4.1. Superoxide Dismutase (SOD) 

Superoxide dismutase (EC 1.15.1.1) is the antioxidant enzyme that catalyzes the dismutation of O2
•− to O2 and to 

the less-reactive species H2O2. In humans there are three forms of SOD: cytosolic Cu, Zn-SOD, mitochondrial 

Mn-SOD, and extracellular SOD (EC-SOD) (Landis and Tower, 2005). Cu, Zn-SOD is an enzyme with a 

molecular weight of about 32 kDa and is composed of two identical subunits (homodimer) (Mates et al., 1999; 

Valko et al., 2006). Cu, Zn-SOD specifically catalyzes the dismutation of the superoxide anion to oxygen and 

water. Each subunit contains as the active site, a dinuclear metal cluster constituted by copper and zinc ions. 

Mitochondrial Mn-SOD is a homotetramer (96 kDa) containing one manganese atom per subunit (Mates et al., 

1999; Valko et al., 2006). This enzyme cycles from Mn (III) to Mn (II) and back to Mn (III) during the two step 

dismutation of superoxide.  Extracellular superoxide dismutase (EC-SOD) is a secretory, tetrameric, copper and 

zinc containing glycoprotein, with a high affinity for certain glycosaminoglycans such as heparin and heparin 

sulphate (Mates et al., 1999; Valko et al., 2006). Its regulation in mammalian tissues occurs primarily in a 

manner coordinated by cytokines, rather than as a response of individual cells to oxidants. A completely distinct 

SOD class that contains Ni (Ni-SOD) was recently discovered in Streptomyces and cyanobacteria. Ni-SOD is a 

small 117 amino acids protein with no sequence homology to other SODs (Barondeau et al., 2004). 

 

4.2. Catalase 

Catalase (EC 1.11.1.6) is an enzyme present in the cells of plants, animals and aerobic (oxygen requiring) 

bacteria (Mates et al., 1999; Valko et al., 2006). Catalase is located in a cell organelle called the peroxisome. 

The enzyme very efficiently promotes the conversion of hydrogen peroxide to water and molecular oxygen. 

Catalase has one of the highest turnover rates for all enzymes: one molecule of catalase can convert ~ 6 million 

molecules of hydrogen peroxide to water and oxygen each minute: 

                              2H2O2                catalase                  2H2O + O2 

 

The significantly decreased capacity of a variety of tumours for detoxifying hydrogen peroxide is linked to a 

decreased level of catalase (Valko et al., 2006). 

 

4.3. Glutathione Peroxidase 

There are two forms of the enzyme glutathione peroxidase, one of which is selenium-independent (glutathione-

S-transferase, GST, EC 2.5.1.18) while the other is selenium-dependent (GPx, EC 1.11.1.19) (Mates et al., 1999). 

All GPx enzymes are known to add two electrons to reduce peroxides by forming selenoles (Se-OH). The 

antioxidant properties of these selenoenzymes allow them to eliminate peroxides as potential substrates for the 

Fenton reaction. GPx acts in conjunction with the tripeptide glutathione (GSH), which is present in cells in high 

(micromolar) concentrations. The substrate for the catalytic reaction of GPx is H2O2, or organic peroxide ROOH. 

GPx decomposes peroxides to water (or alcohol) while simultaneously oxidizing GSH: 

                                                                GPx      

                        2GSH+H2O2                                        GSSG + 2H2O  

                                                                  GPx 

                   2GSH + ROOH                                                    GSSG + ROH + H2O 

Significantly, GPx competes with catalase for H2O2 as a substrate and is the major source of protection 

against low levels of oxidative stress. 

