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Abstract:  

A Theory is Universal and it holds good for various systems. Systems have all characteristics based on 

parameters. There is nothing in this measurement world that is not classified based on parameters, regardless 

of the generalization of a Theory. Here we give a consummate model for the well knows models in 

theoretical physics. That all the theories hold good means that they are interlinked with each other. Based on 

this premise and under the consideration that the theories are also violated and this acts as a detritions on the 

part of the classificatory theory, we consolidate the Model. Kant and Husserl both vouchsafe for this order 

and mind-boggling,  misnomerliness and antinomy, in nature and systems of corporeal actions and passions. 

Note that some of the theories have been applied to Quantum dots and Kondo resonances. Systemic 

properties are analyzed in detail. 

Key words Einstein field equations 

 

Introduction: 

Following Theories are taken in to account to form a consummated theory: 

1. Einstein’s Field Equations  

The Einstein field equations (EFE) may be written in the form:  

 

where  is the Ricci curvature tensor,  the scalar curvature,  the metric tensor,  is 

the cosmological constant,  is Newton's gravitational constant,  the speed of light in vacuum, and 

 the stress–energy tensor. 

2. Heisenberg’s Uncertainty Principle 

A more formal inequality relating the standard deviation of position σx and the standard deviation of 

momentum σp was derived by Kennard  later that year (and independently by Weyl in 1928),This essentially 

implies that the first term namely the momentum is subtracted from the term on RHS with the second term 
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on LHS in the denominator 

 
 

3. Uncertainty of time and energy 

 Time is to energy as position is to momentum, so it's natural to hope for a similar uncertainty relation 

between time and energy. This implies that the first term is dissipated by the inverse of the second term what 

with the Planck’s constant h is involved 

(ΔT) (ΔE) ≥ ℏ/2 

 

4. Schrödinger’s equation: 

 

Time-dependent equation 

The form of the Schrödinger equation depends on the physical situation (see below for special cases). The 

most general form is the time-dependent Schrödinger equation, which gives a description of a system 

evolving with time: 

Time-dependent Schrödinger equation (general) 

 

 

where Ψ is the wave function of the quantum system, i is the imaginary unit, ħ is the reduced Planck 

constant, and  is the Hamiltonian operator, which characterizes the total energy of any given 

wavefunction and takes different forms depending on the situation.LHS is subtrahend by the RHS .Model 

finds the prediction value for the term on the LHS with imaginary factor and Planck’s constant 

(5)Planck’s Equations: 

 Planck's law describes the amount of electromagnetic energy with a certain wavelength radiated by a black 

body in thermal equilibrium (i.e. the spectral radiance of a black body). The law is named after Max Planck, 

who originally proposed it in 1900. The law was the first to accurately describe black body radiation, and 

resolved the ultraviolet catastrophe. It is a pioneer result of modern physics and quantum theory. 

In terms of frequency ( ) or wavelength (λ), Planck's law is written:  

   

Where B is the spectral radiance, T is the absolute temperature of the black body, kB is the Boltzmann 

constant, h is the Planck, and c is the speed of light. However these are not the only ways to express the law; 

expressing it in terms of wave number rather than frequency or wavelength is also common, as are 

expressions in terms of the number of photons emitted at a certain wavelength, rather than energy emitted. In 

the limit of low frequencies (i.e. long wavelengths), Planck's law becomes the Rayleigh–Jeans law, while in 

the limit of high frequencies (i.e. small wavelengths) it tends to the Wien. Again there are constants involved 

and finding and or predicting the value of RHS and LHS is of great practical importance. We set to out do 

that in unmistakable terms. 
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Einstein Field Equations: Module Numbered One  

NOTATION : 

    : Category One Of The First Term                

    : Category Two Of The First Term 

    : Category Three Of The First Term       

    : Category One Of The Second Term 

    : Category Two Of The Second Term  

    :Category Three Of The Seond Term  

Einstein Field Equations(Third And Fourth Terms):Module Numbered Two 

    : Category One Of The Third Term In Efe             

    : Category Two Of The Third Term In Efe 

    : Category Three Of The Third Term In Efe 

    :Category One Of The Fourth Term In Efe 

    : Category Two Of The Fourth Term In Efe  

    : Category Three Of The Fourth Term On Rhs Of Efe 

Heisenberg’s Uncertainty Principle: Module Numbered Three 

    : Category One Of lhs In The Hup(Note The Position Factor Is Inversely Proportional To The 
Momentum Factor) 

    :Category Two Of Lhs In Hup 

    : Category Three Of Lhs In Hup 

    : Category One Of Rhs(Note The Momentum Term Is In The Denominator And Hence Rhs 
Dissipates Lhs With The Amount Equal To Plack Constant In The Numerator And Twice Of The 
Momentum  Factor) 

