DOI: 10.7176/ALST

www.iiste.org

Species Composition, Relative Abundance and Habitat Association of Birds in Arbegona, Garemba Forest, Southern Ethiopia

Ziyad Jemal¹ Mustefa Sultan²

1.Oromia Forest and Wildlife Enterprise, Ethiopia

2.Department of Forestry, College of Agriculture and Environmental Science, Arsi University, Asella, Ethiopia

Abstract

The present study was carried out in Arbegona Garemba forest from August June 2017 to February 2018 during wet and dry seasons. The study area was stratified based on vegetation composition. Accordingly, Modified habitat, Alpine bamboo forest, and Sub-Afro alpine /Ericaceous belt/ were considered. A line transects count aided by binocular was employed to investigate avian species diversity, relative abundance and Habitat association. Thus10 transect lines of 0.75km lengths with a width of 0.15km or less wereused to cover 30% of the area. A total of 74 bird species consisting of 5 near endemics, 2 globally threatened and 3 Palearctic migrants were recorded. Average vegetation height was a good predictor for total bird abundance and bird species richness during dry season. Altitude accounted more in total species abundance during dry season. It can be concluded that the patch of forest and its surrounding is an important bird area for migratory, endemic, and global threatened species. Therefore, it should be conservation priority area; hence, the study suggests that conservation together with ecotourism development is needed for its sustainability.

Keywords/Phrases: Avian species, Habitat types, Habitat association, Species similarity

DOI: 10.7176/ALST/75-03 **Publication date**:June 30th 2019

INTRODUCTION

Background and Justification

Ethiopia has rich biodiversity resources of which 2970 species are animals and between 6,500-7,000 higher plants consisting of 12% endemics (EBI, 2015). Of the animal species 320 are mammals of which 36 are endemics, 926 bird species consisting of 24 endemics, 1,249 arthropods with 11 endemics, 200 fish with 40 endemics, 202 reptiles with 17 endemics and 73 amphibians with 30 endemics (EBI, 2015 and WeldemariamTesfahunegny,2016). Of these, birds are one of the most important components of biodiversity with ecological, economic and esthetic values. Birds are known as efficient and cost-effective insect pest controllers, Fruit-eating birds help in dispersal of seeds and seeds may sprout wherever the droppings fall and certain birds like hummingbirds and sunbirds pollinate flowers that produce nectar. Birds through the ages have been the source of considerable fascination and folklore and have been used as symbols (Clout and Hay, 1989).

The distribution and abundance of many bird species are determined by the composition of the vegetation or habitat (Lee and Rotenberry, 2005). Birds select habitats that fit their requirements for successful reproduction and survival though some generalist species may utilize several habitats (Rodríguez-Estrella, 2007). Besides habitat size, foraging modes and floristic composition have influence in the distribution of the species differences in requirement among bird species have caused specificity on habitat requirement (Buckley and Freckle ton, 2010). Despite the rich bird assemblages in Ethiopia, due to enormous habitat degradation and fragmentation many bird species including the endemic are threatened (Girma Mengesha *et al.*, 2011).

Particularly, expansion of agriculture, livestock encroachment, deforestation, illegal fire, by the ever increasing human population has been often cited as the major cause of bird's habitat degradation, fragmentation and loss in Ethiopia ultimately affecting the survival of birds (Sekercioglu*et al.*, 2012).Currently, due to land uses changes it is difficult to find forest habitat covering large areas. Most of the land has been converted to settlement and farmlands. Though no immediate threat is foreseen to the avian population, it could be resulted in deleterious effect on the overall ecosystem. Although there is better documentation of birds in protected areas, there are a few isolated reports of bird species diversity outside of protected areas in Ethiopia (Aerts *et al.*, 2008). Comprehensive baseline information is lacking even for several of the endemic bird species. The status of birds in relation to habitat association in the present study areas is very little known. As a result, the present study is aimed to investigate species composition, relative abundance and habitat association of birds in Arbegona garemba forest.

Figure 1. Black billed hoopoe

MATERIALS AND METHODS

Description of the Study Areas

The study was conducted in the Arbegona Garemba forest in Arbegona district in SNNP (Fig.1).

