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QUANTUM GRAVITY- THE EL DORADO - NAY A
NE PLUS ULTRA --THE FINAL FINALE

DR K N PRASANNA KUMAR, PROF B S KIRANAGI AND *PROF C S BAGEWADI

ABSTRACT: Motivation for quantizing gravity comes from the remarkable success of the quantum
theories of the other three fundamental interactions, and from experimental evidence suggesting that
gravity can be made to show quantum effects Although some quantum gravity theories such as string
theory and other unified field theories (or 'theories of everything') attempt to unify gravity with the
other fundamental forces, others such as loop quantum gravity make no such attempt; they simply
quantize the gravitational field while keeping it separate from the other forces. Observed physical
phenomena can be described well by quantum mechanics or general relativity, without needing both.
This can be thought of as due to an extreme separation of mass scales at which they are important.
Quantum effects are usually important only for the "very small”, that is, for objects no larger than
typical molecules. General relativistic effects, on the other hand, show up mainly for the "very large"
bodies such as collapsed stars. (Planets' gravitational fields, as of 2011, are well-described
by linearised except for Mercury's perihelion precession; so strong-field effects—any effects of gravity
beyond lowest nonvanishing order in @/c2—have not been observed even in the gravitational fields
of planets and main sequence stars). There is a lack of experimental evidence relating to quantum
gravity, and classical physics adequately describes the observed effects of gravity over a range of
50 orders of magnitude of mass, i.e., for masses of objects from about 10-23 to 1030 kg.We present a
complete Model which probably explains the positivities and discrepancies and inadequacies of each
model. Physics is certainly moving in to the subterranean realm and ceratoid dualism of consciousness
and subject object duality(Freud vouchsafed only at the mother’s breast shall the subject and object
shall be one),like a maverick trying to transcend the boundaries of space time, standing on the threshold
of infinity trying to ponder what lies beyond the veil which separates the scene from unseen?
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INTRODUCTION:

The following figurative representation is explains in best possible words the model that is proposed. A
consummate model encompassing all the theories is presented. The theories are there to be applied to
various physical systems which have different parametric representationalitiesof. Concept of “Theory”is
explained in previous examples. And the bank’s example of conservativeness of individual debits and
credits and the holistic conservativeness of assets and Liability is pronouncedly predominant in this case
also. We shall not repeat in the following the same argument. One more factor that is to be remarked is
that there are possibilities of concatenation of same theory with different theories. That the name
appeared twice in the Model should not foreclose its option for its relationship with others.

CLASSICAL MECHANICS AND NEWTONIAN GRAVITY:

MODULE NUMBERED ONE

NOTATION :

G,3 : CATEGORY ONE OF CLASSICAL MECHANICS
G,4 : CATEGORY TWO OF CLASICAL MECHANICS
G15 : CATEGORY THREE OF CLASSICAL MECHANICS

T3 : CATEGORY ONE OF NEWTONIAN GRAVITY
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T,, : CATEGORY TWO OFNEWTONIAN GRAVITY

T;5 :CATEGORY THREE OFNEWTONIAN GRAVITY(WE ARE TALKING OF SYSTEMS;LAW IS
THERE BUT IS APPLICABLE TO VARIOUS SYSTEMS) INVARIANT SU(3), THE PHYSICAL
PARAMETER STATES

QUANTUM MECHANICS AND QUANTUM FIELD THEORY:

MODULE NUMBERED TWO:

G,¢ : CATEGORY ONE OF QUANTUM MECHANICS
G, : CATEGORY TWO OF QUANTUM MECHANICS
G,g : CATEGORY THREE OF QUANTUM MECHANICS
T, :CATEGORY ONE OF QUANTUM FIELD THEORY
T,; : CATEGORY TWO OF QUANTUM FIELD THEORY

T,g : CATEGORY THREE OF QUANTUM FIELD THEORY

ELECTROMAGNETISM AND STR(SPECIAL THEORY OF RELATIVITY):

MODULE NUMBERED THREE:

G,o : CATEGORY ONE OF ELECTROMAGNETISM

G,; :CATEGORY TWO OF ELECTROMAGNETIC THEORY
G,, : CATEGORY THREE OF ELECTROMAGNETIC THEORY
T,, : CATEGORY ONE OF STR

T,, :CATEGORY TWO OF STR

T,, : CATEGORY THREE OF STR

GTR(GENERAL THEORY OF RELATIVITY )ANDOQFT(QUANTUM FIELD THEORY)IN
CURVED SPACE TIME(BASED ON CERTAIN VARAIBLES OF THE SYSTEM WHICH
CONSEQUENTIALLY CLSSIFIABLE ON PARAMETERYS)

: MODULE NUMBERED FOUR:
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G,, : CATEGORY ONE OFGTREVALUATIVE PARAMETRICIZATION OF SITUATIONAL
ORIENTATIONS AND ESSENTIAL COGNITIVE ORIENTATION AND CHOICE VARIABLES OF
THE SYSTEM TO WHICH QFT IS APPLICABLE)

G,5s : CATEGORY TWO OF GTR
G,¢ : CATEGORY THREE OF GTR
T,, :CATEGORY ONE OF QFT IN CURVED SPACE TIME

T,s; :CATEGORY TWO OF QFT(SYSTEMIC INSTRUMENTAL CHARACTERISATIONS AND ACTION
ORIENTATIONS AND FUYNCTIONAL IMPERATIVES OF CHANGE MANIFESTED THEREIN )

T,¢ : CATEGORY THREE OF QUANTUM FIELD THEORY

GTR(GENERAL THEORY OF RELATIVITY(THERE ARE MANY OBSERVES AND GTR IS
APPLICABLE TO BILLION SYSTEMS NOTWITHSTANDING THE GENERALISATIONAL
NATURE OF THE THEORY) AND QUANTUM GRAVITY

MODULE NUMBERED FIVE:

G, : CATEGORY ONE OF GTR
G,o : CATEGORY TWO OF QUANTUM GRAVITY

G3o :CATEGORY THREE OFQUANTUM GRAVITY(THE FINAL THEORY MUST POSSESS THE
SAME CHARACTERSTICS OF ITS CONSTITUENTS-IT CANNOT SIT IN IVORY TOWER
WITHOUT APPLICABILITY TO VARIOUS SYSTEMS)

T,g :CATEGORY ONE OF QUANTUM GRAVITY
T, :CATEGORY TWO OFQUANTUM GRAVITY

T;o :CATEGORY THREE OF QUANTUM GRAVITY

QFT IN CURVED SPACE TIME AND QUANTUM GRAVITY:

MODULE NUMBERED SIX:

G3, : CATEGORY ONE OF QFT IN CURVED SPACE AND TIME

G35 : CATEGORY TWO OF QFT IN SPACE AND TIME
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Gz, : CATEGORY THREE OFQFT IN CURVED SPACE AND TIME
T;, : CATEGORY ONE OF QUANTUN GRAVITY

T35 : CATEGORY TWO OF QUANTUM GRAVITY

T;, : CATEGORY THREE OF QUANTUM GRAVITY
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GTR AND OFT IN CURVED SPACE TIME

MODULE NUMBERED SEVEN

G3¢ : CATEGORY ONE OF GTR

G5, : CATEGORY TWO OF GTR

Gsg : CATEGORY THREE OF GTR

T;¢ : CATEGORY ONE OF QFT IN CURVED SPACE TIME
T;;, : CATEGORY TWO OF QFT IN CURVED SPACE TIME

T;g : CATEGORY THREE OF QFT IN CURVED SPACEAND TIME

(‘113)(1), (‘114)(1), (‘115)(1)' (b13)(1): (b14)(1): (b15)(1) (a16)(2): ((117)(2): (‘118)(2)
(b16)(2)1 (b17)(2)' (b18)(2): (azo)m; (a21)(3), (azz)(S) , (bzo)(”' (b21)(3)' (bzz)(3)
(az4)(4), (azs)(4)' (a26)(4), (b24)(4)’ (bzs)(4)» (bza)(4)’ (bzs)(s)» (b29)(5). (bso)(s)'
(azg)(S), (029)(5), (a30)(5), (a32)(6); (a33)(6)' (a34)(6); (b32)(6)’ (b33)(6)' (b34)(6)

are Accentuation coefficients

(aiz)®, (a1)®, (a15)@, (1)@, (b1)D, (bi5)D, (a16)®, (ai)P, (a1e) @,
(b16)®, (b1)@, (big) @, (a50)®, (a5)®, (a5)®, (b50)®, (b5)®, (b5,)®
(a5)®, (a35) @, (a36) @, (b3) @, (b35) ™, (b36)™®, (b33)®, (b39)®, (b30)®

(0’28)(5), (‘1%9)(5), (a’30)(5) ’ (aéz)(é): (a’33)(6): (a§4)(6); (béz)(ﬁ), (b§3)(6); (b§4)(6)

are Dissipation coefficients

CLASSICAL MECHANICS AND NEWTONIAN GRAVITY:

MODULE NUMBERED ONE

The differential system of this model is now (Module Numbered one)

dG 1 "
d_;3 = (a13)(1)G14 - [(a13)(1) + (a13)(1) (Ty4, t)]613
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dGM,

= (a14)MGy3 — [(ah)(l) + (aﬂ)(l)(TM, t)]Gl4

D1 = (a15) V614 — [(@1)D + (af5) D (Tya, )]G
T2 = (b)) DTy, — [(bi)® = (bi5) (G, )]Ti
Tt = (byy) DTy = [(b1)D = BV (G, D] Ty
dT15

= (bys) VT, — [(b15)(1) — (b)) (G, t)]T15
+(a}y) P (T4, t) = First augmentation factor

—(b5)V(G,t) = First detritions factor

QUANTUM MECHANICS AND QUANTUM FIELD THEORY:

MODULE NUMBERED TWO:

The differential system of this model is now ( Module numbered two)

d ’ "
ﬁ = (a16)?Gy7 — [(‘116)(2) + (als) P (Ty7, t)]Gm
d ! rn

617 = (a17)( )616 [(‘117)(2) + (a17)(2)(T17, t)]G17
d ’ "

18 = (0,6)P6Gy; — [(@le) @ + (i) D (Ty7, )] Grg
T30 = (b1) DTy, — [(bi6) @ — (bie) @ ((Gro), )] T
TL = (by7) DTy — [(B1NP = B P((Gro), )] Ty
dT18

= (b1g) PTy; — [(b1)® — (b15) P ((Gi0), 1) Thg
+(ay)®(T,,,t) = First augmentation factor

(b1) P ((G1o),t) = First detritions factor

ELECTROMAGNETISM AND STR(SPECIAL THEORY OF RELATIVITY):

MODULE NUMBERED THREE:

The differential system of this model is now (Module numbered three)

dG r "

2 (azo)( )G21 [(azo)(3) + (azo)(3)(T21, t)]Gzo
acG

22 (‘121)( )Gzo [(‘121)(3) + (a3’ )(3)(7'21: t)]Gz1
dG ’ "

22 (azz)( )621 [(‘122)(3) + (azz)m(sz t)]Gzz
deo

(bzo)(g)Tm - [(bzo)(g) (b )(3)(623: t)]Tzo
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darT 1 n

Tt = (by) Ty — [(05)® — (b5 P (G5 )Ty 23
darT 1 n

T2 = (b)) Ty, — [(03)® — (b5) P (G5 O]Ty 24

+(ayy)®(T,,,t) = First augmentation factor
—(by)®(G,3,t) = First detritions factor o5

GTR(GENERAL THEORY OF RELATIVITY )ANDOFT(QUANTUM FIELD THEORY)IN 26
CURVED SPACE TIME(BASED ON CERTAIN VARAIBLES OF THE SYSTEM WHICH
CONSEQUENTIALLY CLSSIFIABLE ON PARAMETERS)

: MODULE NUMBERED FOUR)

The differential system of this model is now (Module numbered Four)

dg? = (a20)¥ G5 — [(a’24)(4) + (ayy) W (Tys, t)]Gz4 27
D28 = (a25)® G — [(@s)® + (a55) @ (Tas, )] Gos 28
22 — ()P G5 — [(a36)® + (a5) P (Tys, ]G 2
et = (b)) DTys — [(b3)™® — (b3 @ ((G27),1)]To4 20
% = (b25)WTos — [(b35)® — (b35)P((G27), )] Ts 31
26 = (bye) VM5 — [(b36)® — (b36) P ((G27), £)] T 32
+(ay,) @ (T,s, t) = First augmentation factor 33
—(by)®((Gy7),t) = First detritions factor ”

GTR(GENERAL THEORY OF RELATIVITY(THERE ARE MANY OBSERVES AND GTR IS 35
APPLICABLE TO BILLION SYSTEMS NOTWITHSTANDING THE GENERALISATIONAL
NATURE OF THE THEORY) AND QUANTUM GRAVITY

MODULE NUMBERED FIVE

The differential system of this model is now (Module number five)

dG 1 n

d:s — (azg)(S)ng _ [(azs)(S) + (azs)(5)('l’29, t)]ng 36
aG ’ n

die — (azg)(S)ng _ [((129)(5) + (azg)(s) (Tyo, t)]ng 37
d , "

550 — (30)® G0 — [(@50)® + (a5)® (Ty0, )] Go 38
d ’ "

Za = (bg) Ty — [(bzg)(s) — (bss (5)((631), t)]Tzs »
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dT29

dT30

(b29)(5)T28 [(b29)(5) - (b )(5)((631) t)]TZ‘?

(bgo)(s)T29 [(b30)(5) - (b )(5)((631) t)]T30

+(ays)®(T,, t) = First augmentation factor

—(b3s)®((G31),t) = First detritions factor

QFT IN CURVED SPACE TIME AND QUANTUM GRAVITY:

MODULE NUMBERED SIX:
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The differential system of this model is now (Module numbered Six)

dG32

dG33

d634

dT32

dT33

dT34

= (a32) @G35 — [(a52) @ + (a52)© (T35, )] Gs,
= (a33) @63z — [(a33)© + (a55)© (T35, )] G35
= (a34)© G35 — [(a3)® + (a5) @ (T35, )] G34
= (b32) ©@Ts3 — [(b32)@ — (b52)©((G35), )] T2
= (b33)© T, — [(B3)® — (b3) @ ((G35), )] T3

(b34)( )T33 - [(b34)(6) - (b )(6)((635) t)]T34

+(a%,)© (T35, t) = First augmentation factor

GTR AND QFT IN CURVED SPACE TIME

MODULE NUMBERED SEVEN:

The differential system of this model is now (SEVENTH MODULE)

dG36

dG37

dG33

dT36

dT37

= (a36)"Gay — [(@36)™ + (a36) 7 (T37, )] Gz
= (az7) Gy — [(@3)7 + (a37) 7 (T37, )] G2
= (a36)"Gs7 — [(a36)? + (a36) " (T37,1)]G3g
= (b36)PTs; = [(b36) 7 = (b36) 7 ((G30), )| Ts6

(b37)(7)T36 - [(b37)(7) - (b37)(7)((G39) t)]T37
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59
T8 = (b3g) P Ta; — [(b3e) ™ — (b3) 7 ((G39), £)]Tig 60
+(asz6) (T35, t) = First augmentation factor 61
—(b36)™P((G30),t) = First detritions factor 62

FIRST MODULE CONCATENATION:

[ (@) P+ (@)D (T4, O] +(ale) @2 (Ty7, O] [+(a5) 33Ty, 0| ]

dG n n n
d;3 = (a13) MGy — |+(a24)(4'4'4'4')(T25, t)”+(a28)(5'5'5'5')(T29’ t)H+(a32)(6'6'6'6')(T33,t)‘ Gi3
‘+(‘1’3'6 (7)(T37:t)|
[ (1) P +(af) D Ty, ||+ (@) 2 (T, ) || +(a5) B3 (T, B)| ]
dG ! n rn
d_;‘} = (‘114)(1)013 - |+(aés)(4'4'4'4')(T25» t)| +(a29)(5'5'5'5') (T2, t) ||+(a33)(6'6'6'6') (Ts3, t)| G1a

| +(a4) D (Ts5,0)|

[ (@19 [+ @)D Ty, O][+(@) O (T, O|[+ (@) O Ty, 0] |
dg% = (als)(l) 614 - | +(a£,6)(4'4'4'4') (TZSI t) H +(aé’0)(5'5'5'5') (ng, t) ” +(a’3’4)(6.6,6,6,) (T33’ t) ‘ Gls
[F(a3)® (T5,,0)]

Where I (a}3) D (Tyy, t) | I (a5) D (Tyy, t) |,|(a’1’5)(1)(T14, t)l are first augmentation coefficients for category 1, 2 and 3

|+(a;’6)(2'2') (Ty70t) I | +(aly) @) (T,,, t)l, | +(als) ®?) (T, t) | are second augmentation coefficient for category 1, 2 and 3

|+(a;’0)(3'3') (Tyy, t) | | +(ay) B3 (Tyy, ) |,|+(a§’2)(3'3'>(T21, t)l are third augmentation coefficient for category 1, 2 and 3

|+(a;;)(4'4"*"*') (Tys, t)l , |+(a§’5)(4'4'4'4') (Tys, t)| , |+(a§’6)(4'4'4'4') (Tys, t)| are fourth augmentation coefficient for category 1, 2
and 3

|+(a;’8)(5'5'5'5') (Tyo, 1) |,|+(a’2’9)(5'5'5'5'>(T29, t) |,|+(a§’0)(5'5'5'5') (Tyo, t)| are fifth augmentation coefficient for category 1, 2 and
3

|+(a§’2)(6'6'6'6') (Ts3,t) | |+(a’3’3)(6'6'6'6') (Ts3, t)| , |+(ag’4)(5'5'5'5') (Ts3, t)l are sixth augmentation coefficient for category 1, 2 and
3

|+ (@4 (T35, 0|+ (@4) D (T35, O | +(a4) P (T55, ) IARESEVENTHAUGMENTATION
COEFFICIENTS

b1 V=B 6, O] [~05) T (Gao, D |- (05) ) (G2, 0)|
93 = (by) Ty, - [ [ B3 44 Gy, ]| = (b3) 5555 (G0, D |- (b5) ©59) (G5, | | Tys

dat

| = (657 (Gso, )|
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[ (b1 D=1 DG, )] [~ () ?* (619, 8)||- (B *¥ (G5, D)
drT: 17 17 "
1 = (by) VT3 — I_(bzs)(4'4'4'4') (Gy7,0) ||‘ (b36) 55 (G4, 1) I | - (b33)©**%) (Ggs, t)l T4

a
|_(b§’7)(7')(639, t) |

——

[ (i) [~ G, 0] [~ (01) 22 (610, D] |- (5 B (63, 0) |
(b15) DTos = | |= (b3 @44 Gy, )] |- (30) 559 (G31, 1) || - (b50) @45 (G35, 1) |
| = (04) 7 (Gso, )| |

dTlS _
at

Tl 5

Where I —(bDG, ), | -G, t) ,I—(b{’s)(l)(G, t)| are first detritions coefficients for category 1, 2 and 3

’

|—(b{’6)(2'2')(619, t) I,I—(b;;)(z'z')((}w, O),| - (b)) (G0, t)| are second detritions coefficients for category 1, 2 and 3

’

|—(b§’0)(3'3')(623, t) I,I—(b;’1 B3 (Gys, )], | = (B55) 33 (G, t) | are third detritions coefficients for category 1, 2 and 3

’

[= (b5 “**) (G, D)], |- (by) “**9(G,,, )
3

—(by) @44 (G, t) | are fourth detritions coefficients for category 1, 2 and

’

[=(b5) 5559 (Gyy, )], [~ (b9) 5555 (Gay, )], [~ (b50) 5555) (G4, )| are fifth detritions coefficients for category 1, 2 and 3

I—(b;’z)(ﬁ“fﬁf) (Gss, t)l ,I—(bég)(ﬁ“ﬁ')(cgs, t)l , |—(b§;)(6'6'6'6')(635, t)| are sixth detritions coefficients for category 1, 2 and 3

| = (65) 7 (Gao, ||~ (556) 7 (G3o, D) ||~ (b3) 7 (G30, 1) |ARE SEVENTH DETRITION
COEFFICIENTS

bis) V| = (b )P (G, )| |- (1) %2 (G1o, V) ||~ (b3o) B3 (Gs, t °3

dTys _ (b )(1)T ( 15) ( 15 ( ) ) ( 18 ( 19 ) ( 22 ( 23 )
=~ Wis 14 — 15

| = (b 44 (G, 1) || = (B50) B555) (Gaa, £) || = (b34) ©0°) (Gas, )|
Where | —(b)D (G, 1) I,I—(b;ﬁ,)(“((}, t) I — (b)) D (G, 1) l are first detrition coefficients for category 1, 2 and 3 64
|—(b{g)(2'2')(619, O], [= b)) %2 (616, 1) |,| = (Ble) @2 (G, t)| are second detritions coefficients for category 1, 2 and 3
|—(b§’0)(3'3')(623,t) =By B3 (G, )|, | — (b (3'3'>(623,t)|are third detritions coefficients for category 1, 2 and 3
|—(b§;)(4'4'4'4')(627, O], |=(bys) 4454 (G, )|, | = (bys) @444 (G, ) | are fourth detritions coefficients for category 1, 2 and 3
[=(b5s) 5555 (Gay, )|, [~ (b39) 5555 (Gay, )], [~ (b6) 5555 (G4, )| are fifth detritions coefficients for category 1, 2 and 3
|—(b§’2)(6'6'6'6')(635, t)| , |—(b§’3)(6r6'6'6')(635, t)| , |—(b§2,)(6'5'5'5'>(635, t) | are sixth detritions coefficients for category 1, 2 and 3
SECOND MODULE CONCATENATION: 65

[ (@ie)@|+(@fe) P (17, )| +(as) ) (T, )| [+(aho) 23 (T, )] ] 66
dG
28 = (1) D61y — | [+(@f) FHH (Tys, O || +(age) 55559 (T30, )| [ +(a5) €059 (T3, )| | G

|[+(ase) 77 (T7, £)]

