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Abstract 

In this paper, we considered a batch arrival feedback retrial queue with two phase of service under Bernoulli 

vacation schedule and orbit search. At the arrival epoch of a batch, if the server is busy, under repair or on 

vacation then the whole batch joins the orbit. Where as if the server is free, then one of the arriving customers 

starts his service immediately and the rest join the orbit. At the completion epoch of each service, the server 

either goes for a vacation or may wait for serving the next customer. While the server is working with any phase 

of service, it may breakdown at any instant and the service channel will fail for a short interval of time. The 

repair process does not start immediately after a breakdown and there is a delay time for repair to start. After 

vacation completion, the server searches for the customers in the orbit (i.e. customer in the orbit, if any taken for 

service immediately) or remains idle. The probability generating function of the number of customers in the 

system and orbit are found using the supplementary variable technique. The mean numbers of customers in the 

system/orbit and special cases are analyzed. The effects of various parameters on the performance measure are 

illustrated numerically.  

Keywords: Feedback, retrial queue, Bernoulli vacation, delaying repair, orbit search 

 

1. Introduction 

Queueing system is a powerful tool for modeling communication and transportation networks, production lines, 

operating systems, etc. Retrial queues (or queues with repeated attempts) are characterized by the phenomenon 

that an arriving customer who finds the server busy upon arrival is obliged to leave the service area and repeat 

his demand after some time. Between trials, a blocked customer who remains in a retrial group is said to be in 

orbit. Queues in which customers are allowed to conduct retrials have wide applications in telephone switching 

systems, telecommunication networks and computers to gain service from a central processing unit. Choudhury 

(2009) investigated a single server retrial queue with an additional phase of second service and general retrial 

times. There is an extensive literature on the retrial queues. We refer the works by Falin and Templeton (1997) 

and Artalejo (2010) as a few. 

The feedback phenomenon is one of the important tools for communication systems. When the service 

of a customer is unsatisfied, the service can be retried again until the service is completed successfully. For 

example, in multiple accesses telecommunication systems, where messages turned out as errors are sent again 

can be modeled as retrial queues with feedback. Choudhury and Paul (2005) inspected the M/G/1 system with 

two phases of heterogeneous service and Bernoulli feedback. In this system a tagged customer may get an 

unsuccessful service and then it retries to take the service until a successful service.  

In a vacation queueing system, the server may not be available for a period of time due to many 

reasons like, being checked for maintenance, working at other queues, scanning for new work (a typical aspect 

of many communication systems) or simply taking break. This period of time, when the server is unavailable for 

primary customers is referred as a vacation. Krishnakumar and Arivudainambi (2002) have investigated a single 

server retrial queue with Bernoulli schedule and general retrial times. These models arise naturally in call centers 

with multi-task employees, customized manufacturing, telecommunication and computer networks, maintenance 

activities, production and quality control problem, etc. Some of the authors like, Choudhury and Madhan (2004), 

Rajadurai et al. (2015) have developed queueing models with the concept of general retrial times along with 

Bernoulli vacation schedule.  

The service interruptions are unavoidable phenomenon in many real life situations. In most of the 

studies, it is assumed that the server is available in the service station on a permanent basis and service station 

never fails. In practice we often meet the case where service stations may fail and can be repaired. Applications 

of these models found in the area of computer communication networks and flexible manufacturing system etc. 

Ke and Choudhury (2012) discussed about the batch arrival retrial queueing system with two phases of service 

under the concept of breakdown and delaying repair. While the server is working with any phase of service, it 

may breakdown at any instant and the service channel will fail for a short interval of time. The repair process 

does not start immediately after a breakdown and there is a delay time for repair to start. Choudhury and Deka 

(2008) considered a single server queue with two phases of service and the server is subject to breakdown while 

providing service to the customers. Further, Choudhury and Deka (2012) developed a model with vacation. 

Authors like Wang and Li (2009) and Rajadurai et al. (2014) discussed about the retrial queueing systems with 
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the concept of breakdown and repair. In the retrial setup, after completion of each service the server will remain 

idle in the system until the arrival of the next primary or retrial customer. Server’s idle time is reduced by the 

introduction of search of orbital customers immediately after a service completion. Search for orbital customers 

was introduced by Neuts et al. (1984) where the authors examined classical queue with search for customers 

immediately on termination of a service. Orbital search after service have been investigated by Krishnamoorthy 

et al. (2005), Deepak et al. (2013), Gao and Wang (2014). In this model, we discussed after vacation completion, 

the server searches for the customers in the orbit or remain idle. However, no work has been done in the 

feedback retrial queueing model taking into account, the two phase service under Bernoulli vacation and 

breakdowns. Hence to fill this gap, we introduced a concept in this paper, a batch arrival feedback retrial 

queueing system with two phases of service under Bernoulli vacation, orbit search and delaying repair. 