Geographical Location

Arbegona district is one of the districts in Sidama Zone of the Southern Nations, Nationalities, and Peoples' Region. It is bordered by Gorche district in North West, Kokosa district on the North and Bensa district on the East (Feleke Assefa *et al.*, 2015). Arbegona district is located between 6°38′ - 6°49′ N and 38°34′ - 38°49′ E (Fig.1). Arbegona district is located 261 km South from Addis Ababa and 77 km South East from Hawassa town.

Figure 2: Location Map of Study Area

Topography and Climate

Arbegona district is characterized by mountainous landscape having an altitude ranges from 2000ma.s.l to 3336ma.s.l and 1500ma.s.l to 3700ma.s.l respectively (FelekeAssefa *et al.*, 2015). The district exhibits bimodal rainfall pattern. Arbegona district has a minor rainy season between the months of February to April and major rainfall between the months of July to October with an annual rain fall which ranges between 1250 to 1300 mm, the temperature ranges between a minimum of $14C^{\circ}$ and a maximum of $18C^{\circ}$ (AWAO, 2007).

Flora and Fauna

Alpine bamboo and moist evergreen Afromontane forest characterize the vegetation of Arbegona Garemba forest. Some ruminant trees such as *Hagenia abyssinica, Juniperus procera,Olea africana, Hypericum revoltum* and *Erica arborea* are dispersedly seen in the area, showing that in the past these species were the dominant vegetation cover in the middle and lower part of the area(AWAO, 2007).

Among the faunal species Fan-tailed raven (*Streptopelia lugens*), Thick billed raven (*Galerida theklae*), Alpine chat (*Cercomela sordida*), Mountain thrush (*Turdusoli vaceus*), Rupels robin chat (*Cossyphase mirufa*), Wattled ibis (*Cinnyris venustus*), Alpine swift (*Tachymarptis melba*), Dusky turtle dove (*Tockusalboter minatus*) and Red winged starling (*Buphagusery throrhyncus*) are some of the avifauna species found in Arbegona Garemba forest. The endemic mammals such as Menelik'sbush buck (*Tragelaphus scriptus meneliki*) are also found the Arbegona Garemba forest (AWCTO, 2009).

Socio Economic Activity

Arbegona district has a total population of 135,862 of whom 67,744 are men and 68,118 women; 6,745 or 4.97% of its population are urban dwellers (CSA, 2007). The major livestock reared in the Arbegona district were cattle, sheep, goats, mules, beekeeping, donkeys, horses and poultry (AWAO, 2007).

METHODS

Reconnaissance Survey

A reconnaissance survey was carried out during the second week of June, 2017for about one week to have basic information on accessibility, topography, infrastructures, and habitat stratification based on vegetation distribution and topographic nature for Arbegona Garemba forest. Furthermore, pilot survey was conducted at both study areas to test the applicability of the survey method, before the commencement of the actual data collection. For the pilot survey three transects in Arbegona Garemba forest was laid down and data collection was carried out.

Sampling Design

For this study, the Arbegona Garemba forest was stratified into three habitat types [modified habitat at the lower, Alpine bamboo forest at the middle and Sub Afro-alpine habitat (Ericaceous belt)]at the higher altitude following vegetation type and altitudinal gradient. In Arbegona Garemba forest, modified habitat represents areas with altitudes occurs from 3075-3165 m a.s.l. This habitat was disturbed habitat with livestock grazing and human encroachments. The Alpine bamboo habitat represents valley and middle altitude areas between 3189-3229 m a.s.l., and was dominated by highland Bamboo (*Arundinaria alpina*). This habitat was relatively intact and undisturbed compared to other habitat types . The Sub Afro-alpine habitat (Ericaceous belt) habitat covers the upland areas with rugged topography (3291-3305 m a.s.l.) and little remnants of *Erica arborea* at the summit of Mount Garemba and intermixed with predominantly scattered stands of trees like *Hypericum revoltum*, *Giant lobelia* and *Arundinaria alpina*in Arbegona Garemba forest.

