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Abstract
We give a condition for a quasi-regular set to satisfy certain density, if 4 is absolutely continuous with respect

to Ly and an inequality was hold. We investigate a Fourier asymptotic of fractal measures with a sharp bound.

For a continuous measure with a monotone discrete sequence a best estimate was proved.
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1.Introduction
So much of harmonic analysis being with maximal functions, and maximal functions are understood via
covering lemmas. One of the most powerful covering lemmas is the following, due to Besicovitch (a short proof

found in de Guzman [5]). Here B, (x ) denotes the open ball of radius 7 centered at X . But really not necessary

that we deal with balls — for example, cubes would do as well, but not general rectangles — but it is essential that
the set be centered at X .

Propositionl.1: There exists a constant ¢, depending only on the dimension, such that if AcCR" . is

measurable and a collection {Br(x) (x)} of balls centered at each point of A is given with the radii

xeA

r (x) arbitrary but uniformly bounded, then there exists a finite or countable sub-collection {B k} which covers
A with no more than ¢, overlaps; i.e.

xASZka <c, on R’. (1)
Let U be any locally finite measure on R" . (Actually we could do with the following hypothesis: for

[ —almost every X there exists 7 > 0 such that 0< /J(B , (x )) <oo). We define the centered maximal

function
M () =sup u(B, ()" [, Vldu @

For any locally integrable f ,where we take 0/0 = Oif i (B, (X)) =0. It is easy to see that M, f is
measurable.

Theorem1.1: The operator M u satisfies the weak- L' estimate

pidx M f (x)>s)<c,s|f], 3)
Forall fe L' (d ﬂ) , and the L estimate

[p.£1, <e, 1, @
Forall f € L’ (du),1< p <oo, where all L? norms are with respect to £ .

Proof.
Let £, ={x M f (x)> S} .For every x€ E| there exists 7 such that
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J, o\ f1duzsp (B, (x))

Assume first that £_is bounded, so that we may apply the Besicovitch covering lemma to obtain {B k} , and

then
Nz, 1 Adu=3 s, (8)2s,(E,)

By (1), which is (3). In the general case we partition R " into a countable union of bounded sets, run the above
on each bounded set, and then sum. Then (4) follows by the Marcinkiewiecz interpolation theorem in[3] using
the trivial p = oo case.

C}’l

This result is also proved in [3]. The next result is proved by different method by [2] - [7], but also using his
covering lemma.

Corollaryl.1: Forany f € L' (du),

limu(B, (x))" [, fdu=f(x) )

for /4 —almost every X and in fact also
limu(B, (<)) [, |V (0)~f ()dpu(r)=0 @©

proof. Continuous functions are dense in L (d U ) because [ is O — finite hence regular. Since (5) and (6) are

obviously true for this dense subclass, the result follows for all L (d ,u) by general functional analysis principles
and the estimate (3).
Corollary 1.2: Forany f € L” (d 1),1< p <o,

limu(8,(x)) [ fdu=f(x) in  L'(dp) O
Proof:

Convergence almost everywhere follows the previous Corollary (localized), and then L convergence follows
from (4) by the dominated convergence theorem.

Now fix a real value & satisfying 0 < & < n , and define the ¢ —dimensional centered maximal function by
M.f (X)Zsrl;lgr_x .[Br‘(t)lf|d,u, ®)
Similarly we define the local & — dimensioﬁal centered maximal function by
m f(x)=supr| |fldu
0=<r<l (x)

Observe that these maximal functions depend on the measure /£, but this dependence is suppressed in the

notation.
We will say that the measure // is uniformly & —dimensional if there exists a constant ¢ such that

,u(Br(x))Scrx forallx and r >0 )

Similarly, we say that / is locally uniformly & —dimensional if (9) holds forO <7 <1. It is easy to see that a
locally uniformly & — dimensional measure must be absolutely continuous with respect to & — dimensional
Hausdorff measure £/, but such a measure need not exhibit any actual “fractal” behavior. Thus, for example,

Lebesgue is locally uniformly & —dimensional for any & < 7. We can allow & =0 in these definitions, in
which case a measure is uniformly 0-dimensional if and only if it is finite, and locally uniformly 0-dimensional if

and only if i (B1 (x)) is uniformly bounded in X .

2. Maximal functions and Wiener’s Measures
Corollary2.1: If X is uniformly & — dimensional then M _ is bounded on L” (d tt)for1 < p < oo and satisfies a

weak- L' estimate, similarly for m_ if £ is locally uniformly & — dimensional.