The rest of this paper is organized as follows. In section 2, the detailed description of the mathematical 

model is given. In section 3, we consider the governing equations of our model and also obtain the steady-state 

solutions. Some performance measures and important special cases are derived in Section 4. In section 5, the 

effects of various parameters on the system performance are analyzed numerically. Conclusion and application 

of the work are presented in section 6.  

 

2. Description of the model 

In this section, the detailed description of the model is given as follows: 

Arrival process: Customers arrive in batches according to a compound Poisson process with rateλ. Let Xk denote 

the number of customers belonging to the k
th

 arrival batch, where Xk , k = 1,2,3,…are with a common distribution 

Pr[Xk = n]=χn, n = 1,2,3… and X(z) denotes the probability generating function of X.  

Retrial process: We assume that there is no waiting space and therefore if arriving customers find the server 

being busy or on vacation, all these customers leave the service area and join a pool of blocked customers called 

an orbit. Later the customers in the orbit try to get their service. Inter-retrial times have an arbitrary distribution 

R(x) with corresponding Laplace–Stieltjes transform (LST) ( )R x∗ .   

Service process: Service is provided one by one FCFS basis. Every customer has to undergo two stages of 

heterogeneous service. The service times of both phases follow different general (arbitrary) distributions, the 

first phase service (FPS) followed by the second phase service (SPS). It is assumed that the i
th

 (i=1,2) phase 

service follows general random variable Si with distribution function Si(t)and LST ( ).iS x∗  

Feedback process: After completion of two stages of services if the customer is unsatisfied with his service then 

he can immediately join the orbit as feedback customer for receiving another service with probability r or he 

may depart from the system with probability 1– r. 

Vacation process:  After completion two phases of service of each customer, the server may take a vacation with 

probability p, and with probability 1-p it waits for serving the next customer. The vacation time of the server is 

of random length V with distribution function V(t) and LST ( ).V x
∗  

Orbit search rule: At the end of a vacation, the server searches for the customers in the orbit with probability θ 

(i.e. customer in the orbit, if any taken for service immediately) or remains idle with probability (1-θ). 

Breakdown process:  While the server is working with any phase of service, it may breakdown at any time and 

the service channel will fail for a short interval of time i.e. server is down for a short interval of time. The 

breakdowns i.e. server’s life times are generated by exogenous Poisson processes with rates α1 for FPS and α2 

for SPS, which we may call some sort of disaster during FPS and SPS periods respectively. 

Repair process:  As soon as breakdown occurs the server is sent for repair, during that time it stops providing 

service to the arriving batch of and waits for repair to start, which we may refer to as waiting period of the server. 

We define the waiting time as delay time. The delay time Di of the server for i
th

 phase of service follows with d.f. 

Di(t) and LST ( )iD y∗ . The customer who was just being served before server breakdown waits for the remaining 

service to complete. The repair time (denoted by G1 for FPS and G2 for SPS) distributions of the server for both 

the phases of service are assumed to be arbitrarily distributed with d.f. Gi(t) and LST ( )iG y∗ . 

In addition, let 0 0 0 0 0( ),  ( ),  ( ),  ( ) and  ( )i i iR t S t V t D t G t  be the elapsed retrial time, service time, vacation time, 

delay times and repair time respectively at time t.  In the steady state, we assume that R(0)=0, R(∞)=1, Si(0) = 0, 

Si(∞)=1, V(0)=0, V(∞)=1 are continuous at x = 0 and Di(0) = 0, Di(∞) = 1, Gi(0) = 0, Gi(∞) =1 are continuous at y 

= 0. 

The state of system at time t can be described by the bivariate Markov process ( ){ }( ), ( ), ( ) ,   0C t X t t tζ ≥  where 

C(t)denotes the server state (0,1,2,3,4) depending if the server is free, busy on FPS or SPS, vacation, delaying 

repair on FPS or SPS and repair on FPS or SPS respectively. X(t) corresponds to the number of customers in 

orbit at time t and ( )tζ represents the elapsed time for server states.  

So that the function ( ),  ( ), ( ), ( )  ( )i i ia x x x y and yµ γ η ξ  are the conditional completion rates for repeated 
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attempts, for service, vacation, delay and repair times respectively (for i=1,2). Conditional completion rates for 

repeated attempts, service on both phases, vacation, delay in both phases and under repair on both phases 

respectively,  

( )
( )  

1 ( )

dR x
a x dx

R x
=

−
 

( )
( )

1 ( )

i
i

i

dS x
x dx

S x
µ =

−

( )
( )  

1 ( )

dV x
x dy

V x
γ =

−

( )
( )  

1 ( )

i
i

i

dD y
y dy

D y
η =

−

( )
( )  

1 ( )

i
i

i

dG y
y dy

G y
ξ =

−
  

Now we analyze the stability of this model. At first, we analyze the embedded Markov chain at departure 

completion epochs. Let {tn ; n = 1,2,…} be the sequence of epochs at which either a service period completion 

occurs or a vacation time ends. The sequence of random vectors ( ) ( ){ } , n n nZ C t X t= + +  form a Markov chain, which 

is embedded Markov chain for our retrial queueing system, then we have the embedded Markov chain { };  nZ n N∈  

is ergodic if and only if 1ρ < ,  

where 1 1 1 1 2 2 2 2

1
( )[(1 ( )(1 )] ( ) ( )[1 ( ( ) ( ))] ( )[1 ( ( ) ( ))] ( )