    : Category Two Of Rhs (We Are Talking Of The Different Systems To Which The Model Is Applied 
And Systems Therefore Are Categories. To Give A Bank Example Or That Of A Closed Economy The 
Total Shall Remain Constant While The Transactions Take Place In The Subsystems) 

    : Category Three Ofrhs Of Hup(Same Bank Example Assets Equal To Liabilities But The 
Transactions Between Accounts Or Systems Take Place And These Are Classified Notwithstanding The 
Universalistic Law) 

Uncertainty Of Time And Energy(Explanation Given In hup And Bank’s Example Holds Good Here 
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Also): Module Numbered Four: 

     : Category One Of Lhs Of Upte 

    : Category Two Of Lhs In Upte 

    : Category Three Of Lhs In Upte 

    :Category One Of Rhs In Upte 

    :Category Two Of Rhs In Upte  

    : Category Three Of Rhs In Upte 

Schrodinger’s Equations(Lhs And Rhs) Same Explanations And Expatiations And Enucleation 

Hereinbefore Mentioned Hold Good: Module Numbered Five: 

      : Category One Of Lhs Of Se 

    : Category Two Of lhs Of Se 

    :Category Three Of Lhs Of Se 

    :Category One Of Rhs Of Se 

    :Category Two Of Rhs Of Se  

    :Category Three Of Rhs In Se 

Planck’s Equation: Module Numbered Six: 

     : Category One Of Lhs Of Planck’s Equation 

    : Category Two Of Lhs Of Planck’s Equation 

    : Category Three Oflhs Of Planck’s Equation 

    : Category One Of Rhs Of Planck’s Equation 

    : Category Two Of Rhs Of Planck’s Equation  

    : Category Three Of Rhs Of Planck’s Equation 
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are Dissipation coefficients 

Einstein Field Equations: Module Numbered One 

The differential system of this model is now (First Two terms in EFE)  

Governing Equations 
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Einstein Field Equations(Third And Fourth Terms):Module Numbered Two 

Governing Equations 

The differential system of this model is now  
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Heisenberg’s Uncertainty Principle: Module Numbered Three 

Governing Equations 

The differential system of this model is now  
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 (   
  )( )(     )     First detritions factor   

Uncertainty Of Time And Energy(Explanation Given In hup And Bank’s Example Holds Good Here 

Also): Module Numbered Four 

Governing Equations:: 

The differential system of this model is now  
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Governing Equations: 

Schrodinger’s Equations(Lhs And Rhs) Same Explanations And Expatiations And Enucleation 

Hereinbefore Mentioned Hold Good: Module Numbered Five 

The differential system of this model is now  
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Planck’s Equation: Module Numbered Six 

Governing Equations:: 

The differential system of this model is now  
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Holistic  Concatenated Sytemal Equations Henceforth Referred To As “Global Equations” 

(1) Einstein Field Equations(First Term and Second Term) 

(2) Einstein Field Equations(Third and Fourth Terms) 

(3) Heisenberg’s Principle Of Uncertainty 

(4) Uncertainty of Time and Energy 

(5) Schrodinger’s Equations 

(6) Planck’s Equation. 
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category 1, 2 and 3   
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  )(           )(     )   (   

  )(           )(     )   (   
  )(           )(     )  are sixth detritions 

coefficients  for category 1, 2 and 3   

 

  

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )   (   

  )(    )(     )   (   
  )(    )(     )   

 (   
  )(       )(     )   (   

  )(       )(     )   (   
  )(       )(     )

 ]      

 

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )   (   

  )(    )(     )   (   
  )(   )(     )   

 (   
  )(       )(     )   (   

  )(       )(     )   (   
  )(       )(     )

 ]      

 

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )   (   

  )(    )(     )   (   
  )(    )(     )  

 (   
  )(       )(     )   (   

  )(       )(     )   (   
  )(       )(     )

  ]      

 

 

      (   
  )( )(     )   (   

  )( )(     )   (   
  )( )(     )                                                               

  (   
  )(    )(     )    (   

  )(    )(     )    (   
  )(    )(     )                                                                

  (   
  )(    )(     )    (   

  )(    )(     )    (   
  )(    )(     )                                                                

 (   
  )(       )(     )   (   

  )(       )(     )   (   
  )(       )(     )    are fourth augmentation coefficients for category  1, 2,and  3  
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 (   
  )(       )(     ) ,  (   

  )(       )(     )   (   
  )(       )(     )   are fifth augmentation coefficients for category  1, 2,and  3  

