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Abstract 

It is reported that when turbines over speed then it results in flying objects or missiles which travels at high 

velocities. These missiles can cause severe damage to equipment and can be a source of danger to public safety. 

This review work discusses the methodologies used to determine the velocity of missiles produced when there is 

fracture in turbine generator. Review of the available damage assessment models has been reported and review 

experimental work done in this area.  
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INTRODUCTION 

The turbine generators store large amounts of rotational kinetic energy in their rotors.  In the unlikely event of a 

major mechanical failure, this energy may be transformed into fragments that may destroy the surrounding 

stationary parts.  If the energy absorbing capability of these stationary turbine generator parts is insufficient, 

external missiles will be released [1].  The probability of missile generation requires evaluation to ensure that it 

does not in unacceptable damage to the safety related equipment and systems. The researchers [2,3] have studied 

the fractures in turbine wheels of a nuclear power plant and has reported data related flying objects from the 

fractures. The flying objects can range from small debris to very big size. The velocities of these objects could be 

well over 250 m/s. and they have the potential to cause severe mechanical damage. Usually the deterministic 

approach is used to provide physical protection from these missiles. Currently probabilistic approaches are also 

being employed to quantify the damage [4,5]. The physical separation principle originates against missiles is to 

provide safety systems system into different buildings which are separated by partition walls [6]. 

Fig. 1 shows the typical cross section of a turbine in a steam power plant and Fig. 2 represents the possible 

turbine missiles that can originate. The normal governing control system operates to ensure that the 

control(governing) valves are fully closed at three percent over speed, and that the mechanical hydraulic over 

speed trip system is set to operate at ten percent overs peed.  Each system contains fully redundant and 

testable components, and the systems operate to ensure that the turbine cannot attain sufficient speed to cause 

any rotating component to fail, thereby generating missile-like pieces that might leave the turbine casing [7].  

The assessment of missile protection resulting from steam turbine failure is based on the general guidelines 

provided in US NRC Regulatory Guide 1.115, “Protection Against Low-Trajectory Turbine Missiles”.  

The adequacy of missile protection is considered acceptable if the overall probability of unacceptable 

consequences is sufficiently low.  This is determined based on any one or a combination of the following 

probabilities: 

 

P1 = Probability of production and flying off  from missiles;  

P2 = Probability that a missile strikes a target of safety importance; 

P3 = Probability that a missile damages a target. 

Since the total combined probability of unacceptable missile damage is the product of P1, P2, and P3, then as far as 

practical, each of these individual factors is designed to be sufficiently small such that the total product is 

sufficiently low, and hence the probability of unacceptable consequences is sufficiently low.  The overall goal of 

the US NRC guidelines is to maintain the value of the product of the above three probabilities at an acceptably low 

level, of the order of 1 x 10
-7

 [8]. Dynamic effects caused by impact, whenever required, are evaluated in order to 

make sure that they do not exceed other dynamic effects for which the structure or equipment has already been 

qualified (e.g., seismic effects).  Impact loads are calculated, whenever applicable, by calculating both the impact 

force and its duration by the formulae [9]. 
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Fig. 1 Turbine Cross-section 

 

 
 

Fig. 2 Impact areas for turbine missiles. 

 

 

DAMAGE ANALYSIS TECHNIQUE 

 

A number of experimental as well as analytical research has been done to determine the volume of the debris. 

Kar [10] has suggested a formula in which the debris is taken as frustum of cone where the top diameter is 

considered to be equal to debris diameter is given below: 
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Recht and Ipson Formula [11,12] is derived on the basis of conservation of energy and momentum. It forecasts 

the residual velocity of missile, Vr as 

 

 

 
 

Where W  is the missile mass, Wt is the mass of target material. The initial velocity is  given by Vi and Vp is the 

missile’s perforation threshold velocity [13] 

 

The numbers of experiments were done on rigid cylindrical missiles and concrete targets by French and 

suggested a relationship as below: 

 

 
 

Ballistic Research Laboratory (BRL)[14] has also determined a formula for steel targets where the equivalent 

thickness, teq is defined as 

 

 
Where t is thickness of the concrete barrier and tsp the scab plate respectively. A typical view of the debris and 

missile orientation can be viewed from WTC event. 

 

 
 

 

Fig. 3: WTC Debris orientation 
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CONCLUSIONS AND RECOMMENDATIONS 

 

Undoubtedly, it is important that understanding of the orientation of the missile generated from a turbine 

generator is important from safety point of view of the other equipment. The typical analytical methods have 

been evolved from a number of practical turbine missile experiment.The typical values for various missile sizes 

may reach to about 100 m/s which can cause severe damage to the structures around Turbine Generator. 
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