1
E X R p E X E S E D E G E S E D E G pE V

r
ρ λ θ λ α α∗ = − − + + + + + + +   −

 

 

3. Steady state analysis 

In this section, assume that the ergodic condition 1ρ <  is fulfilled. Then, we shall derive the steady state 

probability distribution of our queueing model. For the process { }( ),  0 ,X t t ≥  we define the probability 

{ }0( ) ( ) 0,  ( ) 0P t P C t X t= = =  and the probability densities for 0,  0 and 1t x n≥ > ≥  

{ } { }0 0
,( , ) ( ) 0, ( ) ,  ( ) ,  ( , ) ( ) 1, ( ) ,  ( ) ,n i n iP x t dx P C t X t n x R t x dx x t dx P C t X t n x S t x dx= = = ≤ < + Π = = = ≤ < +  

{ }0( , ) ( ) 2,  ( ) ,  ( ) ,n x t dx P C t X t n x V t x dxΩ = = = ≤ < +  

{ }0 0
, ( , , ) ( ) 3,  ( ) ,  ( ) ( )i n i iQ x y t dy P C t X t n y D t y dy S t x= = = ≤ < + =  

{ }0 0
, ( , , ) ( ) 4,  ( ) ,  ( ) ( )i n i iR x y t dy P C t X t n y G t y dy S t x= = = ≤ < + =  

We assume that the stability condition is fulfilled in the sequence and so that we can set  

0 0 , , , , , ,lim ( ),  ( ) lim ( , ),  ( ) lim ( , ),  ( ) lim ( , ),  ( , ) lim ( , , ),  ( , ) lim ( , , ).n n i n i n n n i n i n i n i n
t t t t t t

P P t P x P x t x x t x x t Q x y Q x y t R x y R x y t
→∞ →∞ →∞ →∞ →∞ →∞

= = Π = Π Ω = Ω = = By the method 

of supplementary variable technique, we obtain the following system of equations that govern the dynamics of 

the system behavior. 

0 0 2,0 2

0 0

(1 ) ( ) ( ) (1 ) ( ) ( )P x x dx r q x x dxλ θ γ µ

∞ ∞

= − Ω + − Π∫ ∫        (3.1) 

( )
[ ( )] ( ) 0,  1n

n
dP x

a x P x n
dx

λ+ + = ≥          (3.2)  

,0

,0 ,0

0

( )
[ ( )] ( ) ( ) ( , ) , 0,  for( 1, 2)

i

i i i i i

d x
x x y R x y dy n i

dx
λ α µ ξ

∞

Π
+ + + Π = = =∫       (3.3) 

,
, , ,

1 0

( )
[ ( )] ( ) ( ) ( ) ( , ) , 1,  for( 1, 2) 

k

n
i n

i i i n i n k i i n

k

d x
x x x y R x y dy n i

dx
λ α µ λ χ ξ

∞

−

=

Π
+ + + Π = Π + ≥ =∑ ∫   (3.4) 

1

( )
[ ( )] ( ) ( ),  0

k

n
n

n n k

k

d x
x x x n

dx
λ γ λ χ −

=

Ω
+ + Ω = Ω ≥∑        (3.5)  

,0
,0

( , )
[ ( )] ( , ) 0,  0,  for( 1, 2) 

i
i i

dQ x y
y Q x y n i

dy
λ η+ + = = =        (3.6)   

,
, ,

1

( , )
[ ( )] ( , ) ( , ), 1, for( =1,2)  

k

n
i n

i i n i n k

k

dQ x y
y Q x y Q x y n i

dy
λ η λ χ −

=

+ + = ≥∑     (3.7)  

,0

,0

( , )
[ ( )] ( , ) 0,  =0, for( =1,2) 

i

i i

dR x y
y R x y n i

dy
λ ξ+ + =        (3.8)  

,

, ,

1

( , )
[ ( )] ( , ) ( , ), 1, for( =1,2)

n

i n

i i n i n kk

k

dR x y
y R x y R x y n i

dy
λ ξ λ χ −

=

+ + = ≥∑       (3.9)   

The steady state boundary conditions are  
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2, 2 2, 1 2

0 0 0

(0) (1 ) ( ) ( ) (1 ) ( ) ( ) ( ) ( ) , 1 n n n nP x x dx r q x x dx rq x x dx nθ γ µ µ

∞ ∞ ∞

−= − Ω + − Π + Π ≥∫ ∫ ∫     (3.10)   