148



Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Ly
Vol 7, 2012 II E
[ (@) @[+ D (T, || +(@i) Y (T, O] [+(ag) 332 (T, £)| 67
ac " " "
d:t” = (a;7) PGy — |+(a25)(4'4'4'4'4) (Tys, t) l | +(aly) 55555) (Tyo, t) l | +(alfs) 000 (Tys, t)| Gy
_ |+ (@) 77 (T35, 0)] |
(ate) @[ +(@fe) D (Ty7, O] [+(afs) ) (Tya, ) || +(a5) 2D (T, )| 68
dG n n n
dig = (a15)PG,; — ‘+(a26)(4'4'4'4'4) (Tzs, t)‘ +(agp) #5559 (T, 1) ‘|+(a34)(6'6'6'6'6)(T33, t)| Gig
_ |+(ae) 77 (T35, 0)] |
Where | +(a)) P (T, t) ,|+(a;’7)(2)(T17, O, +(@ls) @ (T, t) | are first augmentation coefficients for category 1, 2 and 3 69

’

[+(@af) ) (T, )|, [+ (@) ) (T, ©)

+(a}s) (T, t)| are second augmentation coefficient for category 1, 2 and 3

[+(a30) %33 (11, 0)|, [ +(a5) 32 (T, 1),

+(ay,) B33 (T, t) | are third augmentation coefficient for category 1, 2 and 3

|+(a’2’4)(4'4'4'4'4) (Tys, t) H +(ays) D (Tys, 1) || +(ays) @444 (Tys, t)l are fourth augmentation coefficient for category 1, 2 and

3

b

|+(a’z’8)(5'5'5'5'5)(T29, t) | |+(a;’9)(5'5'5'5'5>(T29, t)| . |+(a’3’0)(5'5'5'5'5) (Tyo, t)| are fifth augmentation coefficient for category 1, 2 and
3

70
|+(a’3’2)(6'6'6'6'6) (Ts3,t) | |+(a§’3)(6'6'6'6r6> (Ts3, t)l , |+(a§’4)(6'6r6'6'6) (Ts3, t)| are sixth augmentation coefficient for category 1, 2 and
3
|+(a40) 77 (Ts7, 0| +(a4,) 77 (T35, O | +(a4) 77 (Ts, ) JARE SEVENTH DETRITION 71
COEFFICIENTS
(i) P~ (bie)® (Gr, )] [ (b5) TG, )] |- (b30) #3363, )| ] &
dT " I 1
d? = (b16)(2)T17 - |—(bz4)(4'4'4'4'4)(627; t) l | - (bzs)(s's's's's)(Gm; t) H— (b32)(6'6'6'6'6) (G35, t) ’ Ti6
| = (b3)77 (Ga, )] _
BN D[~ B P (619 )] [~ BID IV, )]|- (bE) 3G )] | 3
dT I n rn
= 0 PTig = [ o) 44449 (G, 0)|| - (b56) 55559 (G, )| - (B5) @059 (G, D] | Tar
| = (b3 77 (Ga, )] _
(b10) [~ i) P (619, [~ (BID VG, )] |- (b) #3396 1) | 4
dT n n rn
d—? = (bIS)(Z)TU - |_(b26)(4'4'4'4'4)(027, t) l | - (b3o)(5'5'5'5'5)(631, t) H‘ (b34)(6’6’6’6’6) (G35, 1) | Tig
| = (b36)77 (Ga, )] _
wherel — (b)) P (Gyo, t)| ,|—(b’1’7)(2>(G19, t)| | —(b15) @ (Gyo, t)| are first detrition coefficients for category 1, 2 and 3 75

[~ (6, 0], [~ b1 (6, 0)

— (b)Y (G, t)l are second detrition coefficients for category 1,2 and 3

’ y

|—(b§5)(3'3'3')(623,t) —(by)B33) (G, 1) ,I—(b;’z)(3'3f33(623,t)| are third detrition coefficients for category 1,2 and 3

’

|—(b§;)(4'4'4'4'4)(627, t)H—(bg’s)(“""“""‘*)(cn, )| — (b)) #4496, t)| are fourth detritions coefficients for category 1,2 and 3

b

|—(b§§)(5'5'5'5'5)(631, t)l ,|—(b;'9)(5r5r5r5r5>(c;31, t)| . |—(b§’0)(5'5'5'5'5) (Gs1,0) I are fifth detritions coefficients for category 1,2 and 3
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|—(b§’2)(6'6'6'6'6)(635, t)H—(bg’g)(6'6'6'6'6)(635, t)| . I—(bgﬁl)(ﬁ'6'6'6'6)(635, t)| are sixth detritions coefficients for category 1,2 and 3

|—(b§'6)(7'7)(639, t) | —(b36) 77 (G30, t) | —(b36) 77 (G3q, t) ‘are seventh detrition coef ficients

THIRD MODULE CONCATENATION:
dGzo _ 76
dt

(a30)®|+(a50) P (Ta1, O || +(a1e) @22 (Ty7, ) || +(ais) W) (114, )|

(a20) PG — | [F@EDH 44D Ty, 0] [+(a5) 555555 (T, )] [+(a) 0055 (T, €) Il Gao

| | +(a%s) 777 (T35, 1) | |
(@)@ +(@5) D (T30, ) ||+ (@D P22 (117, ) || + (@) VD (T, )] ] "
dG ! n n
Tt = (@20 Go0 = |[+(age) @444 (Tyg, 1) || +(ag) 355559 (oo, )] | +(ags) 4559 (T35, 1) || G
| [+ (@) 777 (T7,8)| _
(a32) @ +(a) @ (T1, D || +(a) 222 (Ty7, ) || + (@) S (T3, )] ] 8
dG 1 ! !
d:Z = (azz)(s)Gu - |+(a2'6)(4'4'4‘4'4'4) (Tys, 1) | +(aéo)(5'5'5'5'5'5) (Tzq,1) ‘ ’ +(a3’4)(6'6'6'6'6'6)(T33, t)| Gy,
| [+ (@) 777 (Ty7, £)| _
79
|+(a’z’0)(3)(T21, t) I, | +(ay)®(Tyy, ) [, | +(ay,)® (Ty,, t)l are first augmentation coefficients for category 1, 2 and 3
|+(a’1’6)(2'2'2)(T17, t) I +(al,)@22(T,,, t)l, +(als)#*2(T,,, t)| are second augmentation coefficients for category 1, 2 and 3
|+(a’1’3)(1'1'1') (T1ar t) |,|+(a’1’4)(1'1'1') (Tya, ©) ], +(ahs) BV (T, t)l are third augmentation coefficients for category 1, 2 and 3
|+(a’2’4)(4'4'4'4'4'4) (Tys, t)l ,|+(a’2’5)(4'4'4'4'4'4) (Tys, £) l +(aye) #4448 (Tyg, 1) | are fourth augmentation coefficients for category 1,
2and3
80
|+(a’2’8)(5'5'5'5'5'5)(T29, t)\,|+(a’2’9)(5'5'5'5'5'5) (T, )|, |+ (aso) ©55555) (Tpo, t) I are fifth augmentation coefficients for category 1, 2
and 3
|+(a’3’2)(6'6'6'6'6'6) (Ts3,t) |,|+(a’3’3)(6'6'6'6'6'6> (Ts3,t) ||+ (ak,) ©66666) (T, t)| are sixth augmentation coefficients for category 1, 2
and 3
|+(ag’6)(7-7-7-)(T37, t) | +(ay,) 77 7(Ty,, t) | +(a%) 777 (Ty,, t) ‘are seventh augmentation coefficient 81
AT20 _ 82
dt
[ 050)®P[=(030)® (623, O]~ 056777 (610, O)| |- (1) V(60| ]
3 " " "
(byo)®Tyy — | |—(b24)(4'4'4'4'4'4)(027, t)H_ (by) 55559 (G, ) H_ (b11,) (666556 (G, t)| |T20
| - (05777 (G50, 0)] |
4T21 _ 83
dt
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[ (b3 @[ = (B3P (63, D] |- (B15) 2> (610, 0| [~ (B3 (G, 1) | }
(b21)VTo0 | [= by ) #4449 (G5, 0)| |- (b5e) ©55559 (Gay, 0) | |- (b55) ©O*5F (Gas, 1) |Tas

| I‘ (b5) 777 (G0, 1) | |
dTzz _ 84
dt

[ 5@ =05 (623, 0| |- 1) %22 (Gro, D ||- B1) (G0 ]
(b22) Ty — [I—(b;g)“"*-‘*"*-‘*"*)(cn, D)]|- (30) 555559 (Gay, 1) |- (b5) @555 (Gas, 1) ‘ Ty2

|- (05777 (630, D)

|—(b§’0 B (6,3, 1) I ,|—(b§’1 B (G, )| | = (5) P (Goa, t)| are first detritions coefficients for category 1, 2 and 3 85

’

—(by7 (222) (Gy9,t)

| — (b)) 22D (G, 1), = (i) %22 (G, t) | are second detritions coefficients for category 1, 2 and 3

=BG, 0)

=) (6, 0],

—(bi)ALD(G, t) | are third detrition coefficients for category 1,2 and 3

(| R O L ()
2and3

—(by @449 (G, t)| are fourth detritions coefficients for category 1,

b

[=(bs) 555559 (Gay, )| | = (b5e) 555559 (G, )
and 3

—(byy) 555555 (G, 1) | are fifth detritions coefficients for category 1, 2

’

b

|=(b5,) 655909 (Gag, ) || = (bs) 5559 (G4, 1)
and 3

—(by,)(666666) (G, t) | are sixth detritions coefficients for category 1, 2

|— (b3) 777 (G, t) | - (b)) 777D (G0, t) |— (b5) 777 (G349, t) |are seventh detritions coefficients 86

FOURTH MODULE CONCATENATION:

[ (@5) @[ +(ay) @ (Tys, O |[+(a5)55) (T, ) || +(af) @ (T3, 0) 87
dG,, ,
gt = (@005 = [+ DT, ||+ (@) 22 M, O]+ (050) 25D Ty, )] | G
| | +(a§’6)(7'7'7'7') (T57,t) | J
[ (@55) @] +(ays) P (Tys, O |[+(a50) &5 (Tao, D) || +(as) @ (T3, £) 88
dG n n n
dtfs = (‘125)(4)624 - ‘+(a14)(1‘1'1'1)(7’14, t)| +(aiy (2'2'2'2)(T17, t)H+(a21)(3’3’3’3)(7’21,t)‘ Gs
| [+(ay) 7777 (T5,, )| |
[ (@56)®|+(ahe) @ (Tys, O |[+(a) &%) (Tpo, )| | +(as) @ (Ts5, 0| | 89
dgzs = (a0) @G s — ‘+(a1’5)(1'1'1'1)(T14, t)H"‘(ai's)(z'z'z'z)(Tl%t)‘|+(a’2'2)(3'3'3'3)(T21't)| Gy
t
’+(aé18)(7,7,7,7.) (T37’ t)‘ Jl

90

Where [(a3)® (Tys, 0|,[ (a55)® (Ty5, 0

(aye) @ (Tys, t)l are first augmentation coef ficients for category 1,2 and 3

y
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[+(a%s) 55 (Tyo, O], [+(as) 5 (T, £)

+(aty) &%) (Tyo, t) | are second augmentation coef ficient for category 1,2 and 3 91

’

|+(a§’2)(6'6') (Ts3,t) |,|+(a’3’3)(6'6') (Ts3, )|, | +(ak) 0 (33, t) | are third augmentation coef ficient for category 1,2 and 3

’

[+(afy) M0 (T, O] [ +(af) M0 (T, 0)
3

+(a}s) DT, t)| are fourth augmentation coefficients for category 1, 2,and

b

I

| +(a{'6)(2'2'2'2)(T17, t)

+(a£l7)(2,2,2,2) (T17, t)

+(ayg) ®#2A(Ty,, t)| are fifth augmentation coefficients for category 1, 2,and 3

b

[+(a5) C*33 (T, O] [ +(a§) B339 (T, 1)

+(ay,) 3333 (T, 1) I are sixth augmentation coefficients for category 1, 2,and 3

I

|+(a§’6)(7'7'7'7')(T37, t) | +(aye) 7777 (Ty,, t) I +(a%s) 7777 (Ty,, t) |ARE SEVENTH augmentation
coefficients

92
" [(30)@]=(b3) D (627, O] [~ (b5 % (61, ) || - (1) (G5, )] | %
24 ’ ’ 1]
2= (0:)WT5s = | =01 G, 0] [~ (1) 22 (61, )| - (050) 23 (G, O] [Tos
| =5 7777 (o, £)| _
- [(155) @[ = (05 (G27, O] [~ (b5 &%) (G3, ) || - BF) P (G35, D) ] 94
25 rn rn n
G = B29)PTos = | [=b1) DG, 0] [~ B ®?22 (Gro,0) || - B5) 3 (Gas, D] [Tes
| ‘ _(bé’7)(7'7'7'77") (G3o, 1) ‘ i
" [ (b36) [ =05 (627, O] [=(050) ** (G, D) |- B3 (G55, | %
26 ’ " 1
2= (02)Tos = | [~ (b 1V, O] [~ (i) 222 (G0, D)][= (052) 4 (63, 8| | s
| =5 7777 (G0, 0| J
Where I—(b;ﬁl)(‘”(Gn, t)|,|—(b§’5)(4)(627, v, —(bg’s)(“)(Gn,t)lare first detrition coef ficients for category 1,2 and 3 96
|—(b§’8)(5'5')(631, ), | = (b)) (Gsq, 1) I = (B5) 5% (G, t)l are second detrition coef ficients for category 1,2 and 3
|—(b§’2)(6'6')(635, O], |=(b55) 68 (Gas, ) |, | —(b5s) 6 (G5, t)|are third detrition coef ficients for category 1,2 and 3
=@ Y6, 0} [ =) VG, 0], |- (i) A6, 6|
are fourth detrition coef ficients for category 1,2 and 3
=1 222 (G1o, D] [~ (b1 ??22 (619, O} | = (1) #2261, 0) |
are fifth detrition coef ficients for category 1,2 and 3
[- B50)®%9) (635, 0| [- 03339 (G, D} |- (052) 533 (G5, 1)
are sixth detrition coef ficients for category 1,2 and 3
| —(b36)77777 (Gao, )| = (b5,) 77777 (Go, )|~ (b35) 77777 (G o, t) | ARE SEVENTH DETRITION
COEFFICIENTS
97
FIFTH MODULE CONCATENATION: 98
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! n n n 99
[ (@50)®]+(ahe)® (Tao, || +(@h) “*) (Tys, )| +(a4) 5O (T, )| ]
dG n n n
djg = (a26) ¥ G20 — “"(‘113)(1‘1‘1‘1‘1)(7114' t)‘ +(a16)(2,2,2,2,2)(7~17,t)H_|_(a20)(3,3,3,3,3)(T21, t)| G2g
[+(as) 777 (155, 0)|
] [ (a0)®)|+(as) ® (To, ) || +(a5e) **) (Tys, ) || +(a4s) @09 (T3, )| ] 100
G29
2= (020) @ Gag = | [+(af) 1D (T, O] [ +(@) 22225 (117, 0) | +(a5) 2339 (151, )| | Gao
| [+(@3) 7777 (T, 1) _
[ (a30)®|+(a40)® (Too, ) || +(aye) *) (Tys, O) || +(a5) ©*O (Tys, 1) ] 101
dG n n rn
d:O = (a30)® G, — |+(a15)(1'1'1'1'1)(T14, t)“+(a18)(2'2'2'2'2)(T17,t)“+(a22)(3'3'3'3'3)(T21, t)| Gso
| [+(a3) 77777 (T35, )] _

’

Where | +(ae)® (Tyo, t)

,I +(a55) B (Tyo, )|, | +(ahe) B (Tyo, t) I are first augmentation coef ficients for category 1,2 and : 102

’ ’

And [+(a3)** (T35, £)

+(ags) 4 (Tys, £)

+(ays) 4 (Tys, t)| are second augmentation coef ficient for category 1,2 a

[ +(a5,)©9) (Ty5, 0|, | +(a5) @59 (T, 1),

+(ayy) ©9 (Tys, 1) I are third augmentation coef ficient for category 1,2 and :

b

| +(a'1'3)(1'1'1'1'1)(T14, £) |' | +(a1114)(1,1,1,1,1) )
and 3

+(afs) D (T,,, t)l are fourth augmentation coefficients for category 1,2,

[+(afs) 222D (T, )| | +(aj) @222 (T, 0)
3

+(als) 2222 (T, t) | are fifth augmentation coefficients for category 1,2,and

b

| +(a'2'0)(3'3'3'3'3)(T21, ) H +(a§’1)(3'3'3'3'3) (Tyy,t)

+(ay,)®3333)(T,,, t)l are sixth augmentation coefficients for category 1,2, 3

b

103
FOR O TTAG) —(p" Y 44) 11 1(6,6,6) 104
] (D36) | = (b)) (Ga1, )| [~ (03 4 (G5, O || - (B3 59 (G35, )|
T.
o = 0209 = | |-GV G, )] [~ ) *2222 (Gro, ) || - (b)) (G, 1) | T
| (=63 77777) (Go, )] |
. [ (b30)®|=(039)P(G31, O] | = (B5) ) (G,7, )] |- (053) €09 (G35, )| ] 105
T.
o = 02) s = | [~ () MG, O] [~ () #2222 (Gro, )| - B) 3329 (G, 0)| | Tas
_ [ =3 T7777) (Gag, )] _
; [ (030) = (b5)® (G31, )| [~ (b3 (G, O)||- (B35 (G35, 1) | 106
T.
o = 00Tz = | |=GI) DG, 0] [~ Big) 222 (Gr, 0)|[ - (b) P2 (G, )] | o
| |=(b4) 77777 (Gag, 1) |
where |— (by) P (G3y, 1) ,I—(bé’g)(s)(Gm, t)l = (b5 B (G, t)| are first detrition coef ficients 107

for category 1,2 and 3

|—(b§’4)(4'4')(627, O], |=(bys) 4 (Gyy, t) ,I—(bé’s)(""")(Gn, t)| are second detrition coef ficients for category 1,2 and 3

’

|—(b§’2)(6'6'6)(G35, t)l,|—(b§’3)(6'6'6)(635,t) —(by,)©59) (G5, t)| are third detrition coefficients for category 1,2 and 3

’
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|—(b1”3)(1'1'1'1'1)(6, ) |,|—(b{’4)(1'1'1'1'1) G, 0

,I—(bi’s)(l'l'l'l'l')(G, t)| are fourth detrition coefficients for category 1,2, and 3

|—(b1”6)(2'2'2'2'2)(619, t) H — (b)) @222 (G, o, t) || —(byg) 2222 (G0, t) | are fifth detrition coefficients for category 1,2, and 3

b

|— (b)) 33333 (G, t) \, l— (by)B3333) (G, t)|,|— (by,)B3333) (G g, t) I are sixth detrition coefficients for category 1,2, and 3

SIXTH MODULE CONCATENATION 108
ac 109
32 6)
dr (as2)*™G33

|+(ai'g)(l’l’l’l’l’l)(TM, t) ||+(a1/6)(2,2,2,2,2,2) (Ty7,t) I | +(ayy)@33333)(T,,, t)|

(@42) @ +(a4) @ (Ta3, O || +(aye) 5% (To, D) ||+ (@) @+ (Tys, £) | }
| 632

| [+(a3)77777 7 (T, 1) |
dGss 110
dt = (a33)(6)632
| (@) @) Ty, 0] |+ (@50) 5 (T, O] [+ (@) 0 (Tp5, 0] ]
— | @@ 10T, || +Hafy) @222 (T, O] [+(a5) G232 (T, 0) || G
| +(aé’7)(7'7'7"7'7'7') (T35, t) |
dGs, 111
dt = (a34)(6)G33
[ (@)@ +@) O (Ta, O|[+(a50) S5 (Tyo, )| | +(a5) 4 (Tp5, 0| ]
- || +(a}) LI (T, ) | +(aly) 22222 (T, ) H +(ay,)®33333)(T,, t) || Gas
[ [+(a3) 777777 (T30, 0)| }
|+(a’3’2)(6) (T33, t)\,|+(a§’3)(6) (T3, t)\,|+(a§’4)(6) (T3, t)| are first augmentation coef ficients for category 1,2 and 3 112
|+(a’2’8)(5'5'5)(T29, t) | +(ay) 55 (Tyo, t) I, +(ay) 555 (T,o, t) | are second augmentation coef ficients for category 1,2 an
+(ay) @ (Tys, t) || +(ays) 44 (Tys, t) || +(ays) @4 (Tys, t) | are third augmentation coef ficients for category 1,2 an
5
|+(a’1’3)(1'1'1'1'1'1)(T14, t) |, | +(al) LD (T,, )] [+ (ays) PV (T, t)| - are fourth augmentation coefficients
+(al)@22222 (T, )| |+(al,)®22222)(T,,, t) | |+ (a)y) @?222D(T,,, t)| - fifth augmentation coefficients
| 16 17 17 17 18 17 g
|+(a’2’0)(3'3'3'3'3'3)(T21,t)l,|+(a§’1)(3'3'3'3'3'3)(TZI, 318 +(a§’2)(3'3'3'3'3'3)(T21,t)| sixth augmentation coefficients
|+ (a46) 777777 (T, ) ||+ (a) 777777 (Ty5, 1) ||+ (aie) ?77+777) (T35, £) | ARE SVENTH
AUGMENTATION COEFFICIENTS
113
! n n 1 114
d [ (b32)(6)‘ _(b32)(6) (Gss, 1) H— (bzs)(s's's)(Gsp t) H— (bz4)(4'4'4')(027, t)| ]
T32 174 17 "
= (02)Tag = || = (b) 11206, )| |~ (b) #2222 (Gro, D] [ (b5) 4239 (Ga, )| T

|- (b4) 777777 (G5, 0))

154



Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Ly
Vol 7, 2012 NS'E
r (b35)©| = (b52)@ (G5, 1) |- (b36) 59 (G50, B)||- (b36) 4+ (G5, B)| ] 115
33 = (6) —_— n n rn
ar = B33) 0 Ts2 || = (b)) A0 (G, 1) | [ (b)) @222 (G, £) |- (b51) B33339) (s, 1) || To3
- (b§’7)(7'7'7"7'7'7)(639‘ t)
" (63| = (B3 © (G35, D) || (B5) 5% (a1, )| |- (b)) “*4)(Gor, )] ] 116
34 n n n
2= (03)OTsg = [ =1 120G, 0| [~ (bip) #2222 (Gro, D) || - (b52) O23239) (Gys, )| T
|- (B5) 777777 (G, 1))
|—(b§’2)(6)(635, t)l,l—(b§’3)(6)(635, t)| ,I—(béﬁ,)(ﬁ) (Ggs,t)l are first detrition coef ficients for category 1,2 and 3 117

|—(b§’8)(5'5'5) (G31,1) |,|—(b§’9 655 (Gay,t) | ,I—(bé’o)(s's's)(Ggl, t)l are second detrition coefficients for category 1,2 and 3

|—(b§’4)(4'4'4')(627, t) | ,|—(b§’5)(4'4'4')(627, t) | ,|—(b§’5)(“""4')(627, t)| are third detrition coef ficients for category 1,2 and 3

|—(b{’3)(1'1'1'1'1'1) @G,t) |,|—(b{ﬁl)(l'l'l'l'l'l)(G, t)|,| —(bj)ALLLLD (G, t)| are fourth detrition coefficients for category 1, 2, and 3

|=(b6) 222222 (G, )], = (b1) #*222D (G, 1)
3

—(bi)®22222(G,,, t)l are fifth detrition coefficients for category 1, 2, and

b

|— (byy) 333333 (G, t) l, l— (by)B33333)((G s, t) |,|— (by,) 333333 (G, t)l are sixth detrition coefficients for category 1, 2, and
3

|- (b5 777777 (G0, )| - (b36) 777777 (6o, )| - (b36) 777777 (G, ) |ase sevenTH DETRITION
COEFFICIENTS

118
119
SEVENTH MODULE CONCATENATION:
dGss _ 120
dt
(a36)(7)G37 -
(@@ T, 0|+ [@) VT O] + [(@50)? (T, 0] +| [(@2) 7T, 6] +
@)W 0] + [@)7 0] +[@) DT, 0]| 656
121
dc ' . z z 122
;=(a37)<7>636—[(a37)<7>+|(a37)(7><T37,t)| + |(@)? T )| + (@) 7 T )|+
o v \(7) " "
(@) (T t)| + [(azs) " (Ts, ) +|(a33)(7)(T33,t)|+|(a29)(7)(T29,t)| ]G37
dGss _ 123
dt
(‘138)(7)637 - 124

[(aég)(7)+ (a30) " (Ts7,0)| + ’(ais)(7)(T14;t)| + |(a;2)(7)(T21,t)+ |+(a;8)(7)(T17:t)’ + 125
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(age)(7)(T25't) + (a;4)(7)(T33,t) + (a;o)m(ng, t) ] Gsg

dTse
dc

(b36)PTs; = [(b30)? = [ (03P ((Ga0), )| —|(b10) P ((Grs), 8)]

- | (blws)m((Gu), t)l -

|(b5) 7 ((G), )| = [s) (G t)] = |(h3) P ((Gan). )| =
|(b3”2)(7)((635)' t) ‘ ] T3¢
d;? = (b37)(7)T36 -

[(b3'6><7>—|(b5'7)<7>((639),t)| —[BDD(Go). )] =B ?((Gra). )] -

(0,07 (G50, 0)] = [(055)7(G).0)] =[P (G t)] -

[(05)7((G35).0)] |70

Where we suppose

(A)

(B)

(€

(ai)(l)' (al{)(l)' (al{,)(l)' (bi)(l)' (bl,)(l)' (bl”)(l) > 0'
i,j =13,14,15

The functions (a;" ), (b]")™ are positive continuous increasing and bounded.