2
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M. f<cM,f in the first case, and m, f <cM , f in the second case. It is also interesting to ask if these

results remain true if we drop the requirement that the balls be centered at X, and only require that they

contain X . Journe [4] shows that this is the case when the dimension n = 1, but not when#n > 2 .
If the measure Y satisfies a doubling condition, then all these results are known . However, most fractal

measures do not satisfy a doubling condition.
Let U be a positive measure with no infinite atoms, not necessarily O — finite, and let V be a O — finite

positive measure which is absolutely continuous with respect to U ,V << MU , in the usual
sense ( ,U(E ) =0 impliesv (E ) = 0) . The Radon-Nikodym theorem does not apply in this situation but

there is a simple substitute result. We will say that a measure V is null with respect to ¢, writtenV << 4 ,if

y2i (E ) < oo implies V (E ) =0 . Clearly this is a stronger condition than absolute continuity, and it implies that

14 (E ) =0if E is an O — finite set for & . In particular, if & were O — finite, then only the zero measure could

be null with respect to £ . But for non- O — finite measure /£ , such as counting measure on R , it is easy to give
examples of non-trivial measures which are null with respect to /£ . But again, ifdV = fd l for a measurable
non-negative function f*, then we cannot have V null with respect to 4 unless V is the zero measure. Thus
null measures and the Radon-Nikodym measures with respect to ¢ form mutually exclusive classes.

Theorem 2.1: Let (£ be a measure with no infinite atoms, and letV be O — finite and absolutely continuous

with respect to £,V << L. Then there exists a unique decompositionV =V, +V,such thatdV, = fd i for a

non-negative measurable function f*, and V, is null with respect to i ,V, << UL

Proof:
The uniqueness has already been noted. For existence it suffices to consider the case where V is a finite measure.

Then let s/ denote the set of measurable sets A such that V(4 )>0and 4 restricted to A is O — finite. Let

a denote the sup of V(A) for A€ sl , and choose a sequence of sets Ajesl such that

limj_m 14 (Aj ) =a,and set B = U;l Aj . Weclaim V| = V|B and V, = V| is the desired decomposition.

cB
Indeed dV, = fdu by the Radon-Nikodym theorem since /,l| , is O— finite. To show V, << u
Assume ,U(E)<<>° . Then V, (E)=0 for if not we would have V(B uE)>a and BUFE€esl, a

contradiction
Note that. If & is counting measure, then the decomposition V =V, +V, is just the familiar decomposition of a
measure into discrete and continuous parts.
Now we specialize to the case £ = (L, the Hausdorff measure of dimension & on R" . The definition of the
& —upper density( see[4])
D. (v,x)=limsup(2r)" v(B, (x))
r—0

Of a measure V. Similarly the & —lower density D (V, x) is defined with the liminf in place of limsup.

Theorem 2.2: If V is a locally finite measure on R" that is null with respect to M. V<< U , then

D, (v,x)=0for 4 — almost every X.
Proof: Let E, denote the set of x € R" such that for all £€>0 there exists 7 <& with

(2}’)_x V(Br (x)) >1/k . 1t is easy to see that the union of the sets E, is exactly the set of points where

D, (V,x ) > 0, so it suffices to show M, (E k) = 0 for every k. we do this first for the case when V is a finite

measure.
Now we apply the Besicovitch covering lemma to the balls whose existence define £, , and obtain a
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cover {Br (xj )} of E, such that ZXB,, (x)<c, everywhere. However, each ball has radius 1, SE, 80

B

7

hence ZV(Brj(xj))Scnv(Ekwe) . But since we also have (2rj)'XSkV(Brj(xj)) we have

(xj ) C E, ,where E, _ denotes the set of points of distance < € from E, . Thus ZxBr/ (xj) Sc,Xp,

Z(Zl’j)x < CV(Ek,E) , and letting €& — O this shows & (Ek ) < CV(Ek) by the definition of f_and the

fact that E, =(1,E, , and is finite this means /4, (E,)<oohence V(E,)=0 hence 4 (E,)=0.
Finally, if V is only a locally finite measure, we can apply the same argument to the restriction of V to any
fixed ball B to show 4 (E, ﬁB) =0 hence K, (Ek) =0.