Based on the reconnaissance survey, sampling transects was systematically generated in a geographic information system (GIS) using ArcGIS software v. 10.1 (ESRI, 2012) in the Arbegona Garemba forest. The total area of Arbegona garemba forest was125, 0000 m² (1250 ha). Of these30% (375ha) of the area were sampled. A stratified random sampling technique was employed in which transect placement was proportional to the area of the habitat types and represents each of the habitat types (Bibby*et al.*, 1998; Lambert *et al.*, 2009,Shimelis Aynalem and Afework Bekele, 2008). Accordingly, a total of 10 transect lines, (Five (5) transects in modified habitat, four (4) transects in alpine bamboo forest and one (1) transect conducted in Sub Afro-alpine (ericaceous belt) habitat in Arbegona Garemba forest (fig.1).The distance between two adjacent transects was 0.25 km in Arbegona Garemba forest.

The length of each transect line was0.75km 1km with a width of 0.15km or less Arbegona Garemba forest. To avoid edge effect, transect lines were spaced 250m in Arbegona Garemba forest from the roadside (edge of the forest).

Line transect method was used since the study area is accessible and species can be detected along transect line. With line transect method it is possible to cover large areas and can generate more species richness efficiently (Bibby *et al.*, 1992). Therefore, this method is very important since comprehensive baseline

information and status of bird species in both Arbegona Garemba forest is lacking.

Figure 3: Line Transect Layout of Arbegona Garemba Forest

Methodof Data Collection

Data collection was carried out on foot walking along transect lines. Bird identifications and counting of individuals conducted by direct observations aided with naked eye and binoculars (10x50).

Sound records and photography were also taken for further confirmation by using Digital Camera. The associated vegetation types were also described and recorded. Location and distance of the observed birds was determined and recorded along transect lines using Geographic positioning system (GPS).

Each day of survey, arrive at the starting point approximately 20 minutes before sunrise so that counting can begin at sunrise to minimize the effect of time and weather conditions on bird detectability. Birds were counted when they were active in the mornings from 06:30–10:00h and in the afternoon from 15:30–18.00 h (Bibby *et al.*, 1992). Unfavorable weather (strong wind or rain) was also being considered. A bird flying over the area was observed and recorded on data gathering worksheets to identify for species richness. For identification of species, plumage pattern, size, shape, color, songs and calls were considered as important parameters (Afework Bekele and Shimelis Aynalem, 2009). Songs and calls were used for identifying nocturnal species.

Supplementary data, such as elevation above sea level, latitude and longitude, vegetation type, average vegetation height of perching site for birds and percent slope inclination (flat Clinometers (Zerihun Girma *et al.*, 2015).

Method of Data Analysis

All data was summarized per transect per habitat types during both dry and wet seasons by using table.

Moreover, Sorenson's similarity Coefficient (SOR) was equally calculated between pairs of habitats as: SOR = 2a/(2a+b+c) (Kent and Coker, 1992). Where a = number of species common to both habitat; b= number of species unique to habitat 1; and c = number of species unique to habitat 2.

The stepwise regression analysis (backward elimination technique) model was carried out on the bird species richness and abundance both in wet and dry season as the outcome variable to evaluate parameters of the habitats that account for their disproportionate use. Model selection was based on F and P values.

Durbin-Watson statistic (D-W) and Variance inflation factor (VIF) were used to examine autocorrelation and multi collinearity of the predictor variables. Backward elimination continued until the "minimum F-toremove" dropped below the specified probability level (0.1). All computations were done by using SPSS version 20 and Past3 software 1.0 was used to calculate diversity indices. Percent relative abundance was calculated using formula (%) = $n/N \times 100$ where, n is the number of individuals of particular species recorded and N is the total number of individuals of the species. RESULTS

Seasonal Relative Abundance

A total of 618 individuals of birds grouped into 12 orders, 35 families and 74 species were recorded from Geremba mountain fragment (Appendix 1). Among the recorded species, Wattled ibis (Bostrychia carunculata), Thick billed raven (Corvus crassirostris), Alpine chat (Cercomelas ordida), Black winged love bird (Agapornista ranta) and Rouget's Rail (Rougetius rougetii) were endemic to Ethiopia and Eritrea in Geremba mountain fragment. Two globally threatened bird species i.e Hooded vulture (Psophocichlalit sipsirupa) was endangered and Rougets rail (Onychognathus morio) was near threatened bird species (IUCN red list, 2016) (Appendix 1).