 (   
  )(       )(     ) ,  (   

  )(       )(     ) ,  (   
  )(       )(     )  are sixth augmentation coefficients for category  1, 2,and  3  

  

    

  
 (   )

( )    [
(   

 )( )  (   
  )( )(     )    (   

  )(    )(     )  – (   
  )(    )(     )   

 (   
  )(       )(   )    (   

  )(       )(     )  – (   
  )(       )(     )

]      

 

    

  
 (   )

( )    [
(   

 )( )  (   
  )( )(     )    (   

  )(    )(     )  – (   
  )(    )(     )   

 (   
  )(       )(   )    (   

  )(       )(     )  – (   
  )(       )(     )

]      

 

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )    (   

  )(    )(     )  – (   
  )(    )(     )   

 (   
  )(       )(   )    (   

  )(       )(     )  – (   
  )(       )(     )

]      

 

       (   
  )( )(     )    (   

  )( )(     )    (   
  )( )(     )                                                             

 (   
  )(    )(     )    (   

  )(    )(     )    (   
  )(    )(     )                                                               

 (   
  )(    )(     )    (   

  )(    )(     )    (   
  )(    )(     )                                                             

 (   
  )(       )(   )   (   

  )(       )(   )  ,  (   
  )(       )(   )                                                                

 (   
  )(       )(     ) ,  (   

  )(       )(     ) ,  (   
  )(       )(     )                                                             

– (   
  )(       )(     )  – (   

  )(       )(     )  – (   
  )(       )(     )                                                             

 

  

  

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )   (   

  )(    )(     )   (   
  )(     )(     )   

 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )

 ]      

 

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )   (   

  )(    )(     )   (   
  )(     )(     )   

 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )

 ]      

 

    

  
 (   )

( )    [ 

(   
 )( )  (   

  )( )(     )   (   
  )(    )(     )   (   

  )(     )(     )   

 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )

 

 ]      

 

       (   
  )( )(     )    (   

  )( )(     )    (   
  )( )(     )                                                               

     (   
  )(    )(     )    (   

  )(    )(     )    (   
  )(    )(     )                                                                 

 (   
  )(     )(     )    (   

  )(     )(     )    (   
  )(     )(     )                                                               

 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )   are fourth augmentation coefficients for category 1,2, and 

3 
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 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )  are fifth augmentation coefficients for category 1,2,and  3 

 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )   are sixth augmentation coefficients for category 1,2, 3    

  

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )    (   

  )(    )(     )  – (   
  )(     )(     )   

 (   
  )(         )(   )    (   

  )(         )(     )  – (   
  )(         )(     )

 ]      

 

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )    (   

  )(    )(     )  – (   
  )(     )(     )   

 (   
  )(         )(   )    (   

  )(         )(     )  – (   
  )(         )(     )

 ]      

 

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )    (   

  )(    )(     )  – (   
  )(     )(     )   

 (   
  )(          )(   )    (   

  )(         )(     )  – (   
  )(         )(     )  

]      

 

      – (   
  )( )(     )      (   

  )( )(     )     (   
  )( )(     )                                                                

 (   
  )(    )(     )    (   

  )(    )(     )    (   
  )(    )(     )                                                             

 (   
  )(     )(     )    (   

  )(     )(     )    (   
  )(     )(     )                                                              

 (   
  )(         )(   )   (   

  )(         )(   )     (   
  )(          )(   )   are fourth detrition coefficients for category 1,2, and 3 

 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )  are fifth detrition coefficients for category 1,2, and 3 

– (   
  )(         )(     ) , – (   

  )(         )(     )  – (   
  )(         )(     )  are sixth  detrition coefficients for category 1,2, and 3 

 

  

    

  
 (   )

( )    [
(   

 )( )  (   
  )( )(     )   (   

  )(     )(     )   (   
  )(      )(     )   

 (   
  )(           )(     )   (   

  )(           )(     )   (   
  )(           )(     )

]      

 

    

  
 (   )

( )    [
(   

 )( )  (   
  )( )(     )   (   

  )(     )(     )   (   
  )(      )(     )   

 (   
  )(           )(     )   (   

  )(           )(     )   (   
  )(           )(     )

]      

 

    

  
 (   )

( )    [
(   

 )( )  (   
  )( )(     )   (   

  )(     )(     )   (   
  )(      )(     )   

 (   
  )(           )(     )   (   

  )(           )(     )   (   
  )(           )(     )

]      

 

 (   
  )( )(     )   (   

  )( )(     )   (   
  )( )(     )                                                                 

 (   
  )(     )(     )    (   

  )(     )(     )    (   
  )(     )(     )                                                                 