Using the same method of proof, we can give some refinements of Corollaries (1.1), (1.2), and (2.1). We assume
now that 4 is locally uniformly & — dimensional. It is easy to see that this implies

M << U ,Letft = U, + [L, be the decomposition of Theorem (2.1), and let £ be a set that supports £, . (The
fact that £/ contains no infinite atoms follows from a deep theorem of Besicovitch, see below.)

Theorem 2.3: Forany f € L' (du),
lrlilgr_' J-B,.(x)fd’uzo (10)

For 4t — almost every X in the complement of E.

Proof:
We may assume f =0 and /s finite, without loss of generality.

For each k let

A4, ={x ¢ E :forall &€>O0there exists r<&such thatr™ .[B ( )fd,u >1/k } . It suffices
Ay

to show 4L, (Ak ) = ( for each , since UAk is the subset of the complement of £ where (10) fails to hold.

Assume first that £ supports L, so L fdu=0. We apply the Besicovitch covering lemma to obtain a
k
i < i T <
covering of A by balls {Brj (xj )} such that ZXB,/ (xj)_cnxAk,g . Since 7; _k‘[Bv(Xj)fdﬂ we have

Yor She,{ | fduwhichshows p,(4,)<c[  fdu=0.

Now in the general case F supports M, , so let E2 be disjoint from E and support M, . The above

argument shows (10) holds £/ — almost everywhere on the complement of £U E,, so it suffices to show (10)

holds f£, — almost everywhere on E, . But the above argument also shows lim, r_xJ.B( : fdu, =0

M_— almost everywhere on F,, so it remains to show lim 7" IB " fdu, =0 for g1 — almost every

x € E, . But this is Theorem (2.2) for V = fd u, .
We can combine this result with Corollary (1.1) to obtain precise estimates for

limsup, ,, r_ij( : fdu in case (L is the restriction of £ to a set £ . We say that a set £ is locally
X

uniformly & — dimensional if the restriction of £ to E is locally uniformly & —dimensional. A powerful
theorem of Besicovitch [4] shows that every Borel set of infinite (£ measure contains subsets of arbitrary finite

M measure that are locally uniformly & —dimensional. (Besicovitch only proved the result for F_;_sets; the
extension to Borel sets is due to Davies [6].
Corollary 2.2: Let E be locally uniformly ¢ — dimensional, let 4 denote the restriction of M. to E | let

f € L'(d ) be non-negative, and set f (x)=0for x¢ E . Then

4
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27 f (x ) < limsup (2r) " J-Br(x)fd,usf (x) (11)

r—0
for 4, —almost every X.

Proof:
For x & E this is just (10), For #/ —almost every x € E we have (5) by Corollary (1.1), hence

limsup (27)" .[Br(x)fd,u=5x (4,x) f(x)

r—0
The result follows since it is known that 27 < Dy (£, x) <1 for 4 -almost every x € E (this result is also

due to Besicovitch).
Note that. In fact it is easy to show that every Borel set £ of finite, positive £/, measure contains locally

uniformly ¢ —dimensional subsets E, with i (E g) 2, (E ) — & forevery € >0.Indeed, let

F, ={xe E:supr’“,ux(Br(x)mE)Sk}

0=<r<1

It is easy to see that ﬂ is measurable and increasing with k, and each ﬂ is locally uniformly & —dimensional.
But /4 -almost every x€ E belongs to U, F since Dx ( /,l,x) <1 for y_-almost every x€ E , so

limk s (E{ ) =U, (E ) Of course, the constant of local uniform & —dimensionality tends to infinity

with k. Nevertheless, the result is interesting because sometimes we obtain estimates that are independent of this
constant.

These results give us control of m_f (x) for X outside the support of 4 . Indeed if
limsup, ,, 7" IB ( )|f| d 14 is finite then so is m,_f (x), since
sup r‘xf

B((x)|f|dlusg_xJB,.(x)|f|dﬂ'

e<r<l :
Thus if £ is as in Corollary (1.1) then m, f (x) is finite for £ -almost every X . More generally, if // is any
locally uniformly & — dimensional measure supported on a set E , then m_ f (x) is finite (£ -almost
everywhere on the complement of E . To see this, assume on the contrary that there exists a set £, disjoint from
E with u, (E 1) >0and m_f (x) =+oco on E|. By the above remarks there exists a locally uniformly
& —dimensional subset £, C E, with 0< g_(E 2) <oo.Let V= [, and consider the measure £/ +V and
the function f which is extended to be zero on Ez. Clearly (£ +V is locally uniformly & —dimensional, and
the maximal function m_f  formed with respect to £+ V is the same as the one formed with respect to £ . But

then Corollary (2.1) applied to g +V shows m f is finite almost everywhere with respect to V , a

contradiction.
We begin with a simple measure theoretic lemma valid for any O -finite measure /£ on a measure space for

which points are measurable and with atoms of bounded size. Write i = i, + [, , where [, is continuous and
M= ZCjé‘(x —a; ) , is discrete.
Lemma 2.1: Let [ be as above with ¢, < M for all j. Then for any f € L (d ) we have

J[x (e =2)r ()f O Wp(e)du(y) =3 (a)

Where x(x = y) denotes the characteristic function of the diagonal.