Among the recorded bird species 71 were resident and 3 were Palearctic migrants in Geremba mountain fragment (Appendix 1). The order Passeriformes accounted, the highest number of families consisting 21 families and 43 species recorded in the Arebgona followed by the family Accipitridae with 9 species recorded and Sylviidae which had 5 species record (Appendix 1).

Sorensen'sBird Species Similarity Index among the Three Habitat Types in Different Seasons

In Arbegona Garemba forest the minimum value of bird species similarity between different vegetation for both seasons was recorded between Sub Afro-alpine and modified habitat while the maximum value was recorded between Alpine bamboo forest(0.11) and modified habitat with a value of 0.59 (Table 1).

Table 1: Bird Species Similarity of Arbegona Garemba forest among the Habitats and Seasons

					Sub Afr	o-alpine
			Alpine bamboo forest		(Ericaceous bel	
Habitat types	Dry	Wet	Dry	Wet	Dry	Wet
Modified	-	-				
Alpine bamboo forest	0.4	0.59	-	-		
Sub Afro-alpine						
(Ericaceous belt)	0.11	0.23	0.25	0.51	-	-

Habitat Association

The three habitat types (modified habitat, Alpinebamboo forest, and Sub Afro-alpinehabitat) had more or less similar species richness of birds

In Arbegona Garemba forest the vegetation height at interval of 0-5m had the highest number of average species richness (23.3 \pm 3.93, N = 23) and individuals (21 \pm 47.43, N = 23) (Fig.3). While the least average species richness (1.33 \pm 0.88, N = 64) and individuals (8.67 \pm 4.91, N = 64) was recorded in vegetation height classes at interval of greater than ten meter (>10m) in Arbegona Garemba forest (Fig.3).

There was significant difference in average species richness (F2, 20 = 15, p = 0.000) and individuals (F2, 20 = 7.942, p = 0.003) between the vegetation height classes and bird species in Arbegona Garemba forest.

Figure 4:Mean species richness and abundance of birds across vegetation height classes of Arbegona Garemba forest.

In Arbegona Garemba forest, five models were eventually fitted that quantitatively and qualitatively explain which of the habitat components accounted for habitat association by the bird species. Habitat quality varied for both species richness and abundance during the wet and dry seasons in Arbegona Garemba forest. Average vegetation height was a good predictor for total bird abundance and bird species richness during dry season. Altitude accounted more in total species richness and bird species abundance during wet season. However, slope was a good predictor for bird species abundance during dry season in Arbegona Garemba forest (Table 2). **Table 2:** Summary Statistics for Selected Models That Describe Habitat Association of Birds in Dry and Wet Seasons at Arbegona Garemba Forest

The Durbin–Watson statistic (D–W) and Variance Inflation Factor (VIF) were used to examine autocorrelation and multi collinearity of the predictor variables.

							Overal	l model	
Model	Habitat variable	Coefficient	р	F	VIF	р	S	R (%)	D–W
BSRDS	Constant	8.772				0.0443	5.066	27.5	1.22
	Av. Veg. height	-1.282	0.020	0.653	1.000				
BSADS	Constant	86.936				0.0653	0.115	33.9	1.081
	Slope	-7.542	0.0130	0.969	1.000				
	Av. Veg. height	-4.805	0.0710	0.846	1.081				
BSRWS	Constant	11.993				0.0710	0.018	13.5	1.507
	Av. Veg. height	-0.788	0.0710	0.49	1.000				
BSAWS	Constant	93.967				0.0253	0.325	24.1	2.066
	Av. Veg. height	-13.254	0.0708	0.492	1.579				
	Altitude	-0.381	0.0140		1.579				
TSR	Constant	10.507				0.0816	0.55	19.8	1.483
	Av. Veg. height	-1.123	0.0600	0.497	1.821				
	Altitude	-0.175	0.0119		1.821				
TBA	Constant	84.617				0.0158	0.195	44.2	1.643
	Av. Veg. height	-16.018	0.0132	2.064	1.821				
	Altitude	-0.331	0.0910		1.821				

BSRDS: Bird species richness dry season

BSADS: Bird species abundance dry season

BSRWS: Bird species richness wet season

BSAWS: Bird species abundance wet season

TSR: Total species richness

TBA: Total species abundance

DISCUSSION

In Geremba mountain fragment in terms of percent relative abundance both Yellow bellied waxbill (*Coccopygia quartinia*) and Alpine chat (*Cercomelas ordida*) had the highest relative abundance in modified habitat. The relative abundance of birds in the study area is related to the availability of food, habitat condition and breeding season of the species. Similar result was also obtained by Girma Mengesha and Afework Bekele (2008) who reported positive correlation between bird species richness and the availability of vegetation strata. Similarly, Chace *et al.* (2006) reported that birds respond to changes in vegetation composition and structure, which in turn affects their food resources.