Definition of (p;)®, (r,)™:
(@D (T, 8) < P)D < (Agz)®
BHVG,H < (DD < (B)HD < (B )®

limz, o0 (@)@ (Tyy, t) = (p))®
liMgoe (b )P (G, 1) = ()@

Definition of (A;5 )™, (B;3)®M :

Where l (A13)D, (B3, (p)D, (1r)® l are positive constants

and |i =13,14,15

They satisfy Lipschitz condition:
@)D (T4 ) = @)V (Mg, )] < (g )O|Tyy = Tiyle(Fia) Ve

(YD (G, 6) = (b)Y DG, T < (ki3 )P — G'||e”Fas) Pt
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127

With the Lipschitz condition, we place a restriction on the behavior of functions (a;" ) (Ty,,t) and(a!)® (Ty,, t)
. (T{4,t) and (Ty,, t) are points belonging to the interval [(ky3)™®, (M3 )™®]. Itis to be noted that (a;' )™ (Ty4, t)
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is uniformly continuous. In the eventuality of the fact, that if ( #;5 ) = 1 then the function (a/' )P (Ty4,t), the
first augmentation coefficient attributable to terrestrial organisms, would be absolutely continuous.

Definition of ( M,5 )™, (k43 )™ :

(D) (My3)D, (ky3)D, are positive constants

@® ™
(M33)® 7 (#33)D

Definition of ( 23 )™, (Q13)™:

(E) There exists two constants ( P;3 ) and ( ;3 )® which together with
(My3)D, (ky3)D, (A13)Pand (B3 )@ and the constants
(a)®, (@)™, )@, (BN, @)W, ()™, i = 13,1415,
satisfy the inequalities

ﬁ[ @)@+ @)@+ (Ag)® + (P3)® (k)] <1

om0+ DY+ (Bi)D + (0) (i) <1
13
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4Tss _ 128
dt
(b3g)VTs; = [ (i) = [ (b3)? ((Gao), )|~ [(Bi) P (G1o) 1) = [(b30) V(61 t)| - 129
((b5)P((G23) )] = [3)P((Gor) )] = |(h30)P((Gan). )| = 130
|(63) 7 ((Ga5), 1) ] | 726 131
132
+(asz6) (T35, t) = First augmentation factor 134
(1(@)®, @)@, (@)@, B)®, 6P, (NP >0, i,j=1617,18 135
(F) (2) The functions (a})®, (b;")® are positive continuous increasing and bounded. 136
Definition of (p;))®, (r;)®: 137
(@)O(Ty7,0) < PP < (Aye)® 138
(NP (Grot) < ()P < (B)P < (B )@ 139
@ () limgye@)® (T17,0) = ()@ 140
limg_e, (b )® ((G1o),t) = (1)@ 141
Definition of (A4;)®, (B16)@ : 142
Where | (A16)P, (B1g)®, (p)?®, ()@ lare positive constants and
They satisfy Lipschitz condition: 143
|@)P (747, 0) = @) (T17, O] < (Rag)PTyy = Tiyle™ o)™ 144
(5P ((Gr0),6) = ()P ((616), )] < (Rag )PII(G19) = (Gro)'|le™Mre ) 145
With the Lipschitz condition, we place a restriction on the behavior of functions (a;")® (T}, t) 146

and(a;")® (Ty5,t) . (T{;,t) And (Ty,, t) are points belonging to the interval [( k1)@, (M) @] . Itis
to be noted that (a;")® (T}, t) is uniformly continuous. In the eventuality of the fact, that if ( M, )® =

1 then the function (alf’)(z)(TU, t) , the SECOND augmentation coefficient would be absolutely
continuous.

Definition of (M;)®, (k)@ : 147
(H) (4) (My)@, (kyg )@, are positive constants 148

@® @
(M16)® 7 (M16)@

Definition of ( P;3 )@, (0,3)@ : 149
There exists two constants ( P )® and ( 0,4 )® which together

with (My6)®, (k16)®, (A15)Pand ( By )@ and the constants
(@)@, (@)@, (5)@, B)HP, ()@, ()P, =16,17,18,
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satisfy the inequalities

1 , Y . R
ool @D+ @7 + (A)@ + (Pe)® (kye)P] < 1 150
1 , N N R
i ® [ ()@ + BND + (Bye)® + (016)?@ (k)@ < 1 151
Where we suppose 15
M 6 @, @), @), ), BH, (BN >0, ij=2021,22 153

The functions (a;")®, (b/")® are positive continuous increasing and bounded.
Definition of (p))®, ()®:
(@) (Ty1,0) < )P < (4;0)®

(BN (G, ) < ()P < ()P < (By)®

limz, o (@)@ (Tp1, 1) = (p)® 154
limg_,e ()P (Go3,8) = (r)® 155
Definition of (A,,)®, (B0 )®: 156
Where [(4,0)®, (Byo)®, (p)®, (11)®]are positive constants and

They satisfy Lipschitz condition: 157
(@) (T30, ) = (@)D (To1, O] < (fego )P|Toy — Tyyle™(M20) 158
|6 (Ga3',t) = (b)) D (Gr3, )] < (k0 )P|[Ga3 — Gps'[|e™M20 e 159

With the Lipschitz condition, we place a restriction on the behavior of functions (a;")®(T;,, t) 160
and(a;")® (Tyq,t) . (T3, t) And (T,4,t) are points belonging to the interval [( ka0 )®, (M, )] . Itis
to be noted that (a}")® (T, t) is uniformly continuous. In the eventuality of the fact, that if ( M,, ) =

1 then the function (a})®(T,,,t) , the THIRD augmentation coefficient, would be absolutely
continuous.

Definition of ( Mo )®, (kye ) : 161
) (6) (My)®, (ky0)®, are positive constants

@® _mp®
(M20)®) 7 (M20)®

There exists two constants There exists two constants ( P, )® and ( 0,, ) which together with 162
(My0)®, (ky0)®, (A,0)Pand (B, )@ and the constants
(@)@, @)@, )@, ()@, )P, ()@, i =2021,22, 163
satisfy the inequalities 164
1 , A ~ ~

(Fag)® [ (a)® + (ai)(g) + (Az0)® + (Pyo)® (hp)®] < 1 165
— [ )P+ BDD + (Byo)® + (0,0)® (kyo)®]<1 166
(1‘7’20 )(3) L i 20 20 20
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Where we suppose

(ai)(4)! (al{)(‘}): (agl)(4)! (bi)(4)! (bl’)(4)l (bL”)(4) > Or ll] = 24125)26

(L) (7) The functions (a/)®, (b/")® are positive continuous increasing and bounded.

Definition of (p;)®, (,)®:
(al{’)@)(Tzs' t) < (pi)(4) < (A24 )(4)

(BN ((Go7),t) < ()W < (bW < (Byy)™

(M) (8) limp,o(ai)® (Tys,t) = (p)@
limg e (b)® ((G), t) = (1)@

Definition of (A,, )®, (B,, )® :

Where l (A,)®, (By )P, ()@, ()@ l are positive constants and [i = 24,25,26

They satisfy Lipschitz condition:

(@)D (T4, £) — (@] )P (Tys, 0] < (Rga )P|Tps — Tys|e™ (M)t

(BN DP((G27)', ) = (B P ((G2), )] < (ks )PI(G7) = (Gp7)'[|le™ (T2 Ve

With the Lipschitz condition, we place a restriction on the behavior of functions (a;")® (Tys, t)
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and(a])® (Tys,t) . (Tys, t) And (T, t) are points belonging to the interval [(ky4 )@, (M, ) @] . 1t

is to be noted that (a{’)(‘*) (T,s, t) is uniformly continuous. In the eventuality of the fact, that if

(M, )™ = 4 then the function (a;")*(T,s,t) , the FOURTH augmentation coefficient WOULD be

absolutely continuous.

Definition of ( M, )@, (k)™ :
(M, )17675™), (k,, )@, are positive constants

@® @
(Ma4)®) * (Mp4)®

Definition of ( P,, )™, (0,, )™ :

(P) (9) There exists two constants ( P,, ) and ( Q,, )™ which together with
(Myy )®, (ks )P, (A,)Pand ( By, )™ and the constants
(@)™, (@)™, (5)@, BH™, ()@, ()™, i = 24,25,26,
satisfy the inequalities

1 , R ~ R
Tl @+ @)@+ (A)® + ()@ (k)P <1

1

(M24)® [ )@ + BD® + (By)® + (Q24)@ (k)P <1
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Where we suppose 176

(@)®, (@)®, (@), ), b)®, (/) >0, i,j=282930 177
(R) (10) The functions (a;)®, (b;")® are positive continuous increasing and bounded.

Definition of (p;)®, (1;)®:
(a{')(s)(ng, t) < (pi)(s) < (Azs )(5)

(BNP((Gs1),t) < () < (DS < (By5)®

178
(8) (1) limp,0(@i)® (Tpo,) = (0)®
limg_e (') (G31,8) = ()™
Definition of ( A,5)®, (B, )™ :
Where ‘(Azs )®), (B )®, (p)®, (1)® ‘ are positive constants and [i = 28,29,30
They satisfy Lipschitz condition: 179
" ’ " - ’ —( Mra)(®)
(@) O (T30, t) = (a]') ) (Tpo, )] < (kg )P|Tp9 — Tpole™(M2e)t
172 r 17 I 1 (M (5)
1B/ P ((G31)',8) = (") P ((G31), £)] < (kg ) PN1(G31) — (G3q)'|[e™ M)t
With the Lipschitz condition, we place a restriction on the behavior of functions (a;")® (Tye, t) 180
and(a;")® (Tyo,t) . (T4e, t) and (T, t) are points belonging to the interval [( ka5 )®, (Mag )] . It is
to be noted that (a{')(s)(ng, t) is uniformly continuous. In the eventuality of the fact, that if
(Myg)® = 5 then the function (a,)® (T, t) , theFIFTH augmentation coefficient attributable
would be absolutely continuous.
Definition of ( M,5)®, (k)™ : 181
(M, )®, (ky5)®, are positive constants
@® _wp®
(M25)(®) 7 (Mpg)®)
Definition of ( P,5 ), (0,5)® : 182
There exists two constants ( P,g ) and ( 0,5 ) which together with
(Mg )®, (k5 )P, (Ay9)Pand ( B,g )™ and the constants
(@)®, (@)®, ()@, (b)), )™, )®,i=28,29,30, satisfy the inequalities
1 , A ~ ~
(72s)® [(@)® + (@)@ + (Aze)® + (Py)® (kg )P < 1
1 , s . -
m[ 1)@ + (BDE + (Brg)® + (Q25)® (k)] <1
Where we suppose 183
(ai)(G)i (al{)(G)’ (alf’)(G)’ (bi)(6)l (b{)(6)’ (bL”)(6) > O’ l’] = 32;33:34 184

(12) The functions (a;")®, (b;")(® are positive continuous increasing and bounded.

162



Advances in Physics Theories and Applications
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012
Definition of (p;)©®, (1,)©:
(al{’)(ﬁ)(Tss' t) < (Pi)(ﬁ) < (A32 )©

(NP ((G35),0) < ()@ < (B)® < (B3;)®

(13) limTz—»oo(aL’")(G) (T33,8) = (p)©
limG—>oo(bi”)(6) ((635)1 t) = (ri)(G)

Definition of (A3, )®, (B3, )©® :

Where ‘(432 )©®, (B3,) @, (p)®, (1)® ‘ are positive constants and |i = 32,33,34

They satisfy Lipschitz condition:

1(a")(© (T4s, £) — (@)@ (T3, 0)| < (Kgp )O|Tg3 — Tigle™ (M)

1B ©((Gs5)', ) = (B O((G35), £)] < (a2 YONI(G5) — (Gas)'||e™(Ma2)

With the Lipschitz condition, we place a restriction on the behavior of functions (a!")® (T4, t)
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and(a;)(® (Ts3,t) . (T4s, t) and (T35, t) are points belonging to the interval [( ks, )©, (M3, )] . Itis

to be noted that (a{’)(G)(T33, t) is uniformly continuous. In the eventuality of the fact, that if
( M3, )® = 6 then the function (a;")® (Ts3,t) , the SIXTH augmentation coefficient would be

absolutely continuous.
Definition of ( M, )©, (k3,)©® :
(M3,)®, (k3,)®, are positive constants

@® _wp©
(M32)® 7 (M33)(®

Definition of ( 3, ), (03, )® :

There exists two constants ( P;, )® and ( 03, )® which together with
(M3,)®, (k3,)®, (A3,)@and (Bs, )® and the constants

(@)@, @)@, 1), BN, @)©, (1)©®,i = 32,3334,

satisfy the inequalities

1

(M32)(© [ (ai)(ﬁ) + (al{)(é) + (A32)O + (P3)® (k) @] <1

(B)©@ + (1)@ + (B32) @+ (032)© (ks) @] <1

;[
(M33)(®)

Where we suppose
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(7 m(7) " (7) n(7)

v @?(a)”, (@), @), (6) 7, ()7 >0, 191

i,j =36,37,38

(W) The functions (a{)m, (bi")m are positive continuous increasing and bounded.
Definition of (p,))™”, (r;)?:

NG .
(a)) " (Ts7, ) < )7 < (A36) 7

)76 @D < B < (Big)?

192
. n(7) _ (7)
(X) hmTz—mo (ai) (T37,t) = (p;)
. n(7)
hmG—)oo(bi) ((639), t) = (m)”
Definition of ( A4 )™, (B3 )™ :
Where | (A36)D, (B3s) D, 0)?, ()P | are positive constants
and |i =36,37,38
They satisfy Lipschitz condition: 193
@) (T35, 8) = (@)D (Ta7, O] < (Rag )V Tay = Tagle™Mae) e
" , " - o= ( iz YD
|() 7 ((G39)', 1) = (b)) ((G39), (T30))| < (k36 ) P[1(G30) — (G3o) [|e~(M36) e
With the Lipschitz condition, we place a restriction on the behavior of functions (a;)(T3,,t) 194
and(a;) P (Tsy,t) . (T3, t) and (T, t) are points belonging to the interval [(ksq )™, (M) 7] . 1t
is to be noted that (a;)” (T, t) is uniformly continuous. In the eventuality of the fact, that if
( M) = 7 then the function (a;)(”(Ts,,t) , the first augmentation coefficient attributable to
terrestrial organisms, would be absolutely continuous.
Definition of ( M4 )7, (k36 )7 : 195
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Y) (M), (ks ), are positive constants

@® _mp?
(M36)7 7 (#36)7

Definition of ( Py )™, ( Q36 )7 : 196

2 There exists two constants ( P3¢ )™ and ( Q3¢ )7 which together with
(M), (k36 )P, (A36)Pand (Bs)™ and the constants
(ai)(7)' (a;)(7)' (bi)(7)' (bLI)U)' (pi)(7)' (ri)(7)' [ = 36,3738,
satisfy the inequalities

| @7+ @7+ (As)? + (Pre)? (s )] < 1
36

W[ (bi)(7) + (bi')(7) + (Bsg)D 4 (036)7 (Rsg)P] <1
36

197
Definition of G;(0),T;(0) :
Gi(O) < (Pye )P0t [7G,(0) = G2 > 0]
Ti() < (Qg5) M)t

198
Definition of G;(0),T;(0) : 199

Gl(t) < (P32 )(6)3(M32 )(6)t , | Gl(o) = GLO > Ol

Ty(t) < (Q3,) @)t [10)=T2 >0

Definition of G;(0),T;(0):
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Gi(O) < (Pyg) et [7G,(0) = G2 > 0]

Ti(t) < (036)PeM)?t [1.(0) =T > 0

Proof: Consider operator A defined on the space of sextuples of continuous functions 200
G;, T;: R, —» R, which satisfy

Gi(0) =GP, Ti(0) =T, G < (Pi3)®, T < (Q13), 201
0 < Gi(t) — GO < (P )We(Mis)De -
0 < Ti(t) = TP < (03 )DelMa) Mt 203
5 204

6713 ® = Gf3 + fot [(‘113)(1)614(5(13)) - ((ai3)(1) + a1'3)(1)(T14(s(13)), 5(13))) G13(5(13))] ds(z)

Gia(t) = Gy + fot [(‘114)(1)613 (5(13)) - ((a14)(1) + (‘11’4)(1)(7114(5(13)): 5(13))) G14(5(13))] ds(13) 205
6715(t) = Gfs + fot [(‘115)(1)614(5(13)) - ((ais)(l) + (afs)(l)(Tm(S(m)); 5(13))) G15(5(13))] ds(13) 206

Ti3(t) =T + fot [(b13)(1)T14(5(13)) - (bis)(l) —( {’3)(1)(6(5(13))15(13))) T13(5(13))] ds(13) 207

T14(t) = T104 + fot [(b14)(1)T13 (5(13)) - ((bh)(l) - (b{’zt)(l)(c(s(lz))» 5(13))) T14(5(13))] d5(13) 208

= t ’ "
Tys() = Tjs + fo [(b15)(1)T14(5(13)) - ((bls)(l) - (b15)(1)(5(5(13))'5(13))) T15(5(13))] ds(13) 209
Where s(;3) is the integrand that is integrated over an interval (0, t)

210

if the conditions IN THE FOREGOING above are fulfilled, there exists a solution satisfying the conditions

Definition of G;(0),T;(0) :

Gl(t) < (P36 )(7)3(M36 )(7)t , | Gl(o) = GLO > Ol

Ty(t) < (Q36)Pe™:)7t [10)=T2 >0

Consider operator A7) defined on the space of sextuples of continuous functions G;, T;: R, — R, which satisfy

G;(0) = GL'O , T;(0) = Tio ’ GiO =< (p36 )(7) 'Tio =< (Q36 )(7)'

0 < Gi(t) — G < (P3g ) VeMse) 7t
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0<T;(t) - T < (Qs6 )(7)6(M36)(7)t
By

G36(t) = G36 + fot [(‘136)(7)637(5(36)) - ((aée)m + a,3’6)(7)(T37(S(36)): 5(36))) 636(5(36))] ds(se)

G3,(t) = G37 +
t 1 "
fo [(a37)(7)636(5(36)) - ((a37)(7) + (a37)(7)(T37(S(36))'5(36))) 637(5(36))] ds(3e)

Gag(t) = G35 +
IN [(aSS)(7)GS7(s(36)) - ((alss)m + (a38) (T3 (5G6)), 5(36))) 538(5(36))] ds(se)

T36(t) = T3 + fot [(b36)(7)T37(S(36)) - ((bés)m - (bé’6)(7)(6(s(36))15(36))) T36(S(36))] ds(ze)

T3, (t) = T3, + fot [(b37)(7)T36(5(36)) - ((b§7)(7) — (b5 (G (5(36)); 5(36))) T37(S(36))] ds(3e)

T3g(t) = Tgs +
t ’ "
fo [(b38)(7)T37(s(36)) - ((b3s)(7) - (b3s)(7)(6(5(36)); 5(36))) T38(S(36))] ds(3e)

Where s(3¢) is the integrand that is integrated over an interval (0, t)
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211