2
c

P )

Proof:

By Fubini’s theorem it suffices to verify the result for one iterated integral. Since f (x) =f (y)whenever
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x(x =) is different from zero we can write the integral as '[(f‘f(x)‘Z x(x= y)d,u(y))d,u(x). Doing

the y integration first we obtain
Jlr @) a({) dp(x)

2
¢’ , and this is finite because ¢ L SM and fe L.

Which equals Z‘ f (a J)
Now let 44 be a measure on R " which is locally uniformly zero dimensional, meaning

lu(B) <M (3
For any ball B of radius one. Clearly this implies that /£ is O -finite and satisfies the hypothesis of Lemma (2.1)

It is also easy to verify that if /'€ L’ (d) then fdp is a tempered distribution and so ( fdu)" is well-

defined as a tempered distribution.

. A 2 .
Lemma 2.2: Under the above hypotheses, ( fd )" € L, infact

[ |(rany (5)‘2 g <o for allt>0.

Proof:
By definition

((fdn)" . 0)=[plx) £ (x)du(x)

forany @€ W . Thus to show ( fd ,Ll)A el’ (6—1\5\ dé ) it suffices to establish the estimate

) ) 12
K(fdu)A p(£)e > <¢([lpreye™ df‘) (14)
forall e W . To do this we set ¢(§ ) ( ) 07244 , so that (14) becomes

() (&) ) <c ..

But we know that

( (&) e ) =¢[p(x e WVF o,

So that we need only show
”¢(x —y )e"‘y\zdyf (x)du(x) <c,|g, (15)

after some trivial changes in notation. We can restate (15) as follows: the operator T defined by

T¢ — e—t‘x‘z * ¢
Is a bounded operator from L’ (dx)toL’ (du) .
But now by the Riesz interpolation theorem it suffices to show that 7 is bounded from L' (dx) tol (d ,u) and

from L” (dx)toL” (dpt) . The second statement is trivial, since 7 maps L~ (dx) to continuous bounded

functions. For the first, we observe that (13) implies
2
J.e_t"‘_y‘d,u(x)SctM, (16)
And so

[[To(x)|du(x) < [[lo(y)e " dvap(x) <M [|p(v)]dy

Theorem 2.4: Under the same hypotheses as Lemma (2.2), we have
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nmﬂﬂj 2
t—0

(fdﬂ)A (f)re—tfzdé::ﬂ.n/zz‘f (a, )ZC (17
Proof:

A formal calculation shows
2|y (&) e ag
_ 2 m F(x) () e au (v)dé&
=2 [T () (VW a(x )dp(y) (1)

And as t — 0 the integrand tends to x(x = y)f(x)f(y) , so that (17) would follow from Lemma (2.1),

provided we could justify the interchange of limit and integral and the formal computation.
Therefore we begin by looklng at

[ 7 ()7 du(x)dp(y).

For ¢ < 1/4 the integrand is dominated by et ‘f (x)f (y)‘ , and we will show this belongs to L' (uxu).

This clearly follows if we can show that the operator S defined by Sf (x) = I Lind S (y)du(y) is bounded

on L’ (d U ) . But both statements are easy consequences of (16).