11, 1 1 1 0

10 0 0

(0) ( ) ( ) ( ) ( ) ( ) ,   1  
k n

n

n n n k n

k

P x a x dx P x dx x x dx P nλ χ θ γ λχ
+

∞ ∞ ∞

+ − + +

=

Π = + + Ω + ≥∑∫ ∫ ∫      (3.11) 

2, 1, 1

0

(0) ( ) ( ) , 1  n n x x dx nµ

∞

Π = Π ≥∫           (3.12) 

2, 2 2, 1 2

0 0

(0) (1 ) ( ) ( ) ( ) ( ) , 0n n nr p x x dx rp x x dx nµ µ

∞ ∞

−Ω = − Π + Π ≥∫ ∫         (3.13) 

, ,( ,0) ( ), 1, for( =1,2)i n i i nQ x x n iα= Π ≥           (3.14) 

, ,

0

( , 0) ( , ) ( ) , 1   i n i n iR x Q x y y dy nη

∞

= ≥∫         (3.15)   

The normalizing condition is 

2

0 , , ,

1 0 10 0 0 0 0 0 0

( ) ( ) ( ) ( , ) ( , ) 1n n i n i n i n

n n i

P P x dx x dx x dx Q x y dxdy R x y dxdy

∞ ∞ ∞ ∞ ∞ ∞ ∞∞ ∞

= = =

  
  + + Ω + Π + + =     

∑ ∑ ∑∫ ∫ ∫ ∫∫ ∫∫   (3.16)   

We use the method of probability generating function to solve the above equations (3.1)-(3.15), so we define the 

probability generating functions, where |z| ≤ 1, i = 1, 2 

, ,

1 1 0 0

, ,

0 0 0 0

( , ) ( )   ;  (0, ) (0)  ;  ( , ) ( )  ;  (0, ) (0)  

( , ) ( )   ; (0, ) (0)   ;  ( , , ) ( , )  ; ( ,0, ) ( ,0)

( ,

n n n n
n n i i n i i n

n n n n

n n n n
n n i i n i i n

n n n n

i

P x z P x z P z P z x z x z z z

x z x z z z Q x y z Q x y z Q x z Q x z

R x

∞ ∞ ∞ ∞

= = = =

∞ ∞ ∞ ∞

= = = =

= = ∏ = ∏ ∏ = ∏

Ω = Ω Ω = Ω = =

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

, ,

0 0 1

, ) ( , )   ;   ( ,0, ) ( ,0)  and  ( )n n n
i n i i n n

n n n

y z R x y z R x z R x z X z zχ

∞ ∞ ∞

= = =

= = =∑ ∑ ∑
 

Multiplying the steady state equations and steady state boundary conditions (3.1) - (3.15) by z
n
 and summing 

over n, 

( , )
[ ( )] ( , ) 0,  

P x z
a x P x z

x
λ

∂
+ + =

∂
         (3.17)   

0

( , )
[ ( ) ( )] ( , ) ( ) ( , , )   i

i i i i i

x z
X z x x z y R x y z dy

x
λ λ α µ ξ

∞

∂Π
+ − + + Π =

∂ ∫      (3.18) 

( , )
[ ( ) ( )] ( , ) 0  

x z
X z x x z

x
λ λ γ

∂Ω
+ − + Ω =

∂
        (3.19)  

( , , )
[ ( ) ( )] ( , , ) 0i

i i
Q x y z

X z y Q x y z
y

λ λ η
∂

+ − + =
∂

       (3.20)  

( , , )
[ ( ) ( )] ( , , ) 0  i

i i

R x y z
X z y R x y z

y
λ λ ξ

∂
+ − + =

∂
       (3.21)   

2 2 2 2 0

0 0 0

(0, ) (1 ) ( , ) ( ) (1 ) ( , ) ( ) ( , ) ( )  P z x z x dx r q x z x dx rqz x z x dx Pθ γ µ µ λ

∞ ∞ ∞

= − Ω + − Π + Π −∫ ∫ ∫    (3.22)    

1 0

0 0 0

1 ( )
(0, ) ( , ) ( ) ( , ) ( , ) ( )

X z
z P x z a x dx P x z dx P x z x dx

z z z

λ θ
γ

∞ ∞ ∞ 
 Π = + + + Ω
 
 

∫ ∫ ∫     (3.23)   
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2 1 1

0

(0, ) ( , ) ( )    z x z x dxµ

∞

Π = Π∫          (3.24)   

2 2

0

(0, ) (1 ) ( , ) ( )z r rz p x z x dxµ

∞

Ω = − + Π∫         (3.25)    

( , 0, ) ( , ) for(i=1,2)i i iQ x z x zα= Π          (3.26)    

0

( , 0, ) ( , , ) ( ) for(i=1,2)i i iR x z Q x y z y dyη

∞

= ∫         (3.27)    

Solving the partial differential equations (3.17)-(3.21), it follows that 

( , ) (0, )[1 ( )]
x

P x z P z R x e
λ−= −          (3.28)   

( )
( , ) (0, )[1 ( )] ,

A z xi
i i ix z z S x e

−Π = Π −          (3.29)    