Consider operator A defined on the space of sextuples of continuous functions G;, T;: R, — R,
which satisfy

Gi(0) =GP, Ti(0) =T, G < (P1s)® T < (Q16)®, 212
0 < G;(t) — G? < (P )Pe(Me)?t N
0 < Ti(t) = TP < (016 )Pe(Me)®t N
. 215

Gi6(t) = Gl + fot [(‘116)(2)617(5(16)) - ((aiG)(Z) + ai’e)(z)(Tn(S(m)); 5(16)) G16(5(16))] ds(1e)

Gi7 () = Gy + fot [(a17)(2)G16(S(16)) - ((a17)(2) + (‘11'7)(2)(7117(5(16)):5(17))) G17(5(16))] ds(1e) 216

Gis(®) = G5 + J [(als)(Z)Gﬂ(s(m)) - ((ais)(z) + (@10)?(T17(s00)) Sae)) 618(5(16))] dS(16) 217
Tio(t) = T% + J, [(bIG)(Z)TU(S(lG)) - ((bia)(z) - (b{'a)(z)(G(S(le)):5(16))) T16(5(16))] ds(16) 218
T (&) =TY + [(b17)(2)T16(s(16)) - ((bb)(z) — NP (6 (sue) 5(16))) T17(5(16))] ds(16) 219
Tig(t) = T + J, [(bIS)(Z)TU(S(lG)) - ((bis)(z) - (b{'s)(z)(G(S(le)):5(16))) T18(5(16))] ds(16) 220

Where s, is the integrand that is integrated over an interval (0, t)

221
Consider operator A defined on the space of sextuples of continuous functions G;, T;: R, - R,
which satisfy
Gi(0) =GP, Ty(0) =T, G? < (Po)®, T < (Q20)®, 222
0 < Gi(t) — G? < ( Py )Pe(M20)Pt s
0 < Ty(t) = T < ( Qg0 )PeM20) Pt 224
Y 225

67zo(t) = Ggo + fot [(azo)(3)Gz1(5(zo)) - ((aéo)(S) + a’z’o)(3)(Tz1(5(zo))’5(20))) Gzo(s(zo))] ds(zo)

Gor(t) = G31 + fot [(a21)(3)620(5(20)) - ((aél)(s) + (a’2'1)(3)(T21(5(20))' 5(20))) 621(5(20))] ds (20 226

G =GO t ®g _ 1 \3) "NG(T G d 227
22(t) 22t fo (azz) 21(5(20)) (az2)* + (az2) ( 21(5(20))' 5(20)) 22(5(20)) S(20)

Ty (t) = T3 + fot [(bzo)(s)Tm(s(zo)) - ((béo)m - (bélo)m(G(s(zo))' 5(20))) Tzo(s(zo))] ds (o) 228
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T () =T7 + fot [(b21)(3)T20(5(20)) - ((bh)(s) - (b£'1)(3)(6(5(20))‘ 5(20))) T21(5(20))] ds(20)

= t ’ "
T,z (t) = Tz, + fo [(bzz)(s)Tn(S(zo)) - ((bzz)(3) - (bzz)(3)(G(5(20)); 5(20))) T22(5(20))] dszo)
Where s,y is the integrand that is integrated over an interval (0, t)

Consider operator A® defined on the space of sextuples of continuous functions G;, T;: R, —
R, which satisfy

G;(0) =G, T;(0) =T2, G < (P )@, T < (0,,)®,
0 < G;(t) — G® < ( By, )We(M2a)Mt

0 S Ti(t) = TP < (Qpq )Pe(M20)®t

By

Gpa(t) = G4 + fot [(a24)(4)625(5(z4)) - ((a;4)(4) + a’2'4)(4)(T25(s(24)),5(24))) 024(5(24))] ds )
Gus®) = G+ g [(aZS)(4)GZ4(S(24)) - ((aés)m + (@55) W (Tos(s20)), 5(24))) 625(5(24))] ds(z4)
Gas(®) = G + [ [(026) PG5 (5) = ((@5)® + (@5 (Tas(520)):S2m) ) Gao(52) | dsiasy

Tpu(t) = Ty, + fot [(b24)(4)T25(5(24)) - (bé4)(4) - (bé’4)(4)(6 (5(24))15(24))) T24(5(24))] ds(za)

Tps5(t) = Tjs + fot [(bzs)(4)T24(5(24)) - ((bés)w - (béls)(4)(5 (5(24))15(24))) T25(5(24))] dsq)

Tze(t) = Tzos + fot [(bze)(4)T25(5(24)) - ((bée)m - (béle)(4)(6(5(24))'5(24))) T26(S(24))] d5(24)

Where s(,4) is the integrand that is integrated over an interval 0,t)
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Consider operator A defined on the space of sextuples of continuous functions G;, T;: R, — R, 241

which satisfy

Gi(0) =GP, T;,(0)=T2, G) < (Pg)®, TP < (Q25)®,

0 < Gi(t) — G < (Prg )®e(M2)®t

0<T(t)-TP < (0, )(5)e(ﬁzs )

By

¢l ¢ ! n

Gog(t) = G5 + fo [(aza)(S)ng(S(zs)) - ((aZS)(S) + azg)(s)(ng(s(zs))' 5(28))) 628(5(28))] ds(zg)
G ¢ ! "

Gao(6) = G + fO [(azg)(S)ng(s(ZB)) - ((a29)(5) + (azg)(S)(Tz'a(s(zs))' 5(28))) 629(5(28))] ds(zg)

G_ao(t) = G'go + fot [(aSO)(S)GZ‘B(S(ZS)) - ((aéo)(s) + (aélo)(s)(Tzla(S(zs)),5(28))) 030(5(28))] ds(zs)
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Toa(t) = Tgg + fot [(bzs)(S)T29(s(28)) - ((bés)(s) - (béls)(s)(c(s(zs))‘ 5(28))) Tzs(s(zs))] ds(zg) 249
Tyo(t) = Tpo + fot [(b29)(5)T28(S(28)) - ((béta)(s) - (bé’g)(s)(G (5(28))' 5(28))) T29(S(28))] ds(zg) 250
T30(t) = T3p + fot [(b30)(5)T29(S(28)) - ((béo)(s) - (b:fxlo)(s)(G (5(28)): 5(28))) Tso(s(zs))] ds(zg) 251

Where s(,g) is the integrand that is integrated over an interval (0, t)

252
Consider operator A(® defined on the space of sextuples of continuous functions G;, T;: R, - R,
which satisfy
G(0) =GP, T;(0) =T, G < (Py) @, TP < (Q3,), 253
0 < G;(£) = GO < ( Py )©e(M2)®t -
0<Ti(t) = T® < (0sp ) O (M32)t -
" 256

G3,(t) = G3, + fot [(a32)(6)G33(s(32)) - ((aéz)(G) + aé’z)(ﬁ)(T33(5(32)): 5(32))) 532(5(32))] ds(sz)

Gs3(t) = G35 + fot [(‘133)(6)(;32(5(32)) - ((aés)(G) + (a’3'3)(6)(T33(5(32))x5(32))) 633(5(32))] ds(sz) 257

Gaa(t) = GOy + [ [(a )®Gs3(s2) — ((a’ )® + (a5) O (Ta3(si@p)), s )) Ga4(s )] ds 258
34 3¢ T Jy (034 33(5(32) 34 34 33\532) ), S32)) ) 434 S(32) (32)

7_132(15) = T302 + fot [(b32)(6)T33(5(32)) - (béz)@ - (bé'z)(6)(G (5(32))» 5(32))) Ts, (5(32))] d5(32) 259

7_133(15) = T303 + fot [(b33)(6)T32(5(32)) - ((bés)@ - (bé's)(6)(G (5(32))» 5(32))) T33(5(32))] d5(32) 260

T t ! 4
T34 (t) = T3y + fo [(b34)(6)T33(5(32)) - ((b34)(6) - (b34)(6)(6(5(32)): 5(32))) T34(5(32))] ds(zz) 261
Where s(3,) is the integrand that is integrated over an interval (0, t)

- if the conditions IN THE FOREGOING are fulfilled, there exists a solution satisfying the conditions 262

Definition of G;(0),T;(0) :

Gi() < (P36 )(7)e(ﬁ36)(7)t | Gi(0) =62 >0
Ty(£) < (Q36)PeM)t  [T,(0) = T2 > 0
Proof:

Consider operator A7) defined on the space of sextuples of continuous functions G;, T;: R, — R,
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which satisfy
Gi(0) =GP, T,(0) =T, G < (Pye)™, TP < (Q36)7,
0 < Gi(t) — G < (P3g ) VeMse) 7t

0 < Ti(t) = T < (Q36) e Mae)?t

By

G36(t) = G396 +
fOt [(a36)(7)G37(S(36)) - ((aé6)(7) +a36) 7 (T37(s36)), 5(36))) 636(5(36))] ds(3e)

G3,(t) = G, +

fOt [(a37)(7)636(s(36)) h ((a'37)(7) + (a§7)(7)(T37(S(36))'5(36))) G37(5(36))] ds(se)

G_3S(t) = G308 +

fOt [(a38)(7)G37(5(36)) B ((a’38)(7) + (a§8)(7)(T37(S(36))'5(36))) G38(s(36))] ds(36)

T36(t) = T305 +
fot [(b36)(7)T37(S(35)) - ((béﬁ)(7) —_ (b3”6)(7)(G(S(36)), 5(36))) T36(S(36))] dS(36)

T37(t) = T307 +
fOt [(b37)(7)T36(s(36)) B ((bé7)(7) — (b3 (G(sie))s 5(36))) T37(5(36))] dsze)

Tyg(t) = Tog +

fot [(b38)(7)T37(S(36)) - ((béS)(7) — (b3”8)(7)(G(S(36))' S(36))) T38(s(36))] ds(36)
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Where s(36) is the integrand that is integrated over an interval (0, t)

Analogous inequalities hold also for G,;, G35, Tog, T21, T2

(@) The operator A™ maps the space of functions satisfying GLOBAL EQUATIONS into itself
.Indeed it is obvious that

t =~ i, )%
G2a(t) < G343 + [(a24)(4) (G§5+( Pyy )WeM2t) 5(24))] dse) =

4 0 (a20)®(Pra)® ., YDt
(1 + (a24)( )t)GZS + W(e( 24) - 1)

From which it follows that

_(P2s )B+695

. (4) ~ < ) ~
(Goa(6) — G~ (M)Wt < L2 (p) Y 1 G Ye\ G35 )4 (P, )(4)]

T (Mzq)®

(G?) is as defined in the statement of theorem 1

(b) The operator A maps the space of functions satisfying GLOBAL EQUATIONS into itself
.Indeed it is obvious that

t 5 g )(5)
Gog(t) < G3g + fo [(azs)(s) (039"‘( Pyg )®e(M20) 5(28))] ds(zg) =

5) )0 4 @S (P2s)® (1,0
(1 + (azs)( )t)ng + W(G( 28) - 1)

From which it follows that

_ (P2g)®)+65y

—(F1,9)® ® 5 ( ) 5
(Gog(t) — Glg)e™(M2a) Pt < 820 = ((p, () 4 G9,)e s )4 (Pyg)®

T (Mz)®

(G?) is as defined in the statement of theorem 1

(c) The operator A©® maps the space of functions satisfying GLOBAL EQUATIONS into itself
.Indeed it is obvious that

t 5 s, )(6)
G32(t) < G, + [ [(asz)(s) (G§’3+( Py, )®eMs2) 5(32))] ds(za) =

6 0 (a32)©(P32)® M35 )O)t
(1 + (a32)( )t)G33 + W(e( 32) — 1)

From which it follows that

_(P32)©)+6Y5

—(F13,)©® © 5 < ) 5
(G32(t) — ng)e (135)( Ot < (Gs2) ~ (( P, )(6) + 033)3 W% + (P )(6)

T (M32)®

(G?) is as defined in the statement of theorem1
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Analogous inequalities hold also for G5, Gy, T24, Tos, Tog

(d) The operator A7) maps the space of functions satisfying 37,35,36 into itself .Indeed it is

obvious that

t P T2 )(7)
Gao(t) < 696 + Jy [(@36)® (63+( Pog ) Ve 560 7560))] o) =

7 0 (a36) 7 (P36)7) M2 YDt
(1 + (a36)( )t)G37 + W(e( 36) - 1)

From which it follows that

_(P36)M+6§,

—(M55)?D % 5 < ) 5
(Gs6(t) = Gle)e™(Maa)Vt < L) 2N (. YD 1 G9)e\ 65 ) 4 (Pye)®

= (M36)7)

(G?) is as defined in the statement of theorem 7

@® ™
(M13)® 7 (#y3)D

It is now sufficient to take < 1 and to choose

(P3)® and (Q45 )@ large to have

[ <(P13 )(1)+G?>
@p® | - R |\ -
- (Pi)® + ((P3)® + Gjo)e € < (P3)®

(M13)®

[ _( (Q13 )(1)+T?>
((Qiz)P +T e 4 (013)P] < (Q15)®

Ch
(M13)®

In order that the operator A transforms the space of sextuples of functions G; , T; satisfying
GLOBAL EQUATIONS into itself

The operator A™ is a contraction with respect to the metric
d ((G(n, TW), (69, T(z))) =
sup{max |Gl-(1)(t) - Gi(z)(t)|e'(’q13)(1)t,max |Ti(1) (t) -1 (t)|e'("7’13)(1)t}
i teER+ teER+
Indeed if we denote
Definition of G, T :
(G T)=ANG,T)

It results
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|G~1(;) _ 5i(2)| < fot(a13)(1) |Gl(i) _ Gl(i) e—(1‘713)(1)5(13)3(1‘713)(1)5(13) dsaz) +

Jy (@) ®[6D — 62 e Vst (M) Vst 4

(@) O(TS,509) |65 — 63 e P19 V509 M1 Wsas) 4
2 " 1 " 2 (M) D W) (D)

61(3)|(a13)(1)(T1(4), 5(13)) —(as5 W (T1(4), S(13))| e~ (M13)75(13) o (M13) S(13)}‘15(13)

Where s (43 represents integrand that is integrated over the interval [0, t]

From the hypotheses it follows

|6 - ¢®@)| e~ (1)t 288
1 , ~ ~ ~

m((am)(l) + (aiz)® + (A13)® + (Pi3) P (ky3)™)d ((G(l), TW; 6@, T(Z)))

And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (a}5)® and (bj5)™ depending also on t can be considered as 289

not conformal with the reality, however we have put this hypothesis ,in order that we can postulate
condition  necessary to prove the uniqueness of the solution bounded by

(P3)PeMDt gng (Q,,)Pe(M19D¢ respectively of R,.
If instead of proving the existence of the solution on R, we have to prove it only on a compact then

it suffices to consider that (a/)* and (b;")V,i = 13,14,15 depend only on T,, and respectively on
G (and not on t) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not existany t where G; (t) = 0and T; (t) =0 290

From 19 to 24 it results

G, () =GP e[~ o@D -@) D (ris(sam)sam)ldsas] > o 291
T, () > TP > 0 fort>0

Definition of ((M5)®),, and ((M;3)™), : 292
Remark 3: if G5 is bounded, the same property have also G,, and G5 . indeed if

G13 < (My3)@ it follows ds% < ((My3)®), — (a14)M Gy, and by integrating

Giq < ((ﬁ13)(1))2 =Gy + 2(a14)(1)((/1\7113)(1))1/(a14)(1)

In the same way , one can obtain

Gis < ((7\7113)(1))3 =Gl + 2(“15)(1)((T/[m)(l))z/(ais)(l)

If Gy, or Gy5 is bounded, the same property follows for G5, G;5 and G,5, G4 respectively.

Remark 4: If G5 is bounded, from below, the same property holds for G,, and G5 . The proof is 293
analogous with the preceding one. An analogous property is true if G, is bounded from below.

Remark 5: If T;5 is bounded from below and lim,_,., ((b;)® (G(t),t)) = (b;4)® then T,, — oo. 294

Definition of (m)® and ¢, :

175



Advances in Physics Theories and Applications
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012

Indeed let t; be sothat fort > t;

(b14)(1) - (b{’)(l)(G(t),t) <, Ti5(t) > (m)®

Then d;&: > (a1) P (m)D — g, T;, which leads to
(@) D)@ —&qt 0 ,—gt -t 1.
T, = (57) (1 —e 1Y) + Tye " If we take t such that e™*1* = L results
1

@ (@
Ty = (M) t= logsi By taking now &, sufficiently small one sees that T, , is
1
unbounded. The same property holds for Ty if lim,_ (b;5)™® (G(t),t) = (bys)®

We now state a more precise theorem about the behaviors at infinity of the solutions

@® @

(e)® ' ()@ 1 and to choose

It is now sufficient to take

(Pis)® and (0,6 )@ large to have

(§16)(2)+G?
(ap)®@ ~ ~ - G0 =
m (Pie)@ + (P )P +G)e J < (Ps)®
(Q16)P+79
)@ ~ _< T0 ) A~ A
e I(< Q16)® +TP)e T4 (016)?] < (016)@

In order that the operator A transforms the space of sextuples of functions G; , T; satisfying

The operator A is a contraction with respect to the metric
d (((6:)®, (T)®), ((610)@, (T16)®)) =

sup{max |Gl-(1)(t) - Gi(z)(t)|e'(’q16)(2)t,max |Ti(1) (t) -1 (t)|e'("7’16)(2)t}
i teER+ teER+

Indeed if we denote

Definition of Gyo, Tre : ((Gro, T1o ) = AP (Gyo, Tyo)

It results

162 = 62| < [} (@)@ 657 = 6 |e 105016500 g5 ) +

Sy (@i @]6S2) = 62 e~ sanem e o

@ sap)l6fy) = 61 e~ Mr0 e oMo

6211 2T, s06) — (@)@ (T2, s06)| e 1050060 sa0)ds

Where s(44) represents integrand that is integrated over the interval [0, t]
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From the hypotheses it follows

|(619)® = (G19) @M ® < 305
1 , -

m((am)(z) + (a16)@ + (A1e)@ +

(P @ (k1)®)d (((610)®, (T1)D; (610)?, (1))

And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows 306

Remark 1: The fact that we supposed (ajs)® and (bj%)® depending also on t can be considered as 307

not conformal with the reality, however we have put this hypothesis ,in order that we can postulate
condition necessary to prove the uniqueness of the solution bounded by

(Pre)@e(Me@t and (Q,4)@e(M10®t respectively of R, .

If instead of proving the existence of the solution on R, we have to prove it only on a compact then
it suffices to consider that (a/')® and (b;)®,i = 16,17,18 depend only on T,, and respectively on
(G19)(and not on t) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not existany t where G; (t) = 0and T; (t) =0 308

From 19 to 24 it results

G; (t) > G?e[_ f(:{(al{)(z)_(al{’)(z)(T17(5(16))'5(16))}ds(16)] >0

T; (t) > Tioe(_(b{)(Z)t) >0 fort>0
Definition of ((M;6)®),, (M;6)®), and ((M;6)®), : 309
Remark 3: if G;¢ is bounded, the same property have also G;; and G;g . indeed if

Gro < (Mye)@ it follows S22 < ((My6)@), — (a1,)@G,, and by integrating

Gy < ((ﬁ16)(2))2 = G'(1)7 + 2(a17)(2)((m16)(2))1/(a17)(2)
In the same way , one can obtain

Gig < ((m16)(2))3 = Gig + 2(“18)(2)((m16)(2))2/(a18)(2) 310
If Gy, or G;g is bounded, the same property follows for G, , G5 and G,4, G4, respectively.

Remark 4: If G,¢ is bounded, from below, the same property holds for G, and G;5. The proof is 311
analogous with the preceding one. An analogous property is true if G, is bounded from below.

Remark 5: If T, is bounded from below and lim,_,., ((b;")® ((G19) (1), 1)) = (b};)® then 312

Ty7 — co.
Definition of (m)® and ¢, :
Indeed let t, be so that fort > t,

(b17)@ = (B{YP((G19) (D), 1) < €5, Ty6 () > (M@

Then dZ? > (ay;)@(m)@ — g,T,, which leads to 313
@ ()@ .
T, = (M) (1 —e™%2%) + T e~%2t If we take t such that e 2t = % it results
2
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@ ()@

Ty = (w) t= logs3 By taking now ¢, sufficiently small one sees that T, is
2

unbounded. The same property holds for Tyg if lim,_e, (b15)® ((G19) (D), t) = (b1g)?

We now state a more precise theorem about the behaviors at infinity of the solutions

@® _®
(M20)® 7 (M20)®

It is now sufficient to take < 1 and to choose

(Pyo)® and (Q,0)® large to have

[ <(?’2o)(3)+6?>
@® | 5 5 T ~
(1;;0)(3) (Py0)® + ((Py)® + Gjo)e Gj < (P,))®
[ (@20)(3)+T?
(bi)(3) ~ 3) 0 _< 0 ) A~ 3) ~ 3)
Wa0)® (( Q20)" +T; )e Y + (Q20)" [ = (Q2)

In order that the operator A transforms the space of sextuples of functions G; , T; into itself
The operator A®) is a contraction with respect to the metric
d (((622), (Ty)®), ((6:0)®, (Ty)®) ) =

sup{max |Gi(1)(t) - Gi(z)(t)|e‘("7’2°)(3)t,max |Ti(1)(t) - Ti(z) (t)|e_("72°)(3)f}
i tER+ tER4

Indeed if we denote
Definition of 6;3' Ths :( (G23), (T33) ) = d‘lm((st), (Tzs))
It results
16D - ¢®| < fot(azo)(3) 6 - Gz(i)|e—(mo)(3)s<zo>e(Wzo)(”sm) dscao) +
[ 1(30) @6 = 62 e (M0 Vs g =(Fe0) Ve 4.
(a’z'o)(S) (Tz(il)' 5(20))|Gz(é) _ GZ((Z))|e—(7‘7120)(3)5(20)e(ﬂzo)(3)5(zo) +
I (1,3 w7..3(3)
Gz(g)Kago)(g)(Tz(P'5(20)) - (azlo)(s)(Tz(f):S(zo)N e~ (M20)75(20) o (M20) 5(20)}ds(20)
Where s, represents integrand that is integrated over the interval [0, t]

From the hypotheses it follows

|60 — G@|e=(20P <
1 , —~
W((‘lzo)@ + (a50)® + (40)® +
(P20)® (k20)®) (((62)D, (To)D; (G25)@, (T33) )

And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows
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not conformal with the reality, however we have put this hypothesis ,in order that we can postulate
condition necessary to prove the uniqueness of the solution bounded by

(Pr0)@e ™20t qnd (0,0)® e ™20t respectively of R, .
If instead of proving the existence of the solution on R, we have to prove it only on a compact then

it suffices to consider that (a/)® and (b;)®,i = 20,21,22 depend only on T,; and respectively on
(G,3)(and not on t) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where G; (t) =0and T; (t) = 0 326

From 19 to 24 it results

G, (t) = Giﬂe[—f(f{(a{)(”—(a{')(”(Tz1(5(20))15(20))}‘15(20)] >0

T, (0) = TP > 0 fort>0

Definition of ((M,0)®),, ((M20)®), and ((M,)®), : 327
Remark 3: if G,, is bounded, the same property have also G,, and G,, . indeed if

Gyo < (My)® it follows % < (My0)®), = (a31)® Gy, and by integrating

Go1 =< ((’MZO)G))Z = G31 + 2(‘121)(3)((’M20)(3))1/(‘1’21)(3)

In the same way , one can obtain

Gaz < ((’MZO)G))?, =G, + 2(‘122)(3)((’M20)(3))2/(‘1’22)(3)

If G,, or G,, isbounded, the same property follows for G,,, G,, and G,,, G, respectively.