 

5. Non-Enzymatic Antioxidants 

5.1. Glutathione 

Glutathione (GSH) is a multifunctional intracellular non-enzymatic antioxidant. Glutathione is highly abundant 

in the cytosol (1–11 mM), nuclei (3–15 mM), and mitochondria (5–11 mM) and is the major soluble antioxidant 

in these cell compartments (Masella et al., 2005). The reduced form of glutathione is GSH, glutathione, and the 

oxidised form is GSSG, glutathione disulphide. GSH in the nucleus maintains the redox state of critical protein 

sulphydryls that are necessary for DNA repair and expression. An oxidative environment leads to rapid 

modification of protein sulphydryls (protein-SH) to sulphenic acids (protein-SOH) and thiyl radicals (protein- S•) 
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(Valko et al., 2006). These partially oxidised products are restored back to protein sulphydryls (protein-SH) by 

reaction with GSH. Glutathione react with the radical R• to form thiyl radicals 

                          GSH + R• → GS• + RH  

Thiyl radicals generated may dimerise to form the oxidised glutathione 

                             GS• + GS• → GSSG  

Oxidised glutathione GSSG is accumulated inside the cells and the ratio of GSH/GSSG is a good measure of 

oxidative stress of an organism (Nogueira, 2004). Too high a concentration of oxidised glutathione GSSG may 

damage many enzymes oxidatively. The main protective roles of glutathione against oxidative stress are (i) 

glutathione is a cofactor of several detoxifying enzymes against oxidative stress, (ii) GSH participates in amino 

acid transport through the plasma membrane; (iii) GSH scavenges hydroxyl radical and singlet oxygen directly, 

detoxifying hydrogen peroxide and lipid peroxides by the catalytic action of glutathione peroxidase; (iv) 

glutathione is able to regenerate the most important antioxidants, vitamins C and E back to their active forms 

(Masella et al., 2005). The capacity of glutathione to regenerate the most important antioxidants is linked with 

the redox state of the glutathione disulphide–glutathione couple (GSSG/2GSH) (Pastore, 2003).  

 

5.2. Vitamin E 

The major antioxidant function of vitamin E is inhibition of lipid peroxidation.  Lipid peroxyl radicals are 

scavenged by vitamin E to yield lipid hydroperoxide and tocopheroxyl radical which is less reactive towards 

neighbouring PUFA and acts as a chain – breaking antioxidant (Aviram et al., 2005).  In addition, vitamin E has 

been shown to be able to quench singlet oxygen and interact with peroxynitrite.  Vitamin E has been shown to 

reduced AAPH induced oxidative stress in rat erythrocytes (Shiva et al., 2007) and extend the average and 

maximum life span of will-type flies under oxidative stress condition (Bahadorani et al., 2008). In addition, 

dietary supplementation with Vitamin E has been shown to decrease the risk of prostate cancer in smokers (Kirsh, 

2006). 

 

5.3. Vitamin C 

Vitamin C is oxidized to dehydro – ascorbate when it interacts with ROS, which is subsequently recycled back to 

ascorbic acid by the enzyme dehydro – ascorbate reductase. Vitamin C has been shown to scavenge different 

ROS such as superoxide radical anion, H2O2, the hydroxyl radical and singlet oxygen (Tariq, 2007).  It is also 

effective against reactive nitrogen oxide species (RNS), preventing the nitrosation of target molecules. Vitamin 

C has been shown to reduce AAPH induced oxidative stress in rat erythrocytes (Shiva et al., 2007) 

supplementation of rat diet with Vitamin C protect rats against liver damage induced with gamma radiation 

(Adaramoye et al., 2008) and extend the life span of wild-life flies under normoxia condition (Bahadorani et al., 

2008). However, vitamin C can also act as a prooxidant in vivo in the presence of free metal ions (Fe2+ and Cu2+) 

(Bahadorani, 2008) 

 

5.4. Carotenoids 

Carotenoids are natural colourants with pronounced antioxidant activity.  They have been shown to be an 

effective scavenger of singlet oxygen (1O2) peroxyl, hydroxyl and superoxide radicals (Trevithick-Sutton et al., 

2006; Sachindra et al., 2007). Caratenoids play important functions in photosynthesis and photoprotection in 

plant tissues, this is due to their ability to quench and inactivate reactive oxygen species such as singlet oxygen 

(1O2) formed from exposure of light and air (Lui, 2004).  Dietary supplementation with β-carotene, lycopene and 

soy isoflavones have been shown to lower the risk of prostate cancer (Kirsh et al., 2006; Vaishampayan et al., 

2007) and intake of both β-carotene/lycopene either in food or by supplementation have been shown to be 

inversely related to the risk of coronary artery disease (Ahuja et al., 2006; Bose and Agrawal, 2007) 

 

5.5. Phenolics 

Phenolic are the products of secondary metabolism in plants, providing essential functions in the reproduction 

and growth of plants. They are categorized as phenolic acid, flavonoids, stilbenes, coumarins and tannins. In 

additions to their roles in plants, phenolic compounds in our diet may provide health benefits associated with 

reduced risk of chronic diseases.  Phenolics in our diet are made up of two thirds flavonoids and one third 

phenolic acids (Lui, 2004). 