Among the three habitat types, more similarity of birds' species was recorded from modified habitat and alpine bamboo forest both during dry (SI=0.4) and wet (SI=0.59) seasons. This is probably due to the adjacent occurrence of the two habitat types. Study carried out by Zerihun Girma *et al.* (2016), also showed significant correlation between similarity of bird species and the vegetation structure.

Therefore, similarity in floristic composition may account for the similarity in bird species between different vegetation types. The difference in species diversity, number of species and number of individuals of species among the different habitat types of the present study could be associated with differences in habitat characteristics and feeding habits of birds as suggested by Smith (1992). In the Arbegona Garemba forest study area, where *knifofia foliosa, strawberry, hypericum revoltum* and *giant lobelia* were dominant, the Variable sunbird (*Corvus crassirostris*), Red winged starling (*Buphagusery throrhynchus*), Malachite sunbird (*Gypaetus barbatus*) and Takazze sun bird (*Passer swainsonii*) were commonly associated as eating and resting site.

As these species depended on sucking nectar and they require such vegetation for resting and watching to perch and capture the prey.

This result in line with the results of Estades, 1997 that shows, within smaller sub-groups of sites, some bird

species were more associated with a particular plant species: fruit trees, flowering trees, bushes or shrubs. Lammargier (*Emberizas triolata*) bird species was highly associated with cliff and in accessible areas for resting and to escape from enemy.

In Arbegona Garemba forest, there was variation in species richness and abundance as vegetation height varies. Difference between average species richness and individuals and the vegetation height was significant in both Arbegona Garemba forest. The numbers of vegetation associates at different height intervals were indicative of vegetation density that was related with bird diversity. Many researchers have written differently on the relationship between bird diversity and vegetation types. MacArthur and his followers stated that vegetation type and structure is more closely connected to bird species diversity than floristic composition (MacArthur, 1964).

As the vegetation layer increases, the number of available niches for birds also increases and so does the diversity of avian species. This is due to the different feeding habit of birds leading to niche separation (MacArthur, 1964).

Primary topographic factors (eg. Slope, aspect, elevation) alter micro climatic conditions and indirectly affect the growth and distribution of land cover (vegetation), hence affecting bird distribution and abundance. This in line with McCain (2009) that reported general decrease in species richness and abundance along the elevation gradient.

The decrease in abundance and species richness as vegetation height increases could be as a result of decrease in heterogeneity in habitat type, absence of fruiting trees and risk of predation that could be higher in natural forest.

Other study support this, as birds were more abundant in heterogeneous habitats than homogenous forest (Pennington and Blair, 2011; Shochat *et al.*, 2010).

CONCLUSION AND RECOMMENDATIONS

The remnant patch forest and its surrounding areas of Arbegona garemba fragment is an important nature reserve for migratory species and home to endemic and near-endemic species. The distribution of avian species is closely related to type of the habitat, which is influenced by environmental factors such as rainfall, altitude, slope, and temperature. It has been revealed in the results that birds' abundance is affected by the availability of food and cover, which is influenced mainly by vegetation composition and structure. Conserving the habitats as well as the species has great biological and social values. Therefore, to maintain the habitat and the avifauna species, the following recommendations are forwarded:

- > Conservation work through community participation should be properly developed and practiced.
- ➢ As abundance and distribution of the bird species is determined by abundance and distribution of vegetation, equal conservation priority should be given to the bird habitats.
- ➢ Further study especially on smaller and cryptic bird species needs to be conducted with the other ecological aspects to provide more information on the diversity of birds in the area.

Acknowledgement

This study was sponsored by Wondo Genet College of Forestry and Natural Resources, Hawassa University.