Thus we know that the integral in (18) is absolutely convergent, and the dominated convergence theorem applies

to establish
Iy 2/4r
lim (47) " [[ e f(Mu(x)du(y)

:(47r>‘””zf(aj)2

Finally to justify (18) we note first that if we assume f € I'nr (d U ) then all the integrals in (18) are

2
Cj’

absolutely integrable, so (18) is valid by Fubini’s theorem in (18) are general f € r (d ,Ll), we consider the
sequence f, (x)=f(x (|x| < k)inL1 NI (d ) which converges to f in r (du) . Then

lim(47) " [ £, (x m( ) u(x)du(y)

-n ey
=(47) " [[ e F()du(x)du(y)
by the argument above and the dominated convergence theorem, while
2
llmtn/ZJ- (f;{dﬂ)/\ (f)‘ e—t‘f‘zdf
—oo

=0 [|(rduy ()« ag

by the proof of Lemma (2.2).
Note that. The proof also shows

supt”[|(f du) (&) ¢ ¥ ag <] (x)f du(x)

0<r<1
Theorem 2.5: Let V be any complex measure on R " satisfying

> (M(Q (k) <o (19)

kel

Where Q (k ) denotes the cube of side length 1 centered at k , and write

V:ch5(x—a.)+vz,
Where V, is continuous. Then V€ ' (R ) vel:

loc

(R")and

7
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2
9

(20)

V(g)‘deEZZ‘cj

Where Q denotes the volume of the unit ball. Furthermore we have

sup—- [, (£ dg<e X (M@ () an

kel

1
i
e Qr" J’\f\Sr

Proof.
Define a positive measure I by ,U(A) =|V|(A)/|V|(Q(k)) for A QQ(k), so clearly (13) is satisfied.
Furthermore we have dV = fd i where ‘f(x)‘ =|V|(Q(k)) for x€ Q(k), so f€ r (du) vy (19).
Therefore Theorem (2.4) applies to dV = fd it , so

2 (o (£ I g 2 ‘ ‘2

lim** [ (&) & g =73 e,
and (20) follows by a familiar Tauberian theorem. Finally (21) follows from the note following the proof of

Theorem (2.4).
We may consider

V, _ ia.l
L) =D c. e +v, (&)
as a sum of an almost periodic function and some “noise” 172 (f ) , so that Wiener’s theorem says that Bohr

NE. .4 . . .
mean of |V| picks out the total energy of the almost periodic component. In Wiener’s version, where Vis a

finite measure, we have Z ‘c j ‘ < o0 50 the almost periodic component is uniformly almost periodic, and in fact

has an absolutely convergent Fourier series. In our version, the restriction on the almost periodic component is
that
2

>y ‘cj‘ <oo 22)

kel” a/EQ(k)

Which is considerably weaker, but not as weak as Besicovitch’s B ? class of almost periodic functions [1] of

which we only need
> ‘cj ‘2 <o (23)

However, there are uniformly almost periodic functions which do not satisfy (22), essentially because the left
side of (22) fails to be dilation invariant.

It would appear that the B * class of almost periodic functions is the natural class to consider for a generalization

.12 2. -
of Wiener’s theorem of the form: Bohr mean (| f +I’lOlS€| )= Z‘C /‘ since Besicovitch shows Bohr mean

(I7F)=e, | for
f(&E)—=Dce™ (24)

Under the assumption (23) alone.

We close this section with a brief discussion of the analogue of Wiener’s theorem for Hermite and related
expansions.We restrict ourselves to the simplest cases; there are clearly many generalizations possible in the
spirit of the other results.

-1/
On R' we consider the normalized Hermite functions hk (x) = (2kk !\/; ) v e_xz/ ‘H t (x) where
H, (x) = (—l)k e* (d/dx)k ¢ s the kth Hermite polynomial. Then ”hk ”2 =1 with respect to Lebesgue

measure, and

dx

(——22+x2jhk (x) = (2k+1) ()
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In fact the system {hk}::O is the complete eigenfunction system associated with the self-adjoint operator

(—(dz/dx2)+x2)on L (R’,dx )

For any finite measure fon R , let (k)= jhk (x)du(x)so Z a(k )is the Hermite expansion
for U .
Theorem 2.6: Let 1 = Z cjé'(x —a, ) + 1, where ,Ll’is a continuous measure. Then

. EPPAYEE T 2k _ )2 2

tllg;(l t?) ) plk) et == Z‘cj‘ (25)
and

1/2 _

lim N \ =V277"Y e ‘ (26)

Proof.