0 ( )
( , ) (0, )[1 ( )]

z x
x z z V x e

λ−Ω = Ω −          (3.30)  

0 ( )
( , , ) ( , 0, )[1 ( )] ,

z y

i i iQ x y z Q x z D y e
λ−= −         (3.31)    

0 ( )
( , , ) ( , 0, )[1 ( )] ,

z y

i i iR x y z R x z G y e
λ−= −         (3.32) 

( )0 0 0 0( ) ( ) [1 ( ( )) ( ( ))] and ( ) 1 ( )i i i iA z z D z G z z X zλ α λ λ λ λ∗ ∗= + − = −      

Using (3.30) and (3.29) in (3.22), finally we get 

( ) ( ){ }* * *

1 0 1 1 2 2 0(0, ) 1 (0, ) (1 ) ( ( )) ( ) ( )P z r rz z q p V z B A z B A z Pθ λ λ= − + Π + − −           (3.33) 

Inserting (3.23) and (3.28) in (3.33), we get 

( )
(0, )        

( )

Nr z
P z

Dr z
=           (3.34) 

( ){ }{ }

( )( )

0 0 1 1 2 2 1 1 2 2 0

1 1 2 2 0

* *

( ) ( )(1 ) (1 ) ( ) ( ) ( ) (1 ) ( ) ( ) ( )

(1 ) ( ) ( ) ( )

( )
( ) ( ) 1 ( ) (1 ) (1

Nr z P X z r rz q pV z S A z S A z z p r rz S A z S A z V z

z p r rz S A z S A z V z

Dr z
R X z R r rz q

λ θ λ θ λ

θ λ

λ λ

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

 = − + + − − − − +                     

− − +          
=

− + − − + + −( ){ }0 1 1 2 2) ( ) ( ) ( )pV z S A z S A zθ λ∗ ∗ ∗

 
 
 

           

 

Using (3.22)-(3.25) and (3.28)-(3.30) and make some calculation, we get 

{ }1 0(0, ) ( ) ( ) 1 ( )z P R X z Dr zλ λ∗Π = −           (3.35) 

Using (3.35) in (3.24), we get 

{ }2 0 1 1(0, ) ( ) ( ) 1 ( ) ( )   z P R X z S A z Dr zλ λ∗ ∗Π = −              (3.36) 

Using (3.36) in (3.25), we get 

{ }0 1 1 2 2 0( ) ( )(1 ) ( ) ( ) ( ) ( )  z pP R r rz S A z S A z V z Dr zλ λ∗ ∗ ∗ ∗Ω = − +                 (3.37) 

Using (3.31)-(3.32) in (3.26)-(3.27), we get 

{ }( )1
1 1 0 1( ,0, ) ( ) ( ) 1 1 ( )  ( )

A z x
Q x z P R X z S x e Dr zα λ λ −∗= − −             (3.38) 

{ }( )2
2 2 0 1 1 2( ,0, ) ( ) ( ) 1 ( ) 1 ( )  ( )

A z x
Q x z P R X z S A z S x e Dr zα λ λ −∗ ∗= − −                (3.39) 

{ }( )1
1 1 0 1 0 1( ,0, ) ( ) ( ) ( ) 1 1 ( )  ( )

A z x
R x z P R D z X z S x e Dr zα λ λ λ −∗ ∗= − −                (3.40) 

{ }( )2
2 2 0 1 1 2 0 2( ,0, ) ( ) ( ) 1 ( ) ( ) 1 ( ) exp  ( )

A z x
R x z P R X z S A z D z S x Dr zα λ λ λ −∗ ∗ ∗= − −                  (3.41) 

For the limiting probability generating functions ( , ), ( , ), ( , ), ( , , ) and ( , , )i i iP x z x z x z Q x y z R x y zΠ Ω we define the 

partial probability generating functions as, for (i = 1,2) 

0 0 0 0 0 0

( ) ( ) ( , ) , ( ) ( , ) ,  ( , ) ( , , ) , ( ) ( , ) ,  ( , ) ( , , ) , ( ) ( , ) ,i i i i i i i i i iP z z x z dx z x z dx Q x z Q x y z dy Q z Q x z dx R x z R x y z dy R z R x z dx

∞ ∞ ∞ ∞ ∞ ∞

= Π = Π Ω = Ω = = = =∫ ∫ ∫ ∫ ∫ ∫  

Note that, ( )1 2 1 2 1 2( ) ( ), ( ), ( ), ( ), ( ), ( ), ( )P z z z z Q z Q z R z R zΠ Π Ω is the probability generating function of orbit size 

when the server is idle (busy on FPS or SPS, on vacation, under delaying repair on FPS or SPS and repair on 

FPS or SPS respectively). 
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Let 
( )

( )        
( )

Nr z
P z

Dr z
=           (3.42) 

( ){ }{ }

( )( )

0 0 1 1 2 2 1 1 2 2 0

1 1 2 2 0

* *

( ) 1 ( ) ( )(1 ) (1 ) ( ) ( ) ( ) (1 ) ( ) ( ) ( )