Remark 4: If G,, is bounded, from below, the same property holds for G,, and G,, . The proof is 328
analogous with the preceding one. An analogous property is true if G,, is bounded from below.

Remark 5: If T,, is bounded from below and lim,_., ((b{")® ((G3)(t), 1)) = (b5,)® then 329
Ty, — co.

Definition of (m)® and &5 :

330
Indeed let t; be so that for t > t4
(b1)® — (b{’)(3)((023)(t),t) < &3, Ty (£) > (M)®
Then dzztl > (a,1)®(M)® — &,T,, which leads to 331
(a,0)®m)® —&st 0 ,—&3t —&3t 1.
Ty = (57) (1 —e7%%) 4+ T, e 53" If we take t such that e™%3" = L results
3
(a2)Pm)® 2 : - .
T, 2 (f) t= logg— By taking now &; sufficiently small one sees that T, is
3
unbounded. The same property holds for T, if lim,_e, (b35)® ((G3)(t), t) = (b32)®
We now state a more precise theorem about the behaviors at infinity of the solutions
332
@@ o™ 333

It is now sufficient to take < 1 andto choose

(Mag ) 7 (Mp4)®)

179



Advances in Physics Theories and Applications www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Ly
Vol 7, 2012 " E

(P, )™ and (Qy4 )™ large to have

@ [ <(1324)(4)+G?> 334
(ap™ 3 s I = — R
(1;24)(4) (Pp)™® + ((Po)® + Gjo)e “ < (Pyy)®

[ (Q24)+17 335
[ChIS ~ o) 0 _< 79 ) ~ @ N @
G | (@)@ +T0e VT 4 Q)@ | < (Qa)

In order that the operator A® transforms the space of sextuples of functions G; , T; satisfying IN to 336
itself

The operator A® is a contraction with respect to the metric 337

d (((62)®, (T)D), (6P, (1)) =

sup{max |Gi(1)(t) - Gi(z)(t)|e‘("7’24)(4)t,max |Ti(1)(t) - Ti(z) (t)|e_("724)(4)f}
i tER+ tER4

Indeed if we denote
Definition of (G,,), (T;) : ( (G7), (T27) ) = c/‘Z(‘l)((am): (T27))
It results
~ ~ (1 ) M )

|Gz(i) _ Gi(2)| < fot(a24)(4) |G2(é) _ G2(§)|e (Fp0)* 5(24)3(1"124)(4 S(24) d5(24) +

fot{(a’24)(4)|62(1) _ Gz(i)|e—(1\724)(4)5(24)e—(ﬁ24)(4)5(24) +

(@) DTS2, 500|653 = G657 oM Psame(Fasces) 4

2 1 , 2 (M@ A
62(4)|(a§’4)(4)(T2(5),s(24)) - (a2'4)(4)(T2(5), 5(24))| e~ (M24)"s(za) o (M24) 5(24)}d5(24)

Where s(,4) represents integrand that is integrated over the interval [0,1t]

From the hypotheses it follows
338
|(G27)® = (G27) @m0t < 339
1 , ~
W((azﬂm + (ah)™ + (A2)™ +

(P2)®(Te2)®)d (62, (Ty)D; (G27)@, (T3)?))
And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (a4,)® and (by,)® depending also on t can be considered 340
as not conformal with the reality, however we have put this hypothesis ,in order that we can
postulate condition necessary to prove the uniqueness of the solution bounded by

(P,)@e ™2t qand (0,,)®eM20®¢ respectively of R, .
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If instead of proving the existence of the solution on R, we have to prove it only on a compact then
it suffices to consider that (a;)™® and (b;")®, i = 24,25,26 depend only on T, and respectively on
(G,)(and not on t) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where G; (t) =0and T; (t) =0 341

From GLOBAL EQUATIONS it results

G () > Gi()e[— Is{@)@ @)@ (Tas(sz)szoldsen] > o

T, (£) = TP > 0 fort> 0
Definition of ((M,4)®),, (M4)®), and ((Mp4)®), : 342
Remark 3: if G,, is bounded, the same property have also G5 and G,¢ . indeed if

Gyy < (Mypy)™@ it follows dg% < ((7%4)(4))1 — (ah5)® G,s5 and by integrating

Gys < ((7\7[24)(4))2 = G5 + 2(“25)(4)((7\7124)(4))1/(61’25)(4)

In the same way , one can obtain

G < ((/M24)(4))3 = G36 + 2(“26)(4)((7\7124)(4))2/(61'26)(4)

If Go5 or G, is bounded, the same property follows for G,, , G,¢ and G, , G,5 respectively.

Remark 4: If G,, is bounded, from below, the same property holds for G,5 and G,¢ . The proof is 343
analogous with the preceding one. An analogous property is true if G,5 is bounded from below.

Remark 5: If T,, is bounded from below and lim,_., ((b;")® ((G,7)(t),t)) = (bys)™® then 344

Tps — oo.
Definition of (m)® and ¢, :
Indeed let t, be sothatfort > t,

(b25)® — (B YD ((G27) (D), ) < £4,Toy (t) > (M)®

Then dzzts > (ay5)® (M)® — &,T,5 which leads to 345
@) (m)@®
Tys = (w) (1 — e™#s) + T e 54 If we take t such that e 4! = % it results
4
(a25)W )@ 2 . .. .
T,s = (f), t= logg— By taking now &, sufficiently small one sees that T,5 is
4

unbounded. The same property holds for Ty if lim;_,.(b55)™ ((G27)(£),t) = (bje)™

We now state a more precise theorem about the behaviors at infinity of the solutions ANALOGOUS
inequalities hold also for G,q, G3g, T2g, T29, T3

346
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. . (a.)(S) (b.)(S)
It is now sufficient to take —* ,—=—— < 1 and to choose
(M28)®) * (Mag)(®)

(P )™ and (Q,5)® large to have

[ (P2g )(5)+G?
(a)® ~ R | R
(MZLS)(S) (PZS)(S) + (( Pzg )(5) + G]-O)e GJ < (PZS )(5)
[ (Q28 )(5)+T?
o0 [ o A )
TE) ((02)® + T; )e 1 + (Q28)"[ = (Q28)

In order that the operator A transforms the space of sextuples of functions G; , T; into itself

The operator A®) is a contraction with respect to the metric

d (((G:0)®, (T5)D), ((6:)P, (T31) @) ) =

sup{max |Gi(1)(t) - Gi(z)(t)|e‘("7’28)(5)t,max |Ti(1)(t) - Ti(z) (t)|e_("728)(5)f}
i tER+ tER4

Indeed if we denote

M (‘G?l)' ﬁ:l) : ( @' @ ) = CH(S)((631)' (T31))

It results

16D - 6| < fot(azs)(s) 165 — 62 o~ (M20)Fs28) o (M28) D5 20) dsg) +
@) @165 = 6P e P e sz .

(@) O (T sen)l655) = 653 e a0 ame P

Gz(zzs)l(ags)(S) (Tz(;)'s(zs)) — (ay)® (Tz(g):s(zs))| e—(’1\7128)(5)5(28)6(’1\7128)(5)5(28)}615(28)
Where s(,g) represents integrand that is integrated over the interval [0,1t]

From the hypotheses it follows

(M)
630D = (G3)@]e M0V <
1 , ~
W((azs)(s) + (aza)(s) + (Azs)(s) +

(P2e)® (ko) ®)d (650, (Ta) Vs (630, (T5)@))

And analogous inequalities for G; and T;. Taking into account the hypothesis (35,35,36) the result

follows
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Remark 1: The fact that we supposed (ayg)® and (bs)® depending also on t can be considered 354
as not conformal with the reality, however we have put this hypothesis ,in order that we can
postulate condition necessary to prove the uniqueness of the solution bounded by

(Pr5) P e (™20t gnd (Q,5)®e (™28t respectively of R,.

If instead of proving the existence of the solution on R, we have to prove it only on a compact then
it suffices to consider that (a})® and (b;")®,i = 28,29,30 depend only on T,4 and respectively on
(G31)(and not on t) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where G; (t) = 0and T; (t) =0 355

From GLOBAL EQUATIONS it results

G, (t) = Giﬂe[—f;{(a{)(s)—(a{')(s)(T29(5(28))15(28))}‘15(28)] >0

T, (£) = TPe-®D®1) > 0 fort> 0

Definition of ((My5)®) , (My5)®), and ((Ma)®), : 356

Remark 3: if G,4 is bounded, the same property have also G, and G;, . indeed if

d

Grg < (M,g)® it follows G:" < (('IWZS)(S))1 — (ahg)®G,g and by integrating

d
Gyo < ((’]\7128)(5))2 =GPy + 2(“29)(5)((,Mzs)(s))l/(aéta)(s)

In the same way , one can obtain

G3o < ((/Mzs)(s))3 = G3o + 2(“30)(5)((7\7128)(5))2/(61'30)(5)

If G,9 o1 G54 is bounded, the same property follows for G,g, G3o and G,g, G, respectively.

Remark 4: If G, is bounded, from below, the same property holds for G,4 and G, . The proof is 357
analogous with the preceding one. An analogous property is true if G, is bounded from below.

Remark 5: If T, is bounded from below and lim,_,o, ((b;")® ((G31)(t), 1)) = (b4o)™ then 358

Tz9 — 0.
Definition of (m)® and &5 :

Indeed let t5 be sothat fort > tg

(b20)® — (b)Y (G5 (0), 0) < €5, Ty (1) > (M)® 359

Then 222 > (a29)® (M)® — £5T,o which leads to 360

(a29)P )™ —est 0 ,—est —est 1.
The = (8—) (1 —e™%%) 4+ Tyoe%5" If we take t such that e™%s% = S it results

5

(az9)®(m)® 2 . - .

Ty = (f), t= logs— By taking now &5 sufficiently small one sees that T,q is
5
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unbounded. The same property holds for Ty if lim,_,.(b50)® ((G31)(t),t) = (b30)®
We now state a more precise theorem about the behaviors at infinity of the solutions
Analogous inequalities hold also for G33, Gzg4, T35, T33, T34
361

@® _®
(M32)® ’ (M32)(®

362

It is now sufficient to take < 1 andto choose

(P;,)® and (Q3, )@ large to have

363

[ (P32)®)+67
@)® |3 5 o — -
- (P32)®@ + ((P32)® +GP)e K < (P)©®

(M37)®

(232)©+1)

[ 364
((0:)® + Tjo)e ( i ) +(032)@] < (Q32)®

b ©
(M32)(®)

In order that the operator A(® transforms the space of sextuples of functions G; , T; into itself 365

The operator A©® is a contraction with respect to the metric 366

4 (((G:5)®, (T3)®), ((62)?, (T:)®)) =

sup{max |Gi(1)(t) - Gi(z)(t)|e‘("7’32)(6)t,max |Ti(1)(t) - Ti(z) (t)|e_(ﬁ32)(6)f}
i tER+ tER4

Indeed if we denote

Definition of @;), @ : ( @?5)' @ ) = cﬂ(ﬁ)((@}s)' (T35))

It results

|(f§;) - G~i(2)| < fot(agz)(é) |G3(? - Gé? e~ (M32)@s(32) o (M32) @537 dsez) +

oL [GS) — 6P fom o mg =l

(az; (6)(T3(;)' 5(32))|63(§) - Gg)|e_mSZ)(G)Sm)e(ﬂsz)(s)s(gz) +

62105 @ (T, 5a)) — (@)@ (TF, 53| €™ M52 V552162 P52y s 5

Where s37) represents integrand that is integrated over the interval [0, t] 367

From the hypotheses it follows

(1) (@)@, @), )™, bHW, (6N >0,
i,j =13,14,15

(2)The functions (a} )@, (b)) are positive continuous increasing and bounded.
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Definition of (p;)V, (r,)™:
(@)D (Tia,t) < ()™ < (A1)
BHPEG, 0 < )W < bH® < (B3

(3) limz, o0 (@)D (Ty4, £) = (p1)V
limg_o (0D (G, 0) = (1)

Definition of (4,5 )™, (B;3)®:

Where ‘ (A13)D, (Bi3)D, (p)D, (r)H)® ‘ are positive constants

and |i =13,14,15

They satisfy Lipschitz condition:
(@YD (T1y, £) = (@)D (Tyg, O] < (g3 ) DTy — Tiyle~ (M) Dt

I(bHYDP G, 0) — (BHYD(G, T < (ki3) DG = G'[|e~ (M) P

With the Lipschitz condition, we place a restriction on the behavior of functions (a; ) (T{,,t) and(a!)® (Ty,, t)

. (T{,4,t) and (T4, t) are points belonging to the interval [( ki3 )D, (M5 )(1)] . It is to be noted that (a;" )V (Ty,, t) is
uniformly continuous. In the eventuality of the fact, that if ( ;5 ) = 1 then the function (a;) (T4, t), the first
augmentation coefficient attributable to terrestrial organisms, would be absolutely continuous.

Definition of ( M5 )™, (ky3)® :
(AA) (M) D, (ky3)D, are positive constants

@® ™
(M13)D 7 (#133)D

Definition of ( P;3 )™, (Q,5)™ :

(BB)  There exists two constants ( 23 )™ and (0,5 )™ which together with
(My3)D, (ki3)D, (A13)Pand (B3 )™ and the constants
(@)@, (@)™, ) D, (b)D, )@, ()W, i =13,14,15,
satisfy the inequalities

@D+ @+ (i) + () (Rig) V) <1
13

ml GO+ DD+ ()P + (0)W ()P <1
13

Analogous inequalities hold also for G5, Gsg, T3¢, T37, Tas 368

@ @

It is now sufficient to take o) ® * (Fae)®

< 7 and to choose
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(P36 )™ and ( Q34 ) large to have

<“336>(7>+G}'-> 369
@)? | 5 5 \T g0 ~
(Magéw) (P30)? + ((Psg) P+ G)e g < (Py)?
370
(036) 7419
[Ch ~ %) 0 _< 79 ) ~ @ N )
(M36)7) (( Q36 ) +Tf )e / + (Qs6) < (Q36)

In order that the operator A’ transforms the space of sextuples of functions G;,T; satisfying 371
37,35,36 into itself

The operator A7) is a contraction with respect to the metric 372

d (((G3)D, (T3) D), ((G39)?, (T3)®) ) =

sup{max |6 (t) - Gi(z)(t)|e‘(’q36)(7)t,max T () - 1,? (t)|e‘("7’36)(7)t}
i teER+ teER+

Indeed if we denote

Definition of (Gso), (T5o)

( @, @ ) = cﬂ(7)((G39)» (T39))

It results

|g§é> _ 5i(2)| < fot(a%)”) |G3(§> ~ @ e~ (M36)7s(36) o (M36)s(36) ds@e) +
[ (@) ]G — 62 |em M50 560 ~(Ms) 530 1
(@367 (TS, 5(26))| G35 = 652~ Ms0) 5300 (Fse) V556

2 " 1 " 2 —(Mar)D Mar) (7D
G;a)I(a36)(7)(T3(7)'S(36)) _ (a36)(7)(T3(7), 5(36))| e~ (M36)""’5(36) o (M36) G0)}ds (36
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Where s34 represents integrand that is integrated over the interval [0, t]

From the hypotheses it follows

373
|(635)V = (G30) Do)t <
1 ’ —~
W((“ss)m + (a36) 7 + (A36)7 +
(P2e) 7 (k36))d (((639)®, (T39) Vs (G30)@, (T35)@))
374

And analogous inequalities for G; and T;. Taking into account the hypothesis (37,35,36) the result
follows

Remark 1: The fact that we supposed (a34)” and (bs4)” depending also on t can be considered as 375
not conformal with the reality, however we have put this hypothesis ,in order that we can postulate
condition  necessary to prove the uniqueness of the solution bounded by

(Ps36) e3Pt qnd (Dye)VeM30) 7t respectively of R, .

If instead of proving the existence of the solution on R, we have to prove it only on a compact then
it suffices to consider that (a;) and (b;)”,i = 36,37,38 depend only on T, and respectively on
(G39)(and not on t) and hypothesis can replaced by a usual Lipschitz condition.

376
Remark 2: There does not existany t where G; (t) = 0and T; (t) =0

From 79 to 36 it results

G; (t) = GiOe[— fot{(aé)(ﬂ_(a{)(ﬂ(T37(5(36))'5(36))}‘15(36)] >0
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T; (t) = Tioe(_(blz)mt) >0 fort>0

Definition of ((M36)),, ((M36)”), and ((Ms6)?), : 377

Remark 3: if G, is bounded, the same property have also Gs; and Gsg . indeed if

Gz < (M3)7 it follows % < ((M36)?7), = (a3,) 7G5 and by integrating

G3; < ((’1\7136)(7))2 =G + 2(“37)(7)((/M36)(7))1/(a§7)(7)

In the same way , one can obtain

Gig < ((’M36)(7))3 = G + 2(‘138)(7)((’M36)(7))2/(a58)(7)

If G5, or Gsg is bounded, the same property follows for G4, Gsg and Gs, Gs, respectively.

Remark 7: If G;¢ is bounded, from below, the same property holds for G5, and Gs5. The proofis 378
analogous with the preceding one. An analogous property is true if G5, is bounded from below.

Remark 5: If Ty is bounded from below and lim,_,,.((b;)” ((G34)(t), t)) = (b3,)? then 379

T3, — .

Definition of (m)™ and ¢, :

Indeed let t, be so that fort > t,

(b37)(7) - (bi”)(7)((G39)(t)' t) < &7, T3¢ (t) > (m)(7)
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Then 2 > (a3,)7 ()™ — &, T;, which leads to 380
(az)) P m)? —eot 0 ,—&st -5t 1.
T3; = (57) (1—e7 ") 4+ T3,e™*7" If we take t such that e=*7* = L results
7

@ ()@
Ty, = (M) t= loggz—7 By taking now &, sufficiently small one sees that T;, is

unbounded. The same property holds for Tsg if lim,_.,(b35) " ((G30)(£),t) = (b3g)”

We now state a more precise theorem about the behaviors at infinity of the solutions of equations 37
to 72

In order that the operator A" transforms the space of sextuples of functions G;,T; satisfying 381
GLOBAL EQUATIONS AND ITS CONCOMITANT CONDITIONALITIES into itself

382

The operator A is a contraction with respect to the metric 383

d (((6:9)D, (T29)), (639, (T3)@)) =
(M) (D) — ()7
Slfp{rfégf |Gl-(1)(t) _ Gi(z)(t)|e (M36)7 t’rg%ic |Ti(1) ® - Ti(Z) (t)|e (M36)7 t}
Indeed if we denote

Definition of (Gs,), (T3o) :

( @: @ ) = 04(7)((539), (Ts9))

It results

60— 6?| < fot(a%)(” 165 — 62 e~ (M36)7s(36) o (M36) s(36) ds@e) +
t 1 21 = (M) D (VD
fo{(aés)(7)|0§6) _ G§6)|e (M36)7’5(36) o ~(M36)""’5(36) 4

R G R
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@)1 (1) " ©) (M) D T ()
GZ |(a36)(7)(T37 ’5(36)) —_ (a36)(7)(T37 ’5(36))| e~ (M36)*"’5(36) o (M36) 5(36)}ds(36)
Where s(3¢) represents integrand that is integrated over the interval [0,1t]

From the hypotheses it follows

384

—(M=)D
|(G39)® — (G39) P |e~(Mae) ™t <
1 , ~
2@ ((a3)? + (a56)7 + (437 +

(P2e)? (ks6) ) (639D, (T39)D; (G30)P, (T30)P))

And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (a%s)” and (b%s)™ depending also on t can be considered 385
as not conformal with the reality, however we have put this hypothesis ,in order that we can
postulate condition necessary to prove the uniqueness of the solution bounded by

(Pa) Vet and (Dae) Ve ™36 7¢ respectively of R, .

If instead of proving the existence of the solution on R, we have to prove it only on a compact then
it suffices to consider that (a;)” and (b}")(”, i = 36,37,38 depend only on T, and respectively on
(G39)(and not on t) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where G; (t) =0and T; (t) =0 386

From CONCATENATED GLOBAL EQUATIONS it results
G, (t) > Gioe[_f(f{(ag)(ﬂ_(ag’)(ﬂ(T37(5(36))'5(36))}d5(36)] >0
T, () = TPeC®D?) > 0 fort > 0
Definition of ((Mss)™),, (M36)7), and ((M36)7), : 387
Remark 3: if G54 is bounded, the same property have also Gs, and Gsg . indeed if
Gz6 < (M36)? it follows % < ((M36)7), = (a37,)7 G, and by integrating

G37 < ((7\7136)(7))2 = G§’7 + 2(a37)(7)((T/I36)(7))1/(a’37)(7)

In the same way , one can obtain
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G3g < ((7\7136)(7))3 = G35 + 2(038)(7)((T436)(7))2/(a§8)(7)
If G5, or Gsg is bounded, the same property follows for Gz¢, G3g and Gs¢, G, respectively.