The basic generating function identify for Hermite polynomials is

> th )2 2xyt—(x2+yz)t2
ZO:Hk(x)Hk(y)zkk!:(l—tz) exp —E 27)
for 0 <t <1. Therefore
(=) Slatf
1/2
=[(1- "hk() u(x)dp(y)
2 2xyt—(x* +
_ 7 fexp ( ;yj ) (o))

Now (25) follows by the dominated convergence and Lemma (2.1) since the function

2 2 2xpt —(x* + y*) ¢
oo 2 )

ol {4t

is uniformly bounded by one and
) {O if x#y

limG, (x,y)= I i x=y

t—>1"
If we set € =1—1¢ we can rewrite this as

<2 N 2 ek -2 2
lim ' Z‘,u(k)‘ e =(27) Z‘cj‘
Then (26) follows by a Tauberian theorem with n =1, ¢ = 1/ 2.
The surprising feature of (26) is the power of N that occurs. A similar result holds in R "
More generally, we consider the self-adjoint operator —A4 + A|x|ﬁon R"  where A denotes the Laplacian and
ﬁ >1. Let {(Dk} denote a complete set of eigenfunctions with eigenvalues /'L1 < /'LZ <---arranged in non-
decreasing order. It is known that

A —(ak ) as koo, (28)

where
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2 p
and
I'(n/2+1)I'(y+1

(n/f+1)
(Actually one has the same result for R —A4 +V if V = |x|ﬁ +V,and V} is suitably small.)
For / a finite measure one R " write fI(k)= I% (x)du(x).
Theorem 2.7:
Let 4= z cj5(x —a; ) + 1’ where ,u' is a continuous measure. Then

N
i N AN A () = ?
lim N / ley(k)\ —bZ‘cj . (29
where
B 22 ( 7) B/(5+2) A,,/(,g+2)
T(n/B+1) (47)"” T (n/2+1)7"
Proof.

LetK (,x, y) = Ze_tﬂkgﬁk (x) o, ( y) denote the heat kernel for the operator —A4 + A|x|ﬂ. It is known that

-n/2  —|x—
the behavior as ¢ — 0 the same as the Euclidean heat kernel (47Zt ) / e =2/t

. nf2 Ak | A 2 -nf2 2
oS a0 ~(4m) S f o
By Lemma (2.1). But then (28) and (29) imply (30) by a Tauberian theorem.

, hence

3.Main Results
Theorem 3.1: For a constant ¢ and f* € L” (d i) where { <<, ,and {= ), + 4, E is regular while

M, (-) < oo such that

.1 2
lim—— [ |Fe)fdv =c[ |r[dn,

r—eo p!

Proof. with the upper density D_a (4,x)=1 and regularity of E gives

limsup [, [F@)fax <c[[)r[du,

n
and similarly if E isa C " manifold with lower density D a(,ua /i > X )=>c > 1 forany n =1 we have
n+

liminf

e pre

2
J.Br(y)|F(x )| dx stEldeﬂa

and if 44 <<l then

lim

r—>

1 2 2
F(x) dx =cJ. d
rn—a '[Br(y)| ( )| Elf| ﬂa
Corollary 3.1: Show that
A _ 2
(f du) er*(eVap)
Proof. From the definition

((Fd ) of )=[If O d pa(x)

we can establish the estimate

10
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]%

<c, [f ‘mﬂ)ze‘fﬁzdﬂ

K(fd 1 f (Ble ﬂ>

2

Now set /() = ¢(,3)e_5tw s0

Kmy’f v )e_;ﬁ> <e,(Jy o as)”

=< |1,

2
dy we show

1
1|8

But [f (Ble 2 |

] @)=, [ x—ye "

Uf £ @ =y)e ™y f (o pex)
<[] -] eeraute

=] [f (ﬁ)e”'ﬁzJ | (o)ld p(x)
AL

Corollary 3.2:

Let 4=, + I, , where I, is a continuous measure and [ ZZC j5 (x-a j) is discrete with {c j} is
j=0

monotone such that ‘c j‘SM ,for j 21. Then
&lawf et me
lim —— <

t—l % =0 (l—l)/z \/;

Proof. For any f € L”(d ft), Theorem (2.1) implies that J.J‘x lf (x )|2 |d,u(x )|2 = i‘f (g )‘2 C? where
Jj=0

. . . . o ki) . o
X 1is the characteristic function of the diagonal. Set | Ak )| = zk—k' , then the Hermite polynomial is given
by
2

= k2(x) th 1 2x%

Zk(k—):(l_tz)zelﬁ—t , 0<t<l

i 2 k!
we have

= |t 1*
i S
-5 (l—t) ) -

[(1=2) X b, ol af

<limx ?|e
t—1"

1 xR 5
=limzx zje 1+ |d,u|

t—>1"
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aj(t-1)

2
set ‘f (a; )‘ =e "' and using the Lebesgue deminated convergence Theorem and for any f* € L” (d i) we

have
JIrcoflaa =timYlf @) e;
j=0
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