(1 ) ( ) ( ) ( )

( )
( ) ( ) 1 ( ) (1

Nr z P R X z r rz q pV z S A z S A z z p r rz S A z S A z V z

z p r rz S A z S A z V z

Dr z
R X z R

λ θ λ θ λ

θ λ

λ λ

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

   = − − + + − − − − +                       

− − +          
=

− + − − ( ){ }0 1 1 2 2) (1 ) ( ) ( ) ( )r rz q pV z S A z S A zθ λ∗ ∗ ∗

 
 
 

+ + −            

 

( ){ }1 0 0 1 1 1( ) ( ) ( ) ( ) 1 ( ) ( )  z P R z S A z A z Dr zλ λ∗ ∗ Π = −         (3.43) 

( ) ( ){ }2 0 0 1 1 2 2 2( ) ( ) ( ) ( ) ( ) 1 ( ) ( )z P R z S A z S A z A z Dr zλ λ∗ ∗ ∗ Π = −        (3.44) 

{ }0 1 1 2 2 0( ) ( )[(1 ) ] ( ) ( ) ( ) ( )z pP R r r S A z S A z V z Dr zλ λ∗ ∗ ∗ ∗Ω = − +                 (3.45) 

( ) ( ){ }1 1 0 1 1 1 0 1( ) ( ) 1 ( ) ( ) 1 ( ) ( )Q z P R S A z D z A z Dr zα λ λ∗ ∗ ∗   = − −          (3.46) 

( ) ( ){ }2 2 0 1 1 2 1 2 0 2( ) ( ) ( ) 1 ( ) ( ) 1 ( ) ( )Q z P R S A z S A z D z A z Dr zα λ λ∗ ∗ ∗ ∗   = − −           (3.47) 

( ) ( ){ }1 1 0 1 0 1 1 1 0 1( ) ( ) ( ) 1 ( ) ( ) 1 ( ) ( )R z P R D z S A z G z A z Dr zα λ λ λ∗ ∗ ∗ ∗   = − −           (3.48) 

( ) ( ){ }2 1 0 1 1 2 0 2 2 2 0 2( ) ( ) ( ) ( ) 1 ( ) ( ) 1 ( ) ( )R z P R S A z D z S A z G z A z Dr zα λ λ λ∗ ∗ ∗ ∗ ∗   = − −              (3.49) 

Since, P0 
is the probability that the server is idle when no customer in the orbit and it can be determined using 

the normalizing condition. 0 1 2 1 2 1 2(1) (1) (1) (1) (1) (1) (1) (1) 1,P P Q Q R R+ + Ω + Π + Π + + + + = Thus, by setting 1z =  

in (3.42) – (3.49) and applying L-Hospital’s rule whenever necessary and we get 

( ) ( )1 1 1 1 2 2 2 2

0

(1 ) ( ) (1 )(1 ( )) ( ) ( ) 1 ( ) ( ) ( ) 1 ( ) ( ) ( )

(1 ) ( )

r E X p R E X E S E D E G E S E D E G pE V
P

r R

θ λ λ α α

λ

∗

∗

       − − − − − + + + + + +       = 
− 

 

 (3.50) 

Then we define the probability generating function of the number of customer in the system is 

0 1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )K z P P z z z z z Q z Q z R z R z= + + Ω + Π + Π + + + +    

{ }0 1 1 2 2( ) ( ) 1 (1 ) ( ) ( ) ( )K z P R z r S A z S A z Dr zλ∗ ∗ ∗= − −                 (3.51) 

The probability generating function of the number of customer in the orbit is   

0 1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )H z P P z z z z Q z Q z R z R z= + + Ω + Π + Π + + + +    

{ }0 1 1 2 2( ) ( ) 1 1 ( ) ( ) ( )H z P R z r S A z S A z Dr zλ∗ ∗ ∗ = − −                  (3.52) 

 

4. Performance measures  

Now we derive the system performance measures of our model.  

The mean number of customers in the system Ls under steady state condition is obtained by differentiating (3.51) 

with respect to z and evaluating at z=1 

0 21

(1) (1) (1) (1)
lim '( ) ( )

2 (1)
s

z

Dr Nr Nr Dr
L K z P R

Dr
λ∗

→

 ′ ′′ ′ ′′− = =
 ′   

( ) ( )

( )( ) ( ) ( )

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

(1) = (1 )

(1) 2(1 ) ( ) ( ) 1 ( ) ( ) ( ) 1 ( ) ( ) ( )

(1) (1 ) ( ) 1 1 ( ) ( ) ( ) 1 ( ) ( ) ( ) 1 ( ) ( ) ( )

Nr r

Nr r E X E S E D E G E S E D E G pE V

Dr r E X p R E X E S E D E G E S E D E G pE V

λ α α

θ λ λ α α∗

′ −

 ′′ = − + + + + + +            

   ′ = − − − − − + + + + + +           
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( ) ( )
2 22 2 2 2