REFERENCES

- Aerts, R., F. Lerouge, E. Novmber, L. Lens, M. Hermay and B. Muys. 2008. Land rehabilitation and the conservation of birds in a degraded Afromontane landscape in northern Ethiopia. *Biodiversity and Conservation* 17: 53–69.
- Afework Bekele and Shimelis Aynalem. 2009. Species composition, relative abundance and Habitat association of the bird fauna of the montane forest of Zegie Peninsula and nearby Islands, Lake Tana, Ethiopia. SINET: *Ethiopian Journal of Science* 32:45–56.

AWAO. 2007. Annual Report. Arbegona, Ethiopia 18-22.

- AWCTO. 2009. Annual Report. Arbegona, Ethiopia 5-8.
- Bibby, C. J., Burgess, N. D and D. Hills. 1992. Birds census technique. Tokyo, Toronto. *Academic press* 30: 86-96.

Bibby, C.J., S. Marsden, and M. Jones. 1998. Bird surveys. Expedition Advisory Centre.

- Clout, M.N. and J.R. Hay. 1989. The importance of birds as browsers, pollinators and seed dispersers in New Zealand forest. *New Zealand journal of ecology*.27-33.
- EBI. 2015. Ethiopia's national biodiversity strategy and action plan, Addis Ababa ,Ethiopia, 2015-2020.
- ESRI . 2012. Arc GIS software 10.1. Environmental Systems Research Institute. California.
- Estades, F.C. 1997. Bird-habitat relationships in vegetation gradient in the Andes of centeral Chile. *Condor* 99: 719-727.

Feleke Assefa ,Teka Tadesse and Abeba Dancho. 2015. Challenges and Opportunities of Village Poultry

Production in Arbegona Garemba forest District, Sidama Zone, Southern Ethiopia. Department of Animal and Range Sciences, College of Agriculture, Wolaita Sodo University, Addis Ababa, Ethiopia.

- Girma Mengesha and Afework Bekele. 2008. Diversity and relative abundance of birds of Alatish National Park. *International Journal of Ecology and Environmental Sciences* 34:215–222.
- Girma Mengesha, Yosef Mamo and Afework Bekele. 2011. A comparison of terrestrial bird community structure in the undisturbed and disturbed areas of the Abijata Shalla lakes national park, Ethiopia. *International Journal of Biodiversity and Conservation* 3:389–404.
- Lee, P.Y. and J.T. Rotenberry. 2005. Relationships between bird species and tree species assemblages in forested habitats of north eastern America. *Journal of Biogeography* 32:1139-1150.

MacArthur, R.H. 1964. Environmental factors affecting bird species diversity. American Naturalist 98: 387-397.

McCain, C. M. 2009. Global analysis of bird elevation diversity. Global Ecology and Biogeography 18: 346-360.

- Rodríguez-Estrella, R.2007. Land use changes affect distributional patterns of desert birds in the Baja California peninsula, Mexico. *Diversity and distribution* 13: 877–889.
- Sekercioglu, C. 2012. Bird functional diversity and ecosystem services in tropical forest, agro forest and agricultural areas. *Journal of Ornithology* 153:153-161.
- Shimelis Aynalem and Afework Bekele. 2008. Species composition, relative abundance and distribution of bird fauna of riverine and wetland habitats of Infranz and Yiganda at Southern tip of Lake Tana, Ethiopia. *Tropical Ecology* 49: 199-209.

Weldemariam Tesfahunegn, 2006. A guide to a complete annotated checklist of the birds of Ethiopia.

Zerihun Girma, George Chuyong, Paul Evangelista and YosefMamo. 2015. Habitat Characterization and Preferences of the Mountain Nyala (*TragelaphusBuxtoni*, Lydekker 1910) and Menelik's Bushbuck (*Tragelaphus Scriptus Meneliki*, Neumann 1902) in Arsi Mountains National Park, South-Eastern Ethiopia. International Journal of Current Research 7: 23074-23082.

www.iiste.org

Appendix	x 1: Bird Spec	ies Recorded at Gerem	ba Mountain Fragment (a, 1	Near Endemic	c, endangered b,
Endemic	e, near threaten	ed NM, Northern Migra	tory AM, Inter-African r	nigrant)	
Order	Family	Common name	Scientific Name	Abundance	

