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Abstract 

This study was designed to obtain the energy eigenvalues for a Quantum Anharmonic Oscillator with 

Quartic Perturbation Potential. Two independent methods, the Dirac operator technique and the Numerov 

approach in solving Schrodinger equation, were used to solve the second order differential equation 

obtained from this system. An iterative procedure was carried out using the fourth order Runge-Kutta 

method on the transformed second order differential equation in line with the Numerov equation. The 

results showed that the normalized eigenvalues obtained from the Dirac operator technique, when 

compared with eigenvalues obtained from the use of the Fourth order Runge-Kutta method within the 

Numerov approach agreed closely when the convergence in the perturbing potential is weak, but the set of 

results diverges only at high excitation states. For the results from the two approaches to be closely 

compatible at high excitation states, the choice of Zeta axis was made to satisfy the boundary conditions -

1< ζ< +1.  
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1. Introduction. 

      One of the sources of progress of the sciences depends on the study of the same problem from 

different point of view based on different mathematical formalism. This why this study is focused on 

obtaining a set of energy eigenvalues from two independent mathematical methods, the Dirac operator 

technique and Fourth order Runge-Kutta method within the Numerov approach in solving Schrodinger 

equation for purpose of establishing a simple but robust method for solving Quantum Anharmonic 

Oscillator with Quartic Perturbation Potential. Determination of energy eigenvalues of the Schrodinger 

equation via asymptotic iteration method (AIM) has been widely applied to establish energy eigenvalues 

of the Schrodinger type equations [1], [2], arising from the development of fast computers simulations.  

Although the AIM formalism is very efficient to obtain eigenvalues of the Schrodinger equation, it 

requires tedious calculations in order to determine wave functions of systems which are not exactly 

solvable and thus the calculation of wave function involving a large number of terms will lose its 

simplicity and accuracy [3]. Much of the problems encountered in giving solutions to quantum 

anharmonic oscillator with quartic perturbation potential were first noticed with the Rayleigh-Schrodinger 

perturbation series for the simple system of the quartic anharmonic oscillator whose eigenvalues diverged 

even for small values of the coupling constants [4], [5]. The quantum solution for anharmonic oscillator 

with quartic perturbation is very useful in φ4 field (the scalar field which interacts with itself through the 

interaction λφ4) theory and in the studies of quantum statistical properties of radiation field interacting 

with a cubic nonlinearity leading to a quartic interaction [7], [8]. A single mode of the radiation field 
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interacting with an optical fiber of cubic nonlinearity gives rise to the model of a quartic oscillator. 

Beyond the present system which form the focus of this study, the quantum anharmonic oscillator with 

sextic, octic, and the general one – perturbation term, λx
m
, has been studied more recently, each with a 

diverse associated shortcomings [9], [10], [11]. 

         In this study, the two methods used to obtain the energy eigenvalues for the system under 

consideration are classified under two mathematical formalisms. The Dirac operator technique is termed 

as the eigenvalues problem which takes care of the time development of wave functions in the 

Schrödinger concept, and Fourth order Runge-Kutta method within the Numerov approach is an directly 

used  to get the time development of the operators within the Heisenberg frame-work. 

This paper is organized as follows after the brief introduction in section 1. We solve the time independent 

Schrodinger equation in section 2 using the Dirac operation technique. In section 3 a detailed process of 

solution for quantum anharmonic oscillator with quartic perturbation potential using Numerov approach is 

presented. In section 4, the computational procedures and results are presented while section 5 contains 

the discussion of the results and conclusion. 

 The Quantum Anharmonic Oscillator with Quartic Perturbation Potential is respectively captioned in the 
  Hamiltonian and Schrödinger equation for the Dirac technique as  
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This transformation is necessary so that the Fourth order Runge-Kutta method within the Numerov 

approach in solving Schrodinger equation can be applied. 

 

3. Solution of Time Independent Schrodinger Equation using Dirac Operator Technique 

Two main operators, â is the lowering or annihilation operator and â
+
 is the raising or creation operator, 

necessary to specify the relation between the position and the momentum are defied as follows.  

]/[2/ˆ  mpxa   ………………… (4)   ]/[2/ˆ  mipxa   …………       … (5) 

where x = position operator, m =mass of the particle, p =linear momentum operator   =angular 

frequency.  

The relationship coined from the parameters shown above is  

                                              β =√     ……………………………………………………  (6) 

where     2/h . 