1 1 1 1 2 2 2 2

2 2 2 2 2
1 1 1 1 1 1 2 2 2 2 2 2

(1) ( ) ( ) 1 ( ) ( ) ( ) 1 ( ) ( ) ( )

              ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) 2 ( ) ( )

      

Dr E X E S E D E G E S E D E G pE V

E X E S E D E G E D E G E S E D E G E D E G

λ α α

λ α α

  ′′ = − + + + + + +             

    + + + + + +        

( ) ( )

( )( ) ( )( )

2 22 2
1 1 1 1 2 2 2 2

2

1 2 1 1 1 2 2 2

        ( ( 1)) ( ) 1 ( ) ( ) ( ) 1 ( ) ( ) ( )

              2 ( ) ( ) ( ) 1 ( ) ( ) 1 ( ) ( ) ( ( 1)) 1 1 ( )

   

E X X E S E D E G E S E D E G pE V

E X E S E S E D E G E D E G E X X p R

λ α α

λ α α θ λ∗

  
+ − + + + + + +        

  

  + + + + + − − − −                

( ) ( )

( ) ( )

( )

2

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

1

          2 ( ) ( ) ( ) 1 ( ) ( ) ( ) 1 ( ) ( )

            2 ( ) ( ) 1 ( ) ( ) ( ) 1 ( ) ( ) ( )

( ) ( ) 1

            2 ( ) 1 ( )

p E X E V E S E D E G E S E D E G

r E X E S E D E G E S E D E G pE V

E X E S

E X R

λ α α

λ α α

λ

λ∗

 + + + + + +            

 + + + + + + +        

+

+ −
( ) ( )

( ) ( )

1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

( ) ( ) ( ) 1 ( ) ( ) ( )

( ) ( ) 1 ( ) ( ) ( ) 1 ( ) ( ) ( )

E D E G E S E D E G pE V r

p E X E S E D E G E S E D E G E V r

α α

θ λ α α

   + + + + + +             
 

   − + + + + + + +            

 

The mean number of customers in the system Lq under steady state condition is obtained by differentiating (3.52) 

with respect to z and evaluating at 1z = , 

( ) ( )

0 21

1 1 1 1 2 2 2 2

(1) (1) (1) (1)
lim '( ) ( )

2 (1)

(1) 2 ( ) ( ) 1 ( ) ( ) ( ) 1 ( ) ( )

q
z

Dr Nr Nr Dr
L H z P R

Dr

Nr r E X E S E D E G E S E D E G

λ

λ α α

∗

→

 
′ ′′ ′ ′′− = =

 ′   

 ′′ = − + + + + +            

 

The average time a customer spends in the system (Ws) and in the orbit (Wq) under steady-state condition 

due to Little’s formula, we obtain ( )  and  ( )s s q qW L E X W L E Xλ λ= =  

 

4.1. Special cases 

Case (i): Single Poisson arrival, No Feedback and No orbit search 

Let r = 0 , θ = 0 and α2 = 0; then if we set Pr[S2 = 0] = 1,  our model can be reduced to A Batch arrival retrial 

queue with general retrial time under Bernoulli vacations for unreliable server and delaying repair. The 

following expression and the equations coincide with results of Ke and Choudhury (2012). 

 

( )( )
( )( ) ( ){ }{ }

1 1 1 1

* *
0 1 1

1 ( ) 1 ( ) ( ) ( ) 1 ( ) ( ) ( ) 1

( )

( ) ( ) 1 ( ) ( ) ( )

E X R E X E S E D E G pE V z

H z

z R X z R q pV z S A z

λ λ α

λ λ λ

∗

∗ ∗

     − − − + + + −         =

− + − +      

 

Case (ii): Single Poisson arrival, No vacation, No orbit search, No breakdown and No Retrial  

Let p = 0, θ = 0 and Pr[X = 1] = 1; α1 = α2 = 0; ( ) 1R λ∗ →  then if we get M/G/1 queueing system with two 

phases of service and Bernoulli feedback. The following expression coincides with results of Choudhury and 

Paul (2005). 

 
( ){ }

{ }
1 2 1 2

1 2

(1 ) ( ) ( ) 1 1
( )

[(1 ) ]

r E S E S z r S z S z
K z

z r rz S z S z

λ λ λ λ λ

λ λ λ λ

∗ ∗

∗ ∗

 − − + − − − −               
=

− − + − −      
 

 

5. Numerical illustration 

In this section, we present some numerical examples to study the effect of various parameters in the system 

performance measures of our system where all retrial times, service times, vacation times, delay times and repair 

times are exponentially, Erlangianly and hyper-Exponentially distributed. We further assume that customers are 

arriving one by one, so E(X)=1, E(X (X–1)) = 0. We assume arbitrary values to the parameters such that the 

steady state condition is satisfied. The following tables give the computed values of various characteristics of our 

model like, probability that the server is idle P0, the utilization factor ρ, the mean orbit size Lq, probability that 

server is retrial P(1), where exponential distribution is ( ) , 0
x

f x e x
νν −= > , Erlang-2stage distribution is 

2
( ) , 0

x
f x xe x

νν −= >  and hyper-exponential distribution is 
22

( ) (1 ) , 0
x x

f x c e c e x
ν νν ν− −= + − > .  