Order	Family	Common name	Scientific Name	A	Abundan	e	D 4	
				Wet Dry Total			RA (%) Ran	
asseriformes	Estrildidae	Yellow bellied waxbill	Coccopygia quartinia	17	22	39	6.31	1 ^s
asseriformes	Turdidae	Alpine chat	Cercomela sordida	20	19	39	6.31	1s
asseriformes	Rallidae	Rupels robin chat	Cossypha semirufa	20	15	35	5.66	3 ^r
asseriformes	Zosteropidae	Mountain thrush	Turdus olivaceus	16	15	31	5.02	4 ^{ti}
asseriformes	Nectariniidae	Wattled Ibis	Cinnyris venustus ^a	14	12	26	4.21	5 t
Columbiformes	Columbidae	Streaky seed eater	Columba guinea	17	9	26	4.21	51
asseriformes	Passeridae	Takazze sun bird	Passer swainsonii	17	6	23	3.72	7'
asseriformes	Buphagidae	Red winged starling	Buphagus erythrorhynchus	15	7	22	3.56	81
asseriformes	Sylviidae	Cinnamon bracken warbler	Batis minor	11	8	19	3.07	9
asseriformes	Alaudidae	Thick billed raven	Galerida theklaeª	10	7	17	2.75	10
asseriformes	Nectariniidae	Montane white eye	Nectarinia famosa	6	11	17	2.75	10
asseriformes	ploceidae	Baglafecht weaver	Ploceus baglafecht	11	5	16	2.59	12
asseriformes	Sylviidae	Brown rumped seed eater	Parisoma lugens	10	6	16	2.59	12
alconiformes	Accipitridae	Tawny flanked prinia	Aquila rapax	8	5	13	2.10	14
alliformes	phasianidae	Chestnut naped francolin	Bubo capensis	7	6	13	2.10	14
asseriformes	Corvidae	Variable sun bird	Corvus crassirostris	10	2	12	1.94	16
asseriformes	Fringillidae	Bush petronia	Crithagra tristriatus	7	4	11	1.74	17
alliformes			8	11	4			17
	phasianidae	Chinspot batis	Pternistis castaneicollis			11	1.78	17
oraciiformes	Bucerotidae	Dusky turtle dove	Tockus alboterminatus	2	9	11	1.78	
asseriformes	Cisticolidae	Green backed eremomela	Camaroptera brachyura	8	2	10	1.62	20
asseriformes	Motacillidae	Yellow breasted apalis	Motacilla flavida	6	3	9	1.46	21
asseriformes	Sylviidae	Ground scraper thrush	Eremomela canescens	5	4	9	1.46	21
asseriformes	Accipitridae	Malachite sun bird	Gypaetus barbatus	5	4	9	1.46	21
asseriformes	paridae	White backed black tit	Parus leuconotus	5	4	9	1.46	21
asseriformes	Muscicapidae	Abyssinian slaty fly catcher	Melaenornis chocolatina ^a	4	3	7	1.13	25
asseriformes	Muscicapidae	Scaly francolin	Cossypha semirufa	3	4	7	1.13	25
olumbiformes	Columbidae	African olive pegion	Columba arquatrix	0	7	7	1.13	25
iciformes	Indicatoridae	Green backed cameroptera	Indicator indicator	5	1	6	0.97	28
asseriformes	Monarchidae	African dusk flycatcher	Muscicapa adusta	4	2	6	0.97	28
asseriformes	Fringillidae	Swaisons sparrow weaver	Serinus striolatus	3	3	6	0.97	28
asseriformes	Turdidae	Abyssinian ground thrush	Zoothera piaggiae	2	4	6	0.97	28
asseriformes	Passeridae	Cape crow	Petronia dentata	2	4	6	0.97	28
asseriformes	Pipridae	Barn swallow	Manacus manacus	4	1	5	0.97	33
asseriformes	Muscicapidae	Tawny eagle	Nectarinia tacazze	3	2	5	0.81	33
asseriformes	Fringillidae	, ,		2	3	5	0.81	33
		African citril	Serinus citrinelloides		2	5		33
alconiformes	Accipitridae	Augur buzzard	Buteo augur	3			0.81	