The number operator is defined as 

                                            aaN ˆˆ  ……………………………………………………….. (7)  

The Hamiltonian of the harmonic oscillator in relation to the operator defined in equation (5) are given as 

    )ˆˆ(
2
1 aaH  ………………….. (8) and )ˆˆ(

2
1 aaH  …………………     . (9) 

The wave function of the harmonic oscillator, written as n  for the n state, n , is properly defined such 

that the product of aa ˆˆ   satisfies 
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      1ˆ  nnna ……………..……… (10), 1ˆ  nnna ……………………….(11) 

 

The Hamiltonian as expressed in equation (1) can be expressed as 

                                        10
ˆˆˆ HHH  ……………………………………….. (12) 

where  Ĥ0 =Unperturbed Hamiltonian, represented by
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The Schrodinger equation for the system under consideration and properly defined in terms of lowering, 

or annihilation operator â  and â
+
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Factorizing, we have that 
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From equation (6), we get that  
24 )/(  m  then the energy equation (17) is finally given as 
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With the following normalization units: m = 1.0,  = 1.0,  w = 1.0 and 
/K = 0.01 and the various 

values denoted by ........3   ,2  ,1  ,0n , the various energy levels can be obtained. The values of 

the energy levels from the ground state to excited states are put together in table 1.0. 

4. Computation of Eigenvalues using Numerov Approach 

Numerov method was designed to solve numerical second order differential equations of the form  

                                             ),(
2

2
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The values for equation (18) are determined using both the Predictor and Corrector iterative 

expressions respectively given as 
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Predictor            111 10
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In this study, Schrodinger Equation for Quartic Perturbation in its transformed form, as expressed in 

equation (3) is reduced to the form of equation (19) so that the iterative procedures in equations (20) and 

(21) can be used effectively to obtain the solution to the Schrodinger Equation for Quartic Perturbation in 

equation (2). 

By a simple transformation technique, equation (3) reduces to 
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where λ is an adjustable parameter. On expansion, we have that 
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The solution to equation (23) using the predictor equation yields 
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Applying the corrector equation (21) yields 
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where N  = 1,2,3,4….   

Thus the expression to iterated becomes 
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The results generated from these two approaches are tabulated in table 1.0.  

 
5. Results and Discussion  

The calculated values for the eigenvalues from the two methods are put together in table 1.0. The 

eigenvalues obtained by Dirac Operator Techniques are in the first column. The second column 

contains the eigenvalues obtained by Numerov Approach. The Normalized Eigen values from 

Numerov on Dirac Operation Techniques are put together in column three and the percent 

difference are compiled in column four for the various energy levels computed in this study. The 

normalized eigenvalues from the Numerov approach compared well with the eigenvalues 

obtained by Dirac Operator Techniques as shown by the percentage difference in the values 

obtained from these two methods for each of the energy levels. The convergence shown in the 

results presented in the table is made possible by the choice of Zeta, )( . The choice of Zeta axis 

which satisfies the related convergence of the two results are found to be within the boundary 

conditions -1< ζ <+1. The results show a consistence increase in the values of the normalized 

eigenvalues as n  increases for each state regardless of the change in the value of Zeta. Also, the 
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percentage differences between the two results at the ground, first and second energy state levels 

are less than 1%.  

 

6.  Conclusion 

             Numerov and Dirac operation techniques have been used to calculate the ground energy 

state and the first nine eigenvalues energy states for an anharmonic oscillator potential with the 

quartic perturbation potential. The percentage differences for the nine states are less than 1% 

when the results from the two methods are compared. It was observed that results from these two 

methods agree when the perturbing potential is weak and particularly at the low energy states. As 

the perturbing potential gets stronger at the higher excited states, the results from the Dirac 

operator techniques start to diverge from those obtained from the numerical schemes. The 

methods used in this study provide a simple technique for solving anharmonic oscillator potential 

with the quartic perturbation potential and of higher perturbation potential, because the 

mathematical method can easily be solved using simple computer simulations. 

Table 1.0. Values of the Eigen values obtained from the Dirac operator techniques and from the Numerov 

iteration method. 

Energy Level Eigenvalues 

obtained by Dirac 

Operator 

Techniques 

Eigenvalues 

obtained by 

Numerov 

Approach 

Eigenvalues by 

Numerov Normalized 

on Dirac Operation 

Technique 

 

Percent 

Difference 

 

Ground State 0.50375 2.91500 0.4028349 
0.2505% 

First Excited State 1.51875 10.99000 1.5281498 
0.0062% 

Second Excited State 2.54875 24.99000 3.4534630 
0.2619% 

 

Third Excited State 3.59375 32.51414 4.4932520 
0.2002% 

Fourth Excited State 4.65375 34.42000 4.7566306 
0.0216% 

Fifth Excited State 5.72875 42.71000 5.9022572 
0.0294% 

Sixth Excited State 6.81875 50.72500 7.0098805 
0.0273% 

Seventh Excited State 7.92375 58.43500 8.0753547 
0.0188% 

Eighth Excited State 8.68125 64.21400 8.8739767 
0.0217% 

Ninth Excited State 9.72625 72.35000 9.9983214 
0.0272% 
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where Normalized constant 1381938.0
9900.10

51875.1
k   
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