5.5.1. Phenolic Acids 

Phenolic acids can be subdivided into two major groups, hydroxybenzoic acids and hydroxycinnamic acids. 

Hydroxybenzoic acid derivatives include p-hydroxybenzoic, protocatechuic, vannilic, syringic, and gallic acids, 

while Hydroxycinnamic acid derivatives include p-coumaric, caffeic, ferulic, and sinapic acids. Chlorogenic 

acids and curcumin are the major derivatives of hydroxycinnamic acids present in plants. Chlorogenic acids are 

the ester of caffeic acids while curcumin is made of two ferulic acids. Phenolic acids are commonly present in 

the bound form, linked to cell-wall structural components such as cellulose and lignin. Food processing, such as 
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thermal processing, pasteurization, fermentation, and freezing, contributes to the release of these phenolic acids 

(Dewanto, 2002). 

 

 
Figure 1. Main phenolic acids and esters found in plant kingdom. Modified from Laguerre et al., (2007).  
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5.5.2. Flavonoids 

Flavonoids are a group of phenolic compounds with antioxidant activity that occur in several fruits, vegetables, 

and other plant foods (Lui, 2004). They are efficient antioxidants capable of scavenging radical species (Peroxyl 

radicals, hydroxyl radicals, O2
•‾) forming a phenoxy radical (Lui, 2004). More than 4000 flavonoids have been 

identified and are classified into flavonols (quercetin, kaempferol, and myricetin) flavones (luteolin and apigenin) 

flavanols (catechin, epicatechin, epigallocatechin, epicatechin gallate, and epigallocatechin gallate), flavanones 

(naringenin), anthocyanidins and isoflavonoids (genistein) (Lui, 2004). The antioxidant properties of flavonoids 

have been investigated in various studies in vivo and in vitro. Flavonoids function as terminators of free radical 

chains and as chelators of redox-active metal ions that are capable of catalyzing lipid peroxidation (Schroeter et 

al., 2002). Flavonoids are ideal scavengers of peroxyl radicals due to their favourable reduction potentials 

relative to alkyl peroxyl radicals and thus in principle; they are effective inhibitors of lipid peroxidation 

(Schroeter et al., 2002). The presence of 3',4'-dihydroxystructure in ring B, presence of 2, 3- double bond  in 

conjugation with the 4-oxo-group in ring C and the presence of a 5 – hydroxyl group in ring A with a 3 - 

hydroxyl group and a 4-oxo function in the C- ring are all important contributors in the ability of flavonoids to 

scavenge free radical and chelate redox-active metal (Valko et al., 2006; Fraga, 2007).  The nutritional benefit of 

flavonoids is generally linked with their healing potential (Polovka, 2003). A high flavonoid consumption has 

been associated with a decreased risk for cardiovascular disease (Arts et al., 2001; Mennen, et al., 2004) and 

lower rates of stomach, pancreatic, lung and possibly breast cancer (Damianaki et al., 2000).   

 
Figure 2. The generic structure of flavonoids. Modified from (Liu, 2004) 

 

 
Figure 3. Chemical structures of common dietary flavonoids. Modified from (Laguerre et al., 2007) 
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6. Conclusion 

It has been identified that plants are rich sources of antioxidant Vitamin C, Vitamin E, flavonoids, and 

carotenoids. The potent antioxidant activity of plant extracts may in part be attributed to the presence of a 

plethora of different antioxidants with differing sites and mechanisms of action which may act alone or in 

concert with one another. Presence of dietary antioxidants, helps antioxidant defence system by preserving 

endogenous antioxidants from exhaustion as a result of oxidative stress. Therefore, supplementation with dietary 

antioxidants may be beneficial in reducing the risk of developing free radical mediated diseases such as 

cardiovascular disease, cancer, neurological disorders and diabetes. 
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