olumbiformes	Columbidae	Fantailed raven	Streptope lialugens	4	1	5	0.81	33
oliiformes	Collidae	Speckled pegion	Colius striatus	3	2	5	0.81	33
Coliiformes	Apodidae	African black swift	Apus parvus	5	0	5	0.81	33
asseriformes	Cisticolidae	Yellow bellied eremomela	Eremomela icteropygialis	5	0	5	0.81	33
asseriformes	Estrildidae	Common waxbill	phylloscopus collybita	3	2	5	0.81	33
asseriformes	Nectariniidae	Pallid harrier	Cyanomitraolivacea	1	3	4	0.65	42
asseriformes	Sylviidae	Willow warbler	Phylloscopus trochilus	1	3	4	0.65	42
Accipitriformes	Accipitridae	Pied crow	Circus macrourus	2	2	4	0.65	42
iciformes	Accipitridae	Greater honey guide	Accipiter melanoleucus	2	2	4	0.65	42
alconiformes	Emberizidae	Lammargier	Emberiza striolata	2	2	4	0.65	42
asseriformes	Turdidae	Olive sun bird	Turdus olivaceus	3	0	3	0.49	48
asseriformes	Muscicapidae	Speckled mouse bird	Melaenornis pammelania	2	1	3	0.49	48
asseriformes	Motacillidae	Yellow wagtail ^{NM}	Motacilla flava	1	2	3	0.49	48
asseriformes	Monarchidae	*African paradise flycatcher ^{AM}	Terpsiphone viridis	0	3	3	0.49	48
asseriformes	Turdidae	Hooded volture	Psophocichla litsipsirupa ^e	0	5	3	0.49	48
				3	0	3		48
alconiformes	Accipitridae Sylviidae	House bunting	Necrosyrtes monachus Bradyptarus cinnamomaus			3	0.49	48 48
sittaciformes		Collared sun bird	Bradypterus cinnamomeus	3	0		0.49	
iciformes	Indicatoridae	Southern black fly catcher	Indicator variegatus	2	0	2	0.32	55
elecaniformes	Threskiornithidae	White and black manninkin	Bostrychia carunculata	2	0	2	0.32	55
asseriformes	Hirundinidae	Black chested snake eagle	Hirundo rustica	2	0	2	0.32	55
asseriformes	Nectariniidae	Common bulbul	Hedydipna collaris	2	0	2	0.32	55
asseriformes	'Pycnonotidae	Common chifchaff	Pycnonotus barbatus	2	0	2	0.32	55
asseriformes	'Sturnidae	Rougets rail	Onychognathus morio ^{ae}	2	0	2	0.32	55
asseriformes	Cisticolidae	Thekla lark	Prinia subflava	2	0	2	0.32	55
asseriformes	Estrildidae	Crowned hornbill	Estrilda astrild	1	1	2	0.32	55
alliformes	Phasianidae	Scaly throated honey guide	Pternistis squamatus	2	0	2	0.32	55
sittaciformes	Accipitridae	Black winged Love bird	Milvus migrans ^a	2	Ő	2	0.32	55
asseriformes	Corvidae	Red billed oxpecker	Corvus albus	2	0	2	0.32	55
sittaciformes	Psittaculidae	Blue headed coucal	Agapornis taranta	2	0	2	0.32	55
	Corvidae	Cape eagle owl				2		55
sittaciformes		1 0	Corvus capensis	1	1		0.32	55 55
asseriformes	Accipitridae	Black kite	Circaetus pectoralis	0	2	2	0.32	
asseriformes	Corvidae	Great sparrow hawk	Corvus rhipidurus	1	0	1	0.16	69
uculiformes	Cuculidae	Brown parisoma	Centropus monachus	1	0	1	0.16	69
podiformes	Apodidae	*Alpine swift ^{NM}	Tachymarptis melba	1	0	1	0.16	69
ccipitriformes	Accipitridae	Yellow billed kite	Milvus aegyptius	1	0	1	0.16	69
ccipitriformes	Timaliidae	Abyssinian cat bird	Parophasma galinieri ^b	1	0	1	0.16	69
alconiformes	Falconidae	African hobby	Falco cuvierii	1	0	1	0.16	69