Remark 7: If G54 is bounded, from below, the same property holds for G;; and G35 . The proofis 388
analogous with the preceding one. An analogous property is true if G is bounded from below.

Remark 5: If Ty, is bounded from below and lim;_, ((b/")? ((G34)(t), t)) = (b5,)7 then 389
T3; — co.

Definition of (m)” and ¢, :
Indeed let t; be sothatfort > t,

(b37)P = (BN ((G30)(£), ) < &7, T34 () > (M)

Then d?; > (az;) 7 (m)? — &,T;, which leads to 390
(aznPam™ —&5t 0 ,—&yt —g5t 1.
T3; = (57) (1—-e7%") 4+ T3he 7" If we take t such thate 7" = S it results
7
(az)) P m)? 2 . - .
T3, = (f), t= logg— By taking now &, sufficiently small one sees that Ts, is
7

unbounded. The same property holds for Tyg if lim, o (b55)" ((G30)(t), t) = (b3s)”

We now state a more precise theorem about the behaviors at infinity of the solutions

—(02)® < —(a16)® + (a17))® = (a1) @ (Ty7, 1) + (a1) P (Ty7, 1) < —(0,)@ 391
—(1)® < =(bie)® + (bj)P — (b16) P((G19), t) = (b15) P ((G19), ) < —(1)P 392
Definition of (v;)®, (v,)®, (1)@, (uy)® : 393
By (v{)® >0, (v,)® < 0and respectively (u;)® > 0, (u,)® < 0 the roots 394
(a) of the equations (a17)(2)(v(2))2 + (0)Pv® — (a,)® =0 395

and (b1)@ @)’ + (1) Pu® — (by)® = 0and 396
Definition of (v,)®,, (7,)®, (i1,)®, (1)@ : 397
By (1)® > 0, (¥,)® < 0 and respectively (i1;)® > 0, (1,)® < 0 the 398
roots of the equations (a;,)® (v(z))2 + (0)Pv® — (a,)@ =0 399
and (b17)(2>(u(2))2 + (1) Pu® — (b )® =0 400
Definition of (m;)®,(m,)®, (u))®, (uy)® :- 401
(b) If we define (m))®, (m,)?, (u)®, )@ by 402
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(mz)(z) = (Vo)(z)' (m1)(2) = (V1)(2)' if (Vo)(z) < (V1)(2)

(my)® = (1)@, (M@ = NP, if )P < V)? < (7)?,

0
and |[(vy)® = %
17

(m)® = (1P, (m)® = V)@, if )P < (v))?

and analogously

(#2)(2) = (uo)(z)’ (ﬂ1)(2) = (ul)(Z)v if (uo)(z) < (ul)(z)

U2)? = W)@, (u)® = @)@, if w)® < (w)® < (@)@,

and | (u)® = ¢

17

(1)@ = W)@, ()@ = ()@, if @)? < (up)®

Then the solution satisfies the inequalities
Gee(VP =10t < G, (£) < Glee®V ™

(p)® is defined

@)_ )] @)
@ GOV TP < Gy () < e GRpeS0
(a18) P69 5D —(p;)@ —(5,)@ —(s)@
((ml)(Z)((sl)(;?_(plel)s(Z)_(52)(2)) [e(( v P16) )t e~ (2) t] + G(l)Be 2 < G18(t) <

(am)(z)Gge [
m2)D ()P -(ax)@)

eGPt _ o-(@i)Pt] 4 GO e~(a10) Pty

T106e(R1)(2)t < Tye(t) < T106e((R1)(2)+(T16)(2))t ‘

S Thee®O P < Ty (6) < 5 Thyel R 40

(11 )(2> )<2>
(b19) DT RODt _ o=(b1e)@t] 4 T0 o= (b1g) Pt
1)@ (R)D (b)) e e T O
(a19) @145 ROD4(r1 )Nt _ —R) @t 0 ,—(Ry)P¢
#)D(R)P+(r10) D+ (R D) R T

Definition of (S,)®, (5,)®, (R))@, (R,)?:-
Where ($,)® = (a16)?(m)® — (aj6)®
($2)® = (a1)® — (p1s)®

(R)® = (b16)® ()™ — (bie)®

(Rz)(z) = (bis)(z) - (T18)(2)

Behavior of the solutions
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_If we denote and define

Definition of (6,)®, (6,)®, ()@, (1,)® :

@ 0))®,(0,)®, ()P, (1,)® four constants satisfying

—(0)® < —(a5)® + (@51)® = (@) P (Tp1, 1) + (@) P (Tzy, 1) < —(01)®

—(12)® < =(b30)® + (020)® = (b20)P (G, 1) — (b)) P ((G23), t) < —(7)®

Definition of (v;)®, (v,)®, (u))®, (u,)® : 420

(b) By (v;)® >0,(1,)® < 0and respectively (u;)® > 0, (u,)® < 0 the roots of the
equations (a21)(3)(v(3))2 + (0)PVv® — (a,)® =0

and (b)) u®)” + (1) PuU® — (by)® = 0and
By (v))® >0, (#,)® < 0and respectively (7i;)® >0, (i1,)® < 0 the
roots of the equations (a21)(3)(v(3))2 + (0)Pv® — (ay,0)® =0
and (b,))@(u®)” + (1) Pu® — (b,0)® = 0
Definition of (m;)®,(m,)®, (u))®, (uy)® :- 421
() Ifwe define (my)®, (m,)®, (u)®, ()@ by
(m)® = )@, ()@ = W), if v)® < (v)®

(m)® = (1)@, ()@ = TP, if ()@ < WP < TY®,

0
and |(vo)® = %
21

(mz)(g) = (V1)(3)' (m1)(3) = (Vo)(3): if (‘71)(3) < (Vo)(s)
and analogously 422

)@ = @)@, @)@ = @)@, if wW)® < @)

- , _ TS
(1)@ = @)@, (w)® = @), if w)® < we)® < @), and|(up)® = %

(12)® = W)®, (1)@ = W)@, if @)® < (up)®

Then the solution satisfies the inequalities

G0e (V=20 < G (1) < G0t

(p)® is defined 423
G)_(p, )3 ®
ﬁazo (D -20)*)t < G,y (1) < (3) 6209(51) t 424
(a22)®63 3 (13 PN (e (® 425
((m1)<3>((sl)é)Z—(pzj)O(”—(sz)<3>) [e((sl) a0 — e~ t] +Goe ™ < (1) <
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(a22)¥62

[6(51)(3)f — e—(aéz)(”t] + nge—(aéz)(3)f)

m2)3((5)®=(a})®)

Tzﬂoe(R1)<3)t < Tho(t) < Tzooe((Rl)(3)+(r20)(3))f | 426
— © 1 3) 3)
(1)@ Toe @™t < Tho () < (u2)® Tye (R + (0™ 427
(b22)®)TS 3) IPANG @) 428
(#1)(3)((;:)(3)_2((;752)(3)) [e(Rl) t— e~ (b22) t] + Tzoze (022)™t < Tzz(t) <

(a22) 1, [ ((R)®+(120)®)t _ —(Rz)(3)t] 0 —R)Pt
P (RO P+(r30) D4R D) | ' ¢ + Toze

Definition of (5,)®, (5,)®, (R)®, (R,)®:- 429
Where (5)® = (a30)® (m,)® — (a30)®
(52)(3) = (azz)(3) - (Pzz)(s)
(R)® = (by0)® ()P — (b30)®

(Rz)(S) = (béz)m - (7’22)(3)

430
431
432
If we denote and define
Definition of (0,)¥, (6,)®, (1)@, (1,)® :
(d) ()@, (0)®, ()W, (1,)® four constants satisfying
—(02)® < —(a3)™ + (a55)® = (@) P (s, t) + (a35) P (T, 1) < —(0)@
—(1)® < =(b3)® + (b35)® — (3) P ((G2), t) = (b3s) P ((G7),t) < = ()@
Definition of (v;)®, (v,)®, (u)®, (u) @, v®, u® : 433
(e) By (v)® >0,(,)® < 0and respectively (u;)® > 0, (u,)® < 0 the roots of the
equations (a25)(4)(v(4))2 + (0)Wv® — (@ )® =0
and (bys)®(u®)” + (1) @u® — (b,,)® = 0 and
Definition of (7,)®,, (7)™, (11,)™, (i1,)™ : 434
435

By (1,)® > 0, (7,)® < 0 and respectively (7;)® >0, (7,)® < 0 the
roots of the equations (azs)(4)(v(4))2 + (0) D@ — (ay)® =0
and (b25)<4)(u(4))2 + (1,)@u® — (b,)® =0 436
Definition of (m,)®, (m;)™, (u)®, ()™, (Vo)™ :-

(f) If we define (m)®, (m,)™®, (u)™@, (ux)® by

(mz)(4) = (Vo)(4)’ (m1)(4) = (Vl)(4)' if (Vo)(4) < (Vl)(4)
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(m)® = ()@, (M@ = TNW ,if W)W < V)® < [TW,

GO
and |(vy)® = G—f)‘*
25

(mz)(4) = (V4)(4)' (m1)(4) = (Vo)m’ if (‘74)(4) < (Vo)(4)

and analogously 437
438

(ﬂz)m = (uo)m’ (ﬂ1)(4) = (u1)(4): if (uo)(4) < (u1)(4)

(1) = (ul)(‘” (1)@ = @)W, if (w)® < (we)® < @)™,

and|(up)® = ﬁ
25

(ﬂz)m = (ul)(4)' (#1)(4) = (uo)(4)r if (771)(4) < (uo)(4) where (ul)(4): (771)(4)
are defined respectively

Then the solution satisfies the inequalities 439
440
G3,e((V -0 ) < G, (1) < GV 441
442
where (p;)¥ is defined 443
444
445
—(4)624 (W -0 @)t < Gos(8) < (4) G3qe et 446
my) 447
(a26)" 63 @) _(p, )@ (5@ (5@ 448
((ml)(4)((51)(2)6_(pZ:)‘t(ﬁt)_(gz)(ﬁt)) [e((51) @2t — e (Tt ] + Ggﬁe (52)7¢ < GZé(t) <
(a26)V 63, $)®¢t —(al )@t 0 —(al ) @®¢
(mz)(4')((51)(4')—(a£6)(4)) [e( 1) — e~ (az¢) ] + Gzﬁe (aze)
|T204e(R1)(4')t < Tou(t) < T204e((R1)(4)+(r24)(4))t l 449
(4) @ (4)
™ )(4) To,eRU™ < Ty (8) < —® )(4) ), e (R +(r) @)t 450
(b26) T, (4) —(b! Y@ _cpl @) 451
T o o] 4 1m0 < 1)
(a26)(4)T204- R 4 @Y —(R>)®¢ 0 . —(R,)®¢
(#2)(4)((R1)(4)+(Tz4)(4)+(Rz)(4)) [e(( 1) (r24) ) —e (R2) ] + Tzee (R2)
Definition of (5;)®, (5,)@, (R)™, (R,)W:- 452
Where (51)(4) = (a24)(4) (mz)(4) - (aé4)(4)
(52)(4) = (azs)(4) - (Pze)m
(R1)(4) = (b24)(4)(#2)(4) - (bé4)(4)
(Rz)(4) = (bée)m - (7’26)(4) 453
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Behavior of the solutions 454

If we denote and define

Definition of (0,)®, (6,)®, (1,)®, (1,)® :

@) (), (0)®,(1)®,(1,)® four constants satisfying

—(02)® < —(a5e)® + (a59)® = (a5s) (T, t) + (a9)® (To, t) < —(0)®

—(1)® < =(b33)® + (b39)® = (b35) P ((G31),t) — (b39) P ((G31), t) < —(2)®

Definition of (v;)®, (v,)®, (u))®, (u)®,v®,u® : 455

(h) By (v1)® >0,(1,)® < 0and respectively (u;)® > 0, (u,)®® < 0 the roots of the
equations (azg)(s)(v(s))2 + (0) v — (ae)® =0
and (by0)® (u®)” + (1)U — (b,e)® = 0 and

Definition of (v,)®,, (v,)®, (i1,)®, (1,)® : 456

By (v,)® >0, (#,)® < 0and respectively (ii;)® >0, (,)® < 0 the
roots of the equations (azg)(s)(v(s))2 + (0,) OV — (@)™ =0
and (b0)® (1)’ + (1) Pu® = (b)) = 0
Definition of (m,)®, (m;)®, (u)®, ()™, (v6)® :-
(i) If we define (m)®, (m)®, (u)®, (1)® by
(m)® = ()™, (m)® = (), if W) < (W)@

(mx)® = (v))®, (m)® = @), if v))® < (V))® < @),

0
and [(v))® = %
29

(mp)® = @W)®,(m)® = (), if ) < (v))®
and analogously 457
U2)® = @)®, ()P = W)®, if (ue)® < w)®
(12)® = @)@, (1)® = @), if w)® < we)® < @)®,

0
and|(uo)® = %
29

(12)® = )™, (1) = W)@, if (@)™ < (ue)® where (u)®, (@)™
are defined respectively

Then the solution satisfies the inequalities 458
G356 (V=@ D) < G (1) < G0t

where (p;)® is defined
1

(ms)®

Ggge((si)(s)—(pzs)(s))t < Gyot) < (;Ggse(sﬂ(s)t 459

mz)(s)
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460
(a30)63) () () —(s,)® —(s,)(® 461
((m1)<5>((sl)é?—(pzsz)i*‘)—(sZ)@) [0t — =T | 4 G0 < G (1) <
(a20)®) 65 DOt _ g=(a30)®t 0 o=(a30)t
(mz)(s)((51)(5)_(11;0)(5)) [e 1 — e~ @30 ] + 6306 azo
|T2086(R1)(5)t < Tha(t) < Te R +r2) )t l 462
1 (s) 1 (s) (s)
mTzose(Rl) L < Toe(t) < @ 79, e (RO +026) )t 463
(b30) 1 Gr  —ly® NG 464
P (R 3e) [t — =i ] 4 The ORI < Ty (1) <

(a30) D1y [(<R YOt (r2) )t _ —(Rz)(s)f] 0 o=(R)®t
DR+ T+ @) 1€ ¢ * Tsoe

Definition of (5;)®, (5,)®, (R))®, (R,)®:- 465
Where (S))® = (a25)® (m3)® — (a3g)®
(52)® = (a30)® — (p30)®
(R)® = (bze)® () — (bés)(s)
(R)® = (b3)® — (130)®

Behavior of the solutions 466
_If we denote and define

Definition of (0,)©®, (0,)©, (1,)®, (1,)©@ :

() (6@, (0)®, (1)@, (1,)® four constants satisfying

—(0)© < —(a5,)® + (a33)® — (a,)© (T3, ) + (a53) @ (T3, ) < —(0)©

— (1) < =(b3)@ + (b33)® = (b3) @ ((G35), t) = (b35) @ ((G35),t) < —(7)®

Definition of (v;)®, (v,)©, (u)®, (u,)©@,v®, u©® : 467

(k) By (v1)® >0,(1,)® < 0and respectively (1;)® > 0, (u,)® < 0 the roots of the
equations (a33)(6)(v(5))2 + (0,)Ov©® — (a3)® =0
and (bs5) @ (u®)” + (2)Ou® — (b5)® = 0 and

Definition of (v,)®,, (v,)®, (i1,)©®, (11,)® : 468

By (1,)® > 0, (#,)® < 0 and respectively (i1;)® >0, (i,)® < 0 the
roots of the equations (a33)(6)(v(6))2 +(0,)Ov©® — (a3,)® =0
and (b33)(6)(u(6))2 + (1) Ou® — (b,,)© =0
Definition of (m,)©® , (M,)©, (u)©, (1)@, (v)© :-

(1) If we define (my)®, (m)®, (1)@, (1)@ by
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(mz)(ﬁ) = (Vo)(ﬁ)' (m1)(6) = (Vl)(G)v if (Vo)(G) < (V1)(6)

(my)©® = (1)@, (M@ = )@, if (1)@ < (V)@ < (7)®,

GO
and |(v))© = G—f)z
33

(mz)(G) = (V1)(6)' (m1)(6) = (Vo)(G): if (‘71)(6) < (Vo)(6)
and analogously
(ﬂz)(G) = (uo)(G)’ (ﬂ1)(6) = (u1)(6): if (uo)(6) < (u1)(6)

1)@ = W)@, (1)@ = @)@, if (W)@ < (ue)® < (@),
0
and| (ue)® = 22
33

(1)@ = )@, ()@ = ()@, if @) < (u)® where (uy)®, (@)

are defined respectively
Then the solution satisfies the inequalities
nge((sl)(s)_(p”)(s))t S Gap(t) < nge(sl)(s)t

where (p1)© is defined
6)_(p.,)©® ©
G2,e(D~@2) )t < G (1) Som@ GO eVt

(m )(6) (6)

( (a3) 96y [0 @~ _ o=t | 1 69,6~ < (1) <

(M) ((51)(O—(p32)O—(52)(®)

(a34)®63, (51)®¢t —(ak)©®¢t 0 —(ah)©®¢
(mz)(s)((51)(6)—(a§4)(6)) [e 1 —e 34 ] + 6346 34

|T3023(R1)(6)t < Tyh(t) < T3°2e((R1)(6)+(T32)(6))f ‘

T329(R1)( & < T3(t) < Te (RO ©+rs) @)t

(1 )(6) (6)
e e—(b§4)(6>t] F T~ < T (1) <
(1) ©((R)©)—(b},)(©)) 34 = 134 =
(a30)©15, (R1)©+(132) )¢ —(Ry)©®)t 0 ,—(R)®¢
(12) O ((R1) O +(r32) (O +(R,)(O)) [e( ! D)~ e ] + Tspe™ 2

Definition of (S;)®, (5,)©, (R,)©, (R,)®:-
Where (5))® = (a32)® (m;)® — (aéz)(ﬁ)
(5)© = (a30)® = (p3)®
(RD® = (b3)© (1) — (béz)(e)

(Rz)(6) = (b§4)(6) - (7’34)(6)
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_If we denote and define
Definition of (0,)7, (6,)7, (1), (1) :

(m) (67, (0)7, (t))?, (1) four constants satisfying
~(02)7 < —(a36)” + (a37)7 — (a§6) 7 (T37,£) + (a57) 7 (Ta7, t) < —(0)”

(1) < =(b36)7 + (b37)7 = (b36) 7 ((G30), t) — (b37) P ((G30), t) < —(2)”
Definition of (v;)?, (v,)@, (u)?, ()@, v?,u™ : 480

(n) By (7))@ >0,1,)™ < 0and respectively (u;)” > 0, (u,)” < 0 the roots of the
equations (a37)(7)(v(7))2 + ()77 — (az6)? = 0 481
and (b37)(7)(u(7))2 + (1) Pu? — (by)” = 0 and

Definition of (v,)7,, (¥,)7, (i1,)?, (1) : 482
By (1) > 0, (#,)” < 0 and respectively (i1;)7? >0, (,)7 < 0 the
roots of the equations (a37)(7)(v(7))2 + (0,) VD = (a3)? =0
and (b3,)?(uP)* + (1) DU — (bse)? = 0

Definition of (my)”, (1), (1) ?, ()7, (v0) ™ -

(o) If we define (m))™@, (M), (u))?, (ux)” by

(mz)m = (Vo)m’ (ml)(7) = (V1)(7): if (Vo)m < (V1)(7)

(mp)? = ()7, ()7 = )7, if ()7 < W) < @),

0
G3e

and |(v)?) = 2

(M) = ()@, (m)? = (), if )7 < (vp)”

and analogously 483

(ﬂz)m = (uo)m’ (.“1)(7) = (ul)(7)' if (uo)m < (u1)(7)

(”2)(7) = (u1)(7)' (ﬂi)m = (ﬁl)(7) Jif (u1)(7) < (uo)(7) < (1_11)(7)'

0
and | (ug)” = %
37
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(#2)(7) = (u1)(7), (#1)(7) = (uo)m, if (1_11)(7) < (uo)m where (ul)(7)' (al)m

are defined respectively

Then the solution satisfies the inequalities 484

G5e (7= < G (1) < 6Dt

where (p;)7 is defined

485
_G e(DP-@30 M)t < . (1) <z GO o5t 486
M) 36€ 37 )(7) 36€
(a39)763 (M) ()7 RN NG 487
( (m1)(7)((51)(3?—(17363)6(7)—(52)(7)) [e (0 =ps e - e ] + Ggge 7 < Gye(t) <
(a38) 768, @ NG @@
(mz)(7)((Z?)(ﬂj(ilég)(ﬂ) [6(51) t _ g=(azs) t] + G'gge (azs) t)
18,e® 7t < T,(6) < TRV +020 )t | 488
79 e®D7t <7, (1) < =5 e (R +(rs) M)t 489
(1 )(7) 36€ (7) 36€
(b3e) V13 @ EPING) IPYING) 490
e[ — 050 4 e < 1y 1) <
(a38) 715 R & —(R)D 0 —(RND
(#2)(7)((Rl)(%s_'—(T363;?7)+(R2)(7)) [e(( D7 +(r36) )t _ e~ (R2) t] + Tsge (R2)Yt
Definition of (5;)7, (5,)7, (R, (Ry)7:- 491

Where (51)(7) = (aae)(7)(m2)(7) - (aée)m

(52)(7) = (a38)(7) - (P38)(7)
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(R1)(7) = (b36)(7)(y2)(7) - (bés)m

(Rz)m = (bés)m - (7’38)(7)

From GLOBAL EQUATIONS we obtain

av(?
dat

(a36)7 = (@567 = (@) + (@5e) 7 (T57,£) ) —

(@)D (Tsy, OV = (a3,) v

Definition of v(7 :- () = G3s

It follows

dv(7)
dt

B ((a37)(7)(v(7))2 + (02)(7)V(7) - (ase)(7)) <

~(@N?E?) + (@) ~ (a0 ™)

From which one obtains

Definition of (v,)7, (vy)” :-

G3 _
(a) For0 <|(vp)™ = ﬁ < (v)? < @)

W) D+(0) D vy Vel @0 (D=0 ) ]
14(0) el @ (eDD-00) )]

v () =

it follows (vo) ™ < v (t) < (v))?