  Table 1 shows that when retrial rate (a) increases, then the probability that server is idle P0 increases, the 

mean orbit size Lq decreasing and probability that server is idle during retrial time P(1) also decreasing. Table 2 

shows that when feedback (r) increases, then the probability that server is idle P0 decreases, the mean orbit size 

Lq and all other characteristics are increasing. For the effect of the parameters a, r, θ,γ and η1 on the system 

performance measures are given in following figures. Figure1 shows that the idle probability P0 increasing for 

the increasing the value of the orbit search with probability θ. In Figure2 the surface displays downward trend as 
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expected for increasing the value of the vacation rate γ and retrial rate a against the mean orbit size Lq 

 

6. Conclusion 
In this paper, we introduced a batch arrival feedback queueing system with general repeated attempts, two 

phases of service, Bernoulli vacation and orbit search, where the server is subject to breakdown and delaying 

repair. The probability generating function of the number of customers in the system and orbit are found using 

the supplementary variable technique. Various performance measures like the mean number of customers in the 

system/orbit, average waiting time customer spends in the system/orbit and special cases are analyzed. The 

effects of various parameters on the performance measure are illustrated numerically. Finally, the general 

decomposition law is shown to hold good for this model. Application of this paper results are useful to network 

design engineers and software design engineers to design various computer communication systems, packet 

switched networks, production lines and mail systems. 
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Table 1: P0 and Lq for different Retrial rate (a) for the values of λ = 0.1, r =0.2; θ = 0.5; µ1 = 5; µ2 = 3; p = 0.5; 

α1 = 0.2; α2 = 0.1; η1 = 3; η2 = 2; ξ1 = 2; ξ2 = 1; γ = 5; c = 0.7; 

 

Retrial time Exponential Erlang – 2 stage Hyper – Exponential 

a P0 Lq P(1) P0 Lq P(1) P0 Lq P(1) 

3.00 0.9095 0.0100 0.0009 0.7907 0.0557 0.0093 0.9306 0.0057 0.0002 

4.00 0.9097 0.0090 0.0007 0.7930 0.0511 0.0070 0.9307 0.0050 0.0001 

5.00 0.9099 0.0085 0.0005 0.7944 0.0484 0.0056 0.9307 0.0047 0.0001 

6.00 0.9100 0.0081 0.0005 0.7954 0.0466 0.0046 0.9307 0.0044 0.0001 
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Table 2: P0 and Lq for different feedback probabilities (r) for the values of λ = 0.1, a = 2; θ = 0.5; µ1 = 5; µ2 = 3; 

p = 0.5; α1 = 0.2; α2 = 0.1; η1 = 3; η2 = 2; ξ1 = 2; ξ2 = 1; γ = 5; c = 0.5;  

 

Feedback Exponential Erlang – 2 stage Hyper – Exponential 

r ρ P0 Lq Ρ P0 Lq Ρ P0 Lq 

0.50 0.2148 0.8245 0.0166 0.4595 0.5959 0.1984 0.1434 0.8886 0.0031 

0.55 0.2386 0.7994 0.0220 0.5105 0.5397 0.2757 0.1594 0.8720 0.0045 

0.60 0.2685 0.7681 0.0310 0.5743 0.4693 0.4109 0.1793 0.8514 0.0073 

0.65 0.3068 0.7279 0.0466 0.6564 0.3789 0.6827 0.2049 0.8248 0.0123 

0.70 0.3579 0.6742 0.0754 0.7658 0.2582 1.4007 0.2390 0.7894 0.0217 

 

    
Figure 1. P0 versus θ     Figure 2. Lq versus a and γ 



The IISTE is a pioneer in the Open-Access hosting service and academic event management.  

The aim of the firm is Accelerating Global Knowledge Sharing. 

 

More information about the firm can be found on the homepage:  

http://www.iiste.org 

 

CALL FOR JOURNAL PAPERS 

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.   

Prospective authors of journals can find the submission instruction on the following 

page: http://www.iiste.org/journals/  All the journals articles are available online to the 

readers all over the world without financial, legal, or technical barriers other than those 

inseparable from gaining access to the internet itself.  Paper version of the journals is also 

available upon request of readers and authors.  

 

MORE RESOURCES 

Book publication information: http://www.iiste.org/book/ 

Academic conference: http://www.iiste.org/conference/upcoming-conferences-call-for-paper/  

 

IISTE Knowledge Sharing Partners 

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open 

Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek 

EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library , NewJour, Google Scholar 

 

 

http://www.iiste.org/
http://www.iiste.org/journals/
http://www.iiste.org/book/
http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