In the same manner , we get
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v (t) < 3L

1+@ el @D (@D -E2 ) ] '

(vl)m+(E)(7)(VZ)(7)e[—(ag7)(7)((v1)(7)_(v2)(7)) t] @)D =)
W)@

From which we deduce (vy)? < v?(t) < (%)

0
(b) 1f 0< ()P < (v)? = % < (1) we find like in the previous case,
37

D+ D ) Del =@ P (DD -2 ]
140l @ P (DD -0 D) ]

)@ < < v <

(Vl)(7)+(®(7) (Vz)(”e [—(a37)(7)((71)(7) -(fz)(ﬂ) f]
140Dl @D (EDD - ) ]

< [@)?

0
(© 1 0<@)? < @) <| ()7 =2, we obtain
37

@D+ @y Del @V (@D -27) ]

7 < (D <
()™ = v < 1Ol @n D (@D -7 ]

< (v)?

And so with the notation of the first part of condition (c) , we have

Definition of v(7(t) :-

(mz)(7) < v ) < (ml)(7): v ®) = G36(t)
G37(t)

In a completely analogous way, we obtain

Definition of u(”(t) :-

(#2)(7) < u(7)(t) < (/11)(7); u(7)(t) _ Tz6(®
T37(t)

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the

theorem.

202

www.iiste.org
png

IS’

494

495



Advances in Physics Theories and Applications
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012

Particular case :

If (as)? = (ay;)?, then (6,)” = (0,)7 and in this case (v;)? = (¥,)7 if in addition
ve)? = (v))? then vV (1) = (V)™ and as a consequence Gz4(t) = (Vo) G5, () this also
defines (v,)” for the special case .

Analogously if (b4s)? = (b5)D, then (1,) = (1,)™ and then

(u)? = (1) Pif in addition (ue) " = (u;)? then Ty4(t) = (uy) T3, (t) This is an important
consequence of the relation between (v;)” and (v;)(”, and definition of (u,)".

We can prove the following
If (a]')Pand (b}")(”) are independent on ¢t , and the conditions
(a%6) " (a57) " = (asz6) ™ (az;)™ < 0

(@46) 7 (a57)? = (a36) " (as7)” + (a36) (P36) " + (a5) 7 (p37) ™ + (p36) 7 (p37)" > 0

(bés)(7)(b§7)(7) - (b36)(7)(b37)(7) >0,

(b§6)(7)(b§7)(7) - (b36)(7)(b37)(7) - (bés)m (7'37)(7) - (bé7)(7) (7'37)(7) + (7'36)(7) (7'37)(7) <0

with (pss)7, (137)7 as defined are satisfied , then the system WITH THE SATISFACTION OF THE
FOLLOWING PROPERTIES HAS A SOLUTION AS DERIVED BELOW.

Particular case :

If (a})® = (a},)@, then (6,)® = (6,)® and in this case (v;)® = (¥;)@ if in addition
(ve)® = (v)® then v (t) = (v,)@® and as a consequence G;4(t) = (Vo) @Gy, (t)

Analogously if (bi5)® = (b)))@, then (1,)® = (1,)® and then

(u)@ = () @if in addition (ug)@® = (u;)® then Ty4(t) = (ug)@Ty,(t) This is an important
consequence of the relation between (v;)® and (v,)®

From GLOBAL EQUATIONS we obtain

av®

at (az0)® — ((aéo)(” — (a5)® + (@) (Tzy, t)) = (a5)® (Tpy, OV — (az)v®
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Definition of v® :- y@® = G20 501
G21
It follows

2 av® 2
—((a21)(3)(v(3)) + () @V — (azo)(B)) < :;t < _((a21)(3)(v(3)) + (a)@v® —
(azo)(s))

502
From which one obtains
0
(8) For0 < (v)® =2 < (1)@ < (7)®
21
v(g)(t) > (vl)(3)+(C)(3)(v2)(3)e[‘(a21)(3)((Vl)(3)—(vo)(3))t] (C)(3) ~ M
= 1+(C)(3)e[—(a21)(3)((1/1)(3)_(1;0)(3)) t] ’ - (Vo)(3)_(V2)(3)
it follows (v))® < v®(t) < (v)®
In the same manner , we get 503
V@ (p) < T)O+©OP @@ @0 D(E0O-E2) (©)F = V-0
= 1+(E)(3)e[—(azl)(3)((ﬂl)(3)_(vz)(3)) t] ' - (Vo)(3)_(vz)(3)
Definition of (¥,)® :-
From which we deduce (v,)® <v®(t) < (7,)®
0o
() If 0< ()® < (v)® = % < (1,)® we find like in the previous case, 504
@) @) @)@z ()= 3 ¢
(Vl)(3) < v1) 340 (v2) 3 e[(3) (35 - ) ] < V(3) (t) <
14(0)® el @@(vD@-02 @) ]
TN SN IISIN )
(vl)(3)+(®(3)(v2)(3)e[ (@20 @ (@)D -@2)) ] < (1)@
1+ (O@el @@ (ED®-m®) =
0o
(© 1f0<@)® < @)® < (v)® =22 weobtain 505

21
)40 ® @) @el-@DP(EDP-2)) ]

= (3
B) <« 1,3 () <« TV
(v)® < v < 14O el @D (EDE-2)®) ]

< (Vo)(3)

And so with the notation of the first part of condition (c) , we have

Definition of v®(¢t) :-

(mz)(3) < V(3)(t) < (ml)(S), V(3)(t) _ G20®
G21(8)

In a completely analogous way, we obtain

Definition of u®(t) :-

204



Advances in Physics Theories and Applications
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012

1) < @ < @)®, | @) =225
T21(8)

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in
the theorem.

Particular case :

If (ayy)® = (ay))®, then (6,)® = (0,)® and in this case (v;)® = (¥,)® if in addition
(vo)® = (v))® then v () = (v,)® and as a consequence G, (t) = (Vo) P G, (1)

Analogously if (by)® = (by))®, then (1,)® = (1,)® and then

(uy)® = ()@ if in addition (ug)® = (u;)® then Ty, (t) = (uy) Ty, (t) This is an important
consequence of the relation between (v;)® and (¥,)®

: From GLOBAL EQUATIONS we obtain

av®
dat

(a0)® — ((a§4)(4) — (azs)® + (@)@ (Tys, t)) — (as)® (Tps, OV — (az5)Pv®

Definition of v(® :- y@ = G2¢
G2s
It follows
2 dv® 2
~(@)P @) + @) - (2:)®) = T < = (@)D @) + (@) Ov® -
(@20)®)

From which one obtains

Definition of (v,)®, (vo)® :-

0
Gay

0
G2s

(d) For0 <|(vy)® = < ()@ < ()W

No! ) > (vl)(4)+(C)(4)(vz)(4)e[_("-25)(4)(("1)(4)—(VO)(4)) t] (C)(4) _ (v) @ ()@
- 4+(C)(4)e[—(azs)(4)((V1)(4)—(Vo)(4)) t] ¢ (o) @ —(v)®
it follows (vo)® < v®(t) < (v))@
In the same manner, we get
@ ) < (Vl)(4)+(6)(4)(72)(4)3[‘(az5)(4)(@1)(4)—(?2)(4)) t] (é)(4) _ M
- 4+(@(4)e[—(azs)(“)((ﬁ)(“)—(Vz)(“)) t] ’ (o) @ —(w,)®

From which we deduce (v)® < v#®(t) < (v,)®
0
(e) f0<W)® < ()® = g—z)‘: < (7)™ we find like in the previous case,

W)@+ (vy)@e [—(azs)(4) ((V1)(4) —(Vz)(4)) f]

< v@®(p) <
1+(0)@el~ @9 (0D®-w2) @) ] =vi =

(V1)(4) <
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T B +(O® 7y @el (@28 P (T B -T2 @)

< (v.)®)
14O @l @29 @(EDD -2 @) ] =)
511
9 512
f) fo<W)® < @) <|()® = % , we obtain
25
S @) 4 (@ (@) | (@29 D (DD - @) ]
@ < ,@® <« T THOP @) Pe < 4)
v < v < PR RSO CRIORTRI) P < (vo)
And so with the notation of the first part of condition (c) , we have
Definition of v (t) :-
@) < @) < @ @ () = 622
(m)® < vO (1) < ()@, | vO(©) = 28
In a completely analogous way, we obtain
Definition of u®(t) :-
4) 4) (4) (4) _ T24(®)
W)™ < u™ () < ()™, [ u¥ (@) ===
T25(t)
Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the
theorem.
Particular case :
If (ay)® = (ays)™@, then (6,)® = (0,)® and in this case (v;)® = (¥,)® if in addition 513
Vo)® = (v))@ then v (1) = (vy)® and as a consequence G, (t) = (Vo) @ G,5(t) this also
defines (v,)™ for the special case .
Analogously if (by,)® = (by5)®, then (1,)® = (1,)® and then
(u)™@ = (@) @if in addition (ug)® = (uy)® then T, (t) = (uy) @ T,s(t) This is an important
consequence of the relation between (v;)® and (¥;)®, and definition of (1,)®.
514
From GLOBAL EQUATIONS we obtain 515
av® ’ I " 7
a (az9)® — ((azs)(s) — (a59)® + (a¥5)® (Ty, t)) — (a59) O (Ta9, IV — (az9) v®
Definition of v(® :- v® = &8
G29

It follows

2 dav(®
- ((a29)(5)(V(5)) + (0) v — (azs)(s)) <=

dt

s - ((a29)(5)(V(5))2 + (o) v — (azs)(s))

From which one obtains

Definition of (v,)®, (vy)® :-

G _
(8) For0 <|(v)® = ﬁ < ()® < (#)®
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v (6) = O +©O @l @D (eVP-00 )] ©)® = -
- 5+(0)®el @29 (DP-00)®) ] ’ ) ®-()®)
it follows (v)® < v®(t) < (v))®
In the same manner, we get 516
v () < O+ O@p@el @002 (©)® = - ®
- 54+(0) el (@20 P(EDO-2®)) ’ ) O -@)®)

From which we deduce (vy)® < v®(t) < (75)®

0
(h) 1f 0< ()® < (v)® = % < (1,)® we find like in the previous case, 17
29
—(az9)®((v) B =) ¢
v)® < O +(OD @l 2 (0P -0 ) < vO() <
140 ®el @@ (0D -2 ) ]
@O+ @y Del~@29F (TP -m2)P) ] < (5A®
1+(O@el @2 (EE- )] = (1)
- ) < (7.1 (5) — Gs . 518
(i) fOo<()™ <) =|(vo) =3, , We obtain
S 1 (8 (75 | (@20 P (DD =) D) ]
(5) <« (5 < & +HOW @) e < (5)
()™ = v < 14O el @29 (DO~ ®) ] = (o)
519
And so with the notation of the first part of condition (c) , we have
Definition of v (t) :-
®) < O (p) < ) |G (p) = G28®
()™ < vO©) < (m)®, v () = 22
In a completely analogous way, we obtain
Definition of u®(t) :-
G) < 4 ® [ G _ s®
(1) < u™(t) < ()™, [u™(@) =
T29(t)
Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the
theorem.
Particular case :
If (as)® = (ayy)®, then (6,)® = (0,)® and in this case (v;)® = (¥;)® if in addition
(vo)® = (v5)® then v () = (vy)® and as a consequence G,5(t) = (Vo)™ G,o(t) this also
defines (v,)® for the special case .
Analogously if (by5)® = (by)®, then (1,)® = (1,)® and then
(u)® = (1) ®if in addition (1) = (u;)® then T,g(t) = (ug) P Tyo(t) This is an important
consequence of the relation between (v;)® and (#;,)®, and definition of (u,)®.
520
we obtain 521

207



Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Ly
Vol 7, 2012 NS'E
av(®

a (as;)® — ((aéz)(ﬁ) — (a33)©@ + (a,)© (T3, t)) — (a43)(© (T33, )v(® — (a33) Ov®

Definition of v(® :- p(© = G32
G33

It follows
2 dv(® 2
—((a33)(6)(v(6)) + (0,)©Ov® — (agz)(@) <T—< —((ass)“)(v(@) + (0)©v® —
(a32)(6))

From which one obtains

Definition of (v,)©, (v,)© :-

. GY _
() For0<|(vo)® = G_:‘.’z < (1)® < (#)®

W) O+(0) O ()@l @39 (D=0 @) o]

VO 2 T O = (a0
it follows (vo)©® < v®(t) < (v,)©®
In the same manner , we get 522
V(B)(t) - (vl)(ﬁ)+(c‘)(ﬁ)(Vz)(6)e[_(“3i)(6)(@1_)(6)_(72)(6))t] ’ (5)(6) _ (71)(6)—@0)(6) 523
1+(f)(6)e[_(a33)(6)((vl)(6)_(VZ)(6)) t] (o) O —(@,)(®
From which we deduce (vy)® < v©(t) < (%,)®
(k) 1f 0<)® < (v)® = g—gz < (#,)® we find like in the previous case, 524
r)® < DO+ ()@ [ @O (DO -2 @) < O <

1+(C)(6)e[_(a33)(6)((V1)(6)_(V2)(6)) ]

@O +(0) O (1)@l (@3 (@O -32)(®) 1]
1+(O)© el @@ (EDO-2)©) ]

< (1,)©®

9 525
) fo<)®<@)® <|()® = % , we obtain
33

@O+ @)@l @3 (EDO-32) @) ]

(6) (6)
% <v t) <
(1) ®) 1+(C')(6)e[‘(a33)(6)((Vl)(s)‘@)(@) t]

< (Vo)(6)

And so with the notation of the first part of condition (c) , we have
Definition of v (t) :-

(mz)(G) < v(©) t) < (m1)(6): (6 ®) = G32(t)
G33(t)

In a completely analogous way, we obtain
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Definition of u(®(t) :-

1)@ < @@ < @)@, [u@®) =25
T33(t)

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the
theorem.

Particular case :

If (a4,)©® = (ay3)®, then (6,)©® = (0,)® and in this case (v;)©® = (¥,)® if in addition
(V) ® = (v1)© then v®(t) = () and as a consequence G, (t) = (Vo) © G33(t) this also
defines (v,)© for the special case .

Analogously if (b35)® = (b53)®, then (1,)© = (1,)© and then

(uy)® = (1) @if in addition (uy)® = (u;)® then Ty, (t) = (uy)® T35 (t) This is an important
consequence of the relation between (v;)® and (¥;)©®, and definition of (1,)©®.

526

Behavior of the solutions 527
_If we denote and define
Definition of (6,)7, (6,)?, (1)@, (1,)7 :
P (06)7,(0)7, ()7, (r,)? four constants satisfying
_(02)(7) = _(aés)(7) + (aé7)(7) - (age)(7)(T37 )+ (a§7)(7)(T37 1) < _(01)(7)
—(1)P < =(b36)7 + (b37) 7 = (b36) 7 ((G30),t) — (b37) P ((G30), 1) < —(1)”
Definition of (v;)™, (v,)?, (u))?, (up)?, v, u? : 528
(@ By (v))? >0,(,)? < 0and respectively (1) > 0, (u,)” < 0 the roots of  the

equations (a37)(7)(v(7))2 + (0) v — (a3)P =0

and (by,))? (w®)” + (1) Pu? — (bye)™ = 0 and

529

Definition of (7,)™,, (7,)?, (1)), (1) : 530.

By (1)) > 0, (#,)” < 0and respectively (i1;)” >0, (1,)7 < 0 the

roots of the equations (az,)” (v(7))2 + (0) v = (a36)” =0
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2
and (bs7)”(u”)" + (@) Pu” = (bse)” = 0

Definition of (m,)™@, (M), (1)@, (u)?, (vo)? :-

() If we define (m)”, (m,)”, (u)?, ()" by

(mz)m = (Vo)m' (m1)(7) = (Vl)(7)v if (Vo)m < (V1)(7)

M) = ()@, ()P = GND,if )7 < V) < [T,

0
and [(vo)? = %
37

(M) = ()P, (m)? = (), if )7 < (vp)”

and analogously 531

(ﬂz)m = (uo)m’ (.“1)(7) = (u1)(7)r if (Uo)m < (ul)(7)

1) ? = w)?, (u)? = @7, if (w)? < () < (@),

0
and [ (u)? = %
37

(.“2)(7) = (u1)(7)’ (.“1)(7) = (uo)m: if (771)(7) < (uo)m where (ul)(7)' (ﬁ1)(7)

are defined by 59 and 67 respectively

Then the solution of GLOBAL EQUATIONS satisfies the inequalities 532

G0e((DV-@30M)t < G, (t) < GOVt

where (p;)” is defined
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- Q) @
WG% eS0T =30 )t < Gy (1) < (7) Gee® 533
(a38)(7)6396 s )(7)_( )(7) t —(S )(7),5 0 ,—(S )(7)t 534
PGP -3e) D=2 ) [e( D) = e ] e T < Gag(D) <
(a39)763 [e6D7t — g=@)Vt] 1 O e~(az0) 7ty

M) ((51) P =(az5) )

T e®Vt < T (1) < 7O, e (R +rae) )t l 535
] (@) (7)
(” )(7) T36 e®RYt < T 26 (£) < ( )T36 (R +(r36) ")t 536
(b39) 775 ROt _ - (bsg) Dt 0 ,—(bye) Pt 537
(”1)(7)((Rl)(7)_35,é8)(7)) e(RMt _ o—(b3g) ] + The (b3g) < Tye(t) <
(a38)(7)T396 ((R )(7)+(T )(ﬂ)t _ ,—(R )(7)1' 0 ,—(R )(7)t
U2) P (R +(r36) M +(R2)7)) [e ' * e ] +Tsee
Definition of (5,)7, (5,)?, (R, (R,)7:- 538
Where (5)7 = (az6)” (M) — (az6)?”
(52)(7) = (a38)(7) - (P38)(7)
539
(R1)(7) = (bss)(7)(ﬂz)(7) - (b36)(7)
(Rz)m = (bés)m - (Tss)m
From CONCATENATED GLOBAL EQUATIONS we obtain 540

,,(7) , , )
= (4360)7 = ((@5)? = (@3)? + (a36) (T, 1)) -
(a;7)(7) (T3, t)v(7) _ (a37)(7)v(7)
Definition of v(7 :- y@ = Gz6
G37
It follows
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av(?
dt

B ((a37)(7)(v(7))2 + (0-2)(7)1/(7) - (a36)(7)) =< <

- ((a37)(7)(v(7))2 + (o) Pv? — (036)(7))

From which one obtains

Definition of (#,)™, (vo)? :-

G3 _
(m) For 0 <|(v)” = ﬁ < ()P < @)

W) D +(0) D vy el @D P (D=0 ) ]
14(0)Me [-asND (v D-we) ) ]

v(t) =

it follows (vo)™? < v (t) < (v)?
In the same manner , we get

@D +@D @yl @ (@D~ 7)
7 el~@sN (@D -2)7) (] :

v () <
1+(C)

From which we deduce (v)? < v (t) < ()7

)P -wy)?

7 = 1) 7-0vo) ~
O = =0
~7) _ D= ?
(O = P®

0
n If 0<)? < @)? = % < (1) we find like in the previous case,
37

D+ D ) Del =@ P (@D D=2 ]
140 el @D (DD -0 D) ]

(Vl)(7) <

@)D +(©D el @ P (@D -2 7) ]
14@M el @ (@D~ D) ]

< @)?

0
(0) 1f 0< (W)™ < (@T)P <|(v)® = 22| , we obtain
37

@)D +(OD el @ (@07 -w27) 1]

< v <

)P < v <

1+(f)(7)e[_(a37)(7)((71)(7)_(72)(7)) t]

<

(Vo)m

And so with the notation of the first part of condition (c) , we have

Definition of v (¢) :-
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(mz)(7) < ‘V(7)(t) < (ml)(7): V(7)(t) _ Gz6(®)
G37(t)

In a completely analogous way, we obtain

Definition of u™(¢) :-

1) < u?® < @), |u?(0) = 200
T37(t)

Now, using this result and replacing it in CONCATENATED GLOBAL EQUATIONS we get easily
the result stated in the theorem.

Particular case :

If (az6)” = (az,)?, then (6,)” = (0,)7 and in this case (v;)” = (¥;)” if in addition
(vo)? = (v)? then vV (t) = (v,)? and as a consequence Gs4(t) = (Vo) 7G5, (t) this also
defines (v,)? for the special case .

Analogously if (b35)? = (b3,)?, then (7,)? = (1,)™ and then

(uy)? = (@) if in addition (ug)? = (uy)? then Ts4(t) = (ug) T3, (t) This is an important
consequence of the relation between (v;) and (¥,)”, and definition of (u,).

(b1)PTy5 = [(b1) W = (b1 P (G) |Tyy = 0 544
(b15) P T1y = [(b1s)™ = (b15)P(G) 1Ty5 = 0 545
has a unique positive solution , which is an equilibrium solution for the system 546
(016?617 — [(a16)® + (a1) P (T17)]G16 = 0 547
(a17) @616 — [(@1)P + (af)P(T17)]Gy7 = 0 548
(a18) P67 — [(@19)® + (ai) P (T17)]Gig = 0 549
(b16)PTy7 = [(b16)® = (b16) P (G16) |Trs = 0 550
(b17)(2)T16 - [(b{7)(2) - (b£’7)(2)(619) 1Ty, =0 551
(b1)PTy7 = [(b1s)® — (b15) P (G19) IT1s = 0 552
has a unique positive solution , which is an equilibrium solution for 553
(a20)PG21 = [(a30)® + (a0) @ (T21)] G20 = 0 554
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(‘121)(3)620 - [(a'21)(3) + (aé’1)(3)(T21)1621 =0 555
(a2)®6Gy; — [(aéz)(” + (aélz)(3)(Tz1)]Gzz =0 556
(bzo)(3)T21 - [(béo)m - (bé'())(3)(623) 1T50= 0 557
(b21)(3)T20 - [(bél)(s) - (béll)(g)(Gm) ]T21 =0 558
(bzz)(3)T21 - [(béz)m - (bé’z)(3)(623) 1T, = 0 559
has a unique positive solution , which is an equilibrium solution 560
(‘124)(4)625 - [(a’24)(4) + (a§'4)(4)(T25)]Gz4 =0 561
(azs) WGy — [(aés)(@ + (aéls)(4)(Tzs)]st =0 563
(azs)(4)625 - [(alze)m + (aéle)(4)(Tzs)]Gze =0 564
(b2) W Ty5 = [(b5)® — (b5) P ((G27)) 1Toa = 0 565
(bzs)(4)T24 - [(bés)m - (béls)(4)((627)) ]Tzs =0 566
(bze)(4)T25 - [(bés)m - (béle)m((Gn)) IT,6= 0 567
has a unique positive solution , which is an equilibrium solution for the system 568
(azs)(S)ng - [(alzs)(s) + (alzls)(s) (ng)]st =0 569
(azg)(s)st - [(a’29)(5) + (a’2’9)(5) (T29)]629 =0 570
(as0)® Gy — [(aéo)(S) + (aélo)(s)(ng)]Gw =0 571
(b2g) P Te — [(b5)® — (b55) ) (G31) ITog = 0 572
(b29)(5)T28 - [(bé9)(5) - (bélc))(s)(Gn) IT9= 0 573
(b30)(5)T29 - [(béo)(S) - (bélo)(s)(Gn) 1T50=0 574
has a unique positive solution , which is an equilibrium solution for the system 575
(as5)®Gs33 — [(aéz)@ + (aélz)(ﬁ)(T33)]G32 =0 576
(as3)®©Gs; — [(aé3)(6) + (a§’3)(6)(T33)]G33 =0 577
(a34)(6)G33 - [(a’34)(6) + (a§'4)(6)(T33)]G34 =0 578
(b32) @ T35 = [(b5)© — (b55) @ (G35) T3, = 0 579
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(bss)(G)Tsz - [(bés)@ - (b§'3)(6)(635) 1T33=0
(b34)(6)T33 - [(b§4)(6) — (b3 (6)(635) T34 =0

has a unique positive solution , which is an equilibrium solution for the system

|
o

(as6)"G37 — [(aés)m + (aéle)(7)(T37)]Gss =

(‘137)(7)636 - [(a'37)(7) + (a§’7)(7)(T37)]G37 =0

|
o

(ase)G37 — [(aés)m + (akg)? (T37)]Gss =

(b36)(7)T37 - [(bés)m - (béle)(7)(639)]T36 =0
(b37)(7)T36 - [(b§7)(7) - (b§’7)(7)(639) T3, =0

(b38)(7)T37 - [(bés)m - (béls)(7)(639) T35 =0

has a unique positive solution , which is an equilibrium solution for the system

(a) Indeed the first two equations have a nontrivial solution G3¢, G3; if

F(Tso) = (a§6)(7)(a’37)(7) - (a36)(7) (a37)(7) + (aéa)(7)(a§’7)(7) (Ts7) + (a§7)(7) (al3’6)(7) (Ts7) +
(a%6) " (Ts7) (a47) P (Ts7) = 0

Definition and uniqueness of T;, :-

After hypothesis f(0) < 0, f(c0) > 0 and the functions (af’)(7)(T37) being increasing, it follows
that there exists a unique T3, for which f(T3,) = 0. With this value , we obtain from the three
first equations

Gar = (az6)"6G37 Gae = (a38) 7635
3T [@h)P+@i)(r5,)] 1 T3 T (k) P+ P(13)]

(e) By the same argument, the equations( SOLUTIONAL) admit solutions Gz, G35 if

©(G3q) = (béﬁ)(7)(b§7)(7) - (b36)(7)(b37)(7) -
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[(36) 7 (b37)7 (G30) + (b37)7 (b56) 7 (G39)| +(b36) 7 (G30) (b37) 7 (G3o) = 0

Where in (G34) (G364, G37, Gsg), Gs6, G3g must be replaced by their values from 96. It is easy to see 562
that ¢ is a decreasing function in G5, taking into account the hypothesis @(0) > 0, () < 0it
follows that there exists a unique G3; such that ¢(G*) = 0

Finally we obtain the unique solution OF THE SYSTEM

G37 given by ¢((G39)*) = 0, T37 given by f(T3;) = 0 and

Gr. = (a36)(7)5§7 Gt = (a38)(7)5§7
36 7 [(@4) D +(@tp) D (13,)] 1 38 T [(ae) P +(asp)P(137)]
T* — (b36)(7)T§7 T* — (b38)(7)T?T7 563
36 T bl D -5 D ((G39)0] 1 738 T [bhe) D - (05D ((639))]
Definition_and unigueness of T;; :- 564

After hypothesis £(0) < 0, f(«0) > 0 and the functions (a;)"(T,,) being increasing, it follows that
there exists a unique T, forwhich f(T;;) = 0. With this value , we obtain from the three first
equations

G = (a20)® 624 G = (a22)® 624

207 [@h)®@+@)® ()] 7 TR (@)@ +(ag) @ (13)]

565

Definition and uniqueness of T, :- 566
After hypothesis f(0) < 0, f(c0) > 0 and the functions (a/")® (T,s) being increasing, it follows
that there exists a unique T3z for which f(T;5) = 0. With this value , we obtain from the three
first equations
G = (a20)W62s G.. = (a26) W65

27 @®+@fp®(r5)] 1 20T [(aha)®+(afe) @ (13)]
Definition and uniqueness of T, :- 567
After hypothesis f(0) < 0, f(c0) > 0 and the functions (af’)(s)(ng) being increasing, it follows
that there exists a unique T3y for which f(T,) = 0. With this value , we obtain from the three
first equations
G = (a28) 629 Gar = (a30)P 629

27 [@h)®@+@h)®(r50)] 1 0T [(@30)®+(a5) ) (150)]
Definition and uniqueness of T5; :- 568

After hypothesis f(0) < 0, f(c0) > 0 and the functions (a;")® (Ts3) being increasing, it follows
that there exists a unique T35 for which f(T33) = 0. With this value , we obtain from the three
first equations
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(6)6 (6)G

GSZ (az2) 33 G34 (azq) 33

T (@) O+@p©r)] T @@+ @) ©(15)]

(f) By the same argument, the equations 92,93 admit solutions G5, G,, if 569
@(G) = (bis)(l)(bh)(l) - (b13)(1)(b14)(1) -

[(b13) P (b)) P (6) + (b1) P (b15) V()] +(b15) P (G) (b)) P (6) = 0

Where in G(Gy3, G4, G15), G13, G1s must be replaced by their values from 96. It is easy to see that ¢

is a decreasing function in G, taking into account the hypothesis ¢(0) > 0, () < 0 it follows

that there exists a unique G;, such that ¢(G*) = 0

(g) By the same argument, the equations 92,93 admit solutions G, G, if 570
@(Gyo) = (b{e‘.)(z)(bb)(z) - (ble)(z)(bn)(z) -
[(b16)® (b17) P (G1o) + (b17) P (b15) P (G19)]+(b16) P (G10) (1) P (G19) = 0

Where in (G15)(G1g, G17, G15), G16, G1g Must be replaced by their values from 96. It is easy to see that 571
@ is a decreasing function in G, taking into account the hypothesis @(0) > 0, ¢(c0) < 0 it follows
that there exists a unique G7, such that @((G5)*) =0

(a) By the same argument, the concatenated equations admit solutions G, G, if 572
(Gy3) = (béo)(3)(bé1)(3) - (bzo)(S)(bu)(S) -
[(b50)® (b)) P (G3) + (b51) P (b36) P (G23) ]+ (b30) P (G23) (b31) P (G3) = 0

Where in G,5(Gg, G21, Go2), Goo, G2, Must be replaced by their values from 96. It is easy to see that ¢
is a decreasing function in G,, taking into account the hypothesis ¢(0) > 0, ¢@(x) < 0 it follows
that there exists a unique G;, such that ¢((G,3)*) =0

573
(b) By the same argument, the equations of modules admit solutions G4, G5 if 574
(Gy7) = (bé4)(4)(bés)(4) - (b24)(4)(b25)(4) -
[(054)® (b35) ) (G27) + (b35)™® (b52) P (G27) |+ (b5) ™ (G7) (b35) ™ (Ga7) = 0
Where in (G57)(Gy4, G35, G26), G4, G2 Must be replaced by their values from 96. It is easy to see
that @ is a decreasing function in G5 taking into account the hypothesis ¢(0) > 0, ¢ () < 0it
follows that there exists a unique G55 such that ¢ ((G,;)*) =0
(c) By the same argument, the equations (modules) admit solutions G,g, G4 if 575

©(G3q) = (bés)(s)(bét))(s) - (bzs)(s)(bw)(s) -
[(b5)® (b55) P (G31) + (be)® (b55) P (G31) |+ (b35) P (G31) (b35) P (G31) = 0

Where in (G31)(G,g, G129, G30), G2g, G0 Must be replaced by their values from 96. It is easy to see
that @ is a decreasing function in G4 taking into account the hypothesis ¢(0) > 0,¢@(c0) < 0it
follows that there exists a unique G4 such that ¢((G31)*) =0
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(d) By the same argument, the equations (modules) admit solutions G3,, G35 if 578
579
@(Gss) = (béz)(ﬁ)(bés)(@ - (bsz)(G)(bm)(G) -
580
[(32)© (b35)® (G35) + (b33) @ (b32) @ (G35) |+ (b52) @ (G35) (b53) @ (G35) = 0
581
Where in (G35)(Gsy, G33, G34), G3o, G34 Must be replaced by their values It is easy to see that @ is a
decreasing function in G35 taking into account the hypothesis ¢@(0) > 0, ¢ () < 0 it follows that
there exists a unique G35 such that (G*) =0
Finally we obtain the unique solution of 89 to 94 582
G1, given by @(G*) = 0, Ty, given by f(T;,) = 0 and
G = (@161, Gr = (a19)61,
B @in®+@® ()] T T T (@1 ®+ e D ()]
T = (b13) D1y, T* = (b15) D71y,
B o1 W-01W@] T T 01 D=1 W (6]
Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution 583
G;, given by ©((G9)*) = 0, T given by f(T;;) = 0 and 584
Gt = (a16) P61, G = (a18) PGy, 585
167 (@)@ +@@(T3)] T T T [l @+@p@(11,)]
T = (b16) DT}, T = (b19) DT}, 586
16 7 b1 @-0l@(G1)0] T BT [0l @ -0 @ (619))]

Obviously, these values represent an equilibrium solution 587
Finally we obtain the unique solution 588
G5, given by ¢((G,3)*) = 0, T;, given by f(T;,) = 0 and
G = (a20)®63, G = (a22)®63,

207 @)@+ @)@ ()] T T2 (a5 P+ (@)@ (15y)]
- (b20)®13, T — (b22)®13,
20 T 030 ®- 03P G230 7P (05D (6237)]
Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution 589
G35 given by ¢(Gy7) = 0, Ts given by f(T35) = 0 and
Gr, = (a24)W63s Gr = (a26)®635
2 @)W +@fp®(155)] 7 T8 T [(a5e) W+ (age) ) (135)]
* (b20) P35 X (b26)WT55 590

= T. =
28 T s )@ -0y @ ((G2)M] 7 T2 T [hhe) B -h® (62)M)]
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Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution

G3o given by ((G31)") = 0, T given by f(T55) = 0 and

Gl = (a28)®639 Gr = (az0)®G3q
28 7 (@)D +(@hp) B (155)] T 30T [(@ho) P +(afp) P (T30)]

(b30) V159

- (b28) BT
28 [(b50) -1 ®)((631)7)]

T ) O -0 (637

* —
’ T30_

Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution

G3s given by ¢((G35)™) = 0, T3; given by f(T33) = 0 and

Gr = (a32)®635 Gt = (a34)®635

327 (@ ®@+@i©(r35)] 7 3T [(ah)©@+(asp©)(155)]
b32) O3 b34)®)T;

T;z _ (b32)"*'T33 ) T;4 — (b34)\*’T33

T [05)O-03) @ (635)M)] (03~ 13 ((635)7)]
Obviously, these values represent an equilibrium solution

ASYMPTOTIC STABILITY ANALYSIS

Theorem 4: If the conditions of the previous theorem are satisfied and if the functions

(@)® and (b)Y Belong to CV( R,) then the above equilibrium point is asymptotically stable.

Proof:_Denote
Definition of G;, T; :-
GL=G1*+(G!L 7Ti=Ti*+Ti

a]H®

F) 11 5(1) . .
ST = (@)™ T (6) =5y

0T14

Then taking into account equations (global) and neglecting the terms of power 2, we obtain

G , *

e —((@1)® + 01) )Gz + (A1) PGy — (913) V63T

G , *

—dt“ = — (@)™ + @12) )Gy + (@10) P Gy3 — (q14) P61, Ty

G , *

715 = —((@1)® + 015) ) Gy5 + (a15) PGy — (415) VG5 Toy

dT , *
—d;3 = —((b13)® = (r13) D) Ty3 + (by3) VT, + 211'213(5(13)(j)T13G'J')
dT , *
d—? = _((b14)(1) - (r14)(1))']I'14 + (b14)(1)T13 + 211'213(5(14)(i)T14GJ')
dT , *
S5 = (i)™ = () V)T + (bys) VT + T1215(505)0y Tis Gy )

If the conditions of the previous theorem are satisfied and if the functions (a})® and (b})®
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Belong to C@( R,) then the above equilibrium point is asymptotically stable
Denote

Definition of G;, T; :-

G, =G +G; T, =T +T;

6(b )( )

a(aU) (Tf;) = (CI17)(2) , —=—((Ge)") = Sij

taking into account equations (global)and neglecting the terms of power 2, we obtain

dGie

ax _((aie)(z) + (pm)(z))Gw + (a16)(2)G17 - (q16)(2)GI6T17

dGq7

pr —((@1)@ + 0:17)@)Gy7 + (a17) PGy — (q17)P G, Ty,

dGqg

a _((ais)(z) + (Pis)(z))Gw + (als)(z)Gn - (Q18)(2)G18T17

dT , X
Tw = _((blﬁ)(Z) - (716)(2))T16 + (b16)(2)T17 + 211'316(5(16)(j)T16(Gj)

dT , *
Tﬂ = _((b17)(2) - (717)(2))T17 + (b17)(2)T16 + 211'216(5(17)(j)T17Gj)

dT , X
Tw = _((bls)(Z) - (718)(2))T18 + (b18)(2)T17 + 211'316(5(18)(j)Tlst)

If the conditions of the previous theorem are satisfied and if the functions (a})® and (b;")®

Belong to C®( R, ) then the above equilibrium point is asymptotically stabl
_Denote
Definition of G;, T; :-

G, =G + G , T, =T + T;

3(17 )

a(“ﬂ’ (T50) = (0@, L ((639)") = sy

Then taking into account equations (global) and neglecting the terms of power 2, we obtain

% = _((QEO)G) + (on)(3))G20 + (a20) PGy — (G20)P 63Ty,
% = _((aél)(3) + (p21)(3))((}21 + (a21)(3)Gzo - (CI21)(3)G;1T21
d(j% = _((aéz)(s) + (Pzz)(3))G22 + (azz)(s)Gm - (QZZ)B)G;sz
T2 = —((b50)® = (r20) @) T20 + (b20) DT + X250(S 20y T30G1)
% = _((bél)m - (T21)(3))T21 + (b21)(3)T20 + 2?120(5(21)(}-)712*1((}}-)
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dT;,

& _((béz)m - (Tzz)(3))T22 + ()P Ty + Z?izo(s(zz)(j)sz(Gj)

If the conditions of the previous theorem are satisfied and if the functions (a/)® and (b}")®
Belong to C(4)( R, ) then the above equilibrium point is asymptotically stabl

_Denote
Definition of G;, T :-
GLZGL*‘FGL ,TiZTi*‘l'Ti

a(ahs)™®

. 6(b-”)(4)
W(TZS) = (q5)® , ——

a; (G ) = Sij

Then taking into account equations (global) and neglecting the terms of power 2, we obtain

% = —((a§4)(4) + (Pz4)(4))G24 + (a24)(4)G25 - (%4)(4)6;4']1'25
% = —((@55)™ + (025)®) G5 + (a25) M Gpy — (425) M G35 T5s
% = —((a56)™ + (026)™)G6 + (a26) M G5 — (426) ™ G346 T35
T2 = —((b5)® = (24) @) T2q + (b2a) DT + X28,4(S 2y T34 Gy)
T2 = —((bhs)® — (155) @) T + (by5) DTy + 22854 (55 T55G;)
T2 = —((b56)™ = (126) ) Tag + (b26) DT + X244 (52001 T35 )

If the conditions of the previous theorem are satisfied and if the functions (a/)® and (b;")®
Belong to C(S)( R, ) then the above equilibrium point is asymptotically stable

Denote
Definition of G;, T; :-
Gl:G;‘FGl lTi:Ti*+Ti

a!H®

a(aze)® .,
229 (T3) = (Q29)(5) , a—G,-

0Tz9

((G3)7) = s5

Then taking into account equations (global) and neglecting the terms of power 2, we obtain

G , *
728 - _((azs)(s) + (pzs)(S))st + (a28) ¥ Gp9 — (qZB)(S)GZSTZ‘B
dG / *
—2 = —((a20)® + (P20)P) G0 + (220) PG5 — (429) G359 T2
dG / *

dt30 = _((aso)(s) + (P30)(5))G30 + (a30) P Gao — (q30) PG50 T
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dT , «

d:8 = _((bzs)(s) - (rzs)(s))Tzs + (bzs)(s)ng + 213228(5(28)(j)Tszj) 639
dT , «

d:9 = _((b29)(5) - (r29)(5))T29 + (b29)(5)T28 + 2?228(5(29)(1')7129@?) 640
dT , «
730 = —((b30)(5) - (r30)(5))']I‘30 + (b30)(5)']I‘29 + 213'223(5(30)(j)T3OGj) 641
If the conditions of the previous theorem are satisfied and if the functions (a;')® and (b;")® 642

Belong to C®( R,) then the above equilibrium point is asymptotically stable
Denote
Definition of G;, T; :- 643

GlzG,_*+(Grl ,TizTi*+Ti

2D (15) = @)@, (G ) = 5y
Then taking into account equations(global) and neglecting the terms of power 2, we obtain 644
df% = _((aéz)(G) + (Psz)(ﬁ))Gsz + (a3,) @Gy — (Q32)(6)G§2T33 645
% = —((@5)@ + (033)@) G35 + (a33) @G35 — (433) G353 646
% = _((a§4)(6) + (P34)(6))G34 + (a34) @Gy — (Q34)(6)G§4T33 647
d:% = _((béz)@ - (r32)(6))T32 + (b3y)©Ts3 + 2?232(5(32)(j)T;ZGj) 648
d:% = _((bés)@ - (T33)(6))T33 + (b33)(6)T32 + 2?132(5(33)(j)T§3Gj) 649
% = _((bé4)(6) - (T34)(6))T34 + (b34)©Ts3 + 2?132(5(34)(,')7?4@;) 650
Obviously, these values represent an equilibrium solution of 79,20,36,22,23, 651

If the conditions of the previous theorem are satisfied and if the functions (a))” and (b;")”
Belong to C(7)( R, ) then the above equilibrium point is asymptotically stable.

Proof: Denote

Definition of G;, T; :- 652

Gl:GL*—I_Gl lTizTi*—}_Ti
653
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) = o 2®H?
(T37) = (q37) ' “aa

J

a(azy)?

((G39)7) = Sij

Then taking into account equations(SOLUTIONAL) and neglecting the terms of power 2, we obtain

dGse

= —((@36)” + (p36)7) Gz + (a36) 7V G37 — (436) 7 G36T37

dGszy

i —((a§7)(7) + (P37)(7))G37 + (a37)(7)G36 - (Q37)(7)G§7T37

dGsg

= —((a38)” + (p38) ") Gzg + (a38) 7V G37 — (938) 7 G35 T3y

dT3e

a _((bée)m - (Tss)(7))T36 + (b3) T3, + 213'336(5(36)(;')713'*6@;')

dT37

dt = _((b§7)(7) - (r37)(7))T37 + (b37)(7)T36 + 2?236(5(37)(1')71;7@’]')

dT3g

- _((bés)m - (Tss)(7))T3s + (b3g) ' Ts, + 213'336(5(38)(;')713'*8@;')

2.

The characteristic equation of this system is

(DD + 60" - EO) (WD + @™ + (p,5))
(@9 @0+ 007 @) 61+ @0000,) V)|
(((A)“) + 0" = 1)) s T +(b14)(l>sm>,(l4)m)

+ (WD + @) + G0 D) (@12) D615 + (1) (1) D61y

)] % *
((/1)(1) + () - (7'13)(1)) Saa),13)T14 + (b14)(1)5(13),(13)T13>

’

(@) + (@™ + @™ + ()" + (2,,)"”) D)
(@) + (@ + @ = )@ + () 0) WD)
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+ (WD) + (@)D + (@)@ + )P + D) DP) (@) D615

+((A)(1) + (ais)(l) + (Pls)(l)) ((a15)(1)(‘h4)(1)6f4 + (a14)(1)(als)(l)(%s)(l)(;fs)

<((/1)(1) + (b;3)(1) - (T13)(1)) 5(14),(15)Ti4 +(b14)(1)5(13),(15)T’{3)} =0
+
(WD + ™ = @) (DD + @™ + (p,,)"”)

[«w@+m@@+@@mﬂ%ﬁﬂm+@mmwgwqﬁ]

(2 « *
<((/1)(2) + (b16) - (rm)(z)) san,an Tz +(b17)(2)5(16),(17)T17>
+ (((/1)(2) + (a17)(2) + (P17)(2))(Q16)(2)G16 + ((116)(2)((]17)(2)(;17)

(2 « *
<((/1)(2) + (b16) - (rm)(z)) san,ae)T17 + (b17)(2)5(16),(16)T16>

@)+ (@07 + @)™ + () + (1)) D)
(DD + (Bi)® + BN — (1)@ + (17)@) D)
+(WD) + (@) + (@)@ + @1 @ + P17)P) WD) (1) DG

+((A)(2) + (aje)@ + (p16)(2)) ((a18)(2) (417)PGi; + (a;7) P (a15)? (Chs)(Z)G;e)

(2 . *
<((/1)(2) + (b16) - (T16)(2)) sa7),as)T17 +(b17)(2)5(16),(18)T16>} =0

+
(WP + @ - @) (DO + @) + (p,,) )

[«m®+@J”w%fW@g®%+@m®@m®%ﬂ

’ (3) « *
(((/1)(3) + (b)) — (7'20)(3)) Sez1),2) T 21 +(b21)(3)5(20),(21)T21>

+ (((/1)(3) + (a,21)(3) + (P21)(3))(QZ0)(3)G§0 + (‘120)(3)(%1)(1)651)
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