 (   
  )(      )(     )    (   

  )(      )(     )    (   
  )(      )(     )                                                                  

 (   
  )(           )(     )   (   

  )(           )(     )   (   
  )(           )(     )   - are fourth augmentation coefficients 

 (   
  )(           )(     )   (   

  )(           )(     )   (   
  )(           )(     )    - fifth augmentation coefficients 

 (   
  )(           )(     ) ,  (   

  )(           )(     )   (   
  )(           )(     )   sixth  augmentation coefficients   
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 (   )

( )    [
(   

 )( )  (   
  )( )(     )  – (   

  )(     )(     )  – (   
  )(      )(     )   

 (   
  )(           )(   )    (   

  )(           )(     )  – (   
  )(           )(     )

]      

 

    

  
 (   )

( )    [
(   

 )( )  (   
  )( )(     )  – (   

  )(     )(     )  – (   
  )(      )(     )   

 (   
  )(           )(   )    (   

  )(           )(     )  – (   
  )(           )(     )

]      

 

    

  
 (   )

( )    [
(   

 )( )  (   
  )( )(     )  – (   

  )(     )(     )  – (   
  )(      )(     )   

 (   
  )(           )(   )    (   

  )(           )(     )  – (   
  )(           )(     )

]      

 

 (   
  )( )(     )    (   

  )( )(     )     (   
  )( )(     )                                                               

 (   
  )(     )(     )    (   

  )(     )(     )    (   
  )(     )(     )                                                                 

 (   
  )(      )(     )    (   

  )(      )(     )    (   
  )(      )(     )                                                            

 (   
  )(           )(   )   (   

  )(           )(   )   (   
  )(           )(   )    are fourth detrition  coefficients for category 1, 2, and 3 

 (   
  )(           )(     ) ,  (   

  )(           )(     )   (   
  )(           )(     )   are fifth detrition  coefficients for category 1, 2, and 3 

– (   
  )(           )(     ) , – (   

  )(           )(     )  – (   
  )(           )(     )   are sixth detrition coefficients for category 1, 2, and 3 

 

 

  

Where we suppose  

(A) (  )
( ) (  

 )( ) (  
  )( ) (  )

( ) (  
 )( ) (  

  )( )      

                  

(B) The functions (  
  )( ) (  

  )( ) are positive continuous increasing and bounded. 

Definition of (  )
( )   (  )

( ): 

     (  
  )( )(     )  (  )

( )  (  ̂   )
( )  

     (  
  )( )(   )    (  )

( )  (  
 )( )  (  ̂   )

( ) 

 

(C)        (  
  )( ) (     )  (  )

( ) 

     li    (  
  )( ) (   )    (  )

( )      

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

            Where (  ̂   )
( ) (  ̂   )

( ) (  )
( )   (  )

( )  are positive constants and              

 

They satisfy  Lipschitz condition: 

   (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
    (  ̂   )( )   
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 (  
  )( )(    )  (  

  )( )(   )  (  ̂   )
( )          (  ̂   )( )   

With the Lipschitz condition, we place a restriction on the behavior of functions 

(  
  )( )(   

   )   and(  
  )( )(     )   (   

   ) and (     ) are points belonging to the interval  

[(  ̂   )
( ) (  ̂   )

( )] . It is to be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of the 

fact, that if (  ̂   )
( )    then the function  (  

  )( )(     ) , the first augmentation coefficient WOULD be 

absolutely continuous.  

 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

(D) (  ̂   )
( ) (  ̂   )

( )   are positive constants 

      
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )    

 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

(E) There exists two constants (  ̂   )
( ) and (  ̂   )

( ) which together 

with   (  ̂   )
( ) (  ̂   )

( ) ( ̂  )
( )  and  (  ̂   )

( )  and the constants 

(  )
( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
( )   (  )

( )             

satisfy the inequalities  

 

(  ̂   )( )   (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( ) (  ̂   )
( )     

 

(  ̂   )( )    (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( )  (  ̂   )
( )     

 

 

 

 

 

Where we suppose  

(F) (  )
( ) (  

 )( ) (  
  )( ) (  )

( ) (  
 )( ) (  

  )( )                        

(G) The functions (  
  )( ) (  

  )( ) are positive continuous increasing and bounded.  

Definition of (  )
( )   (r )

( ):  

(  
  )( )(     )  (  )

( )  (  ̂   )
( )

   

(  
  )( )(     )    (  )

( )  (  
 )( )  (  ̂   )

( )   

(H) li     (  
  )( ) (     )  (  )

( )  

 li    (  
  )( ) ((   )  )    (  )

( )   

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

Where (  ̂   )
( ) (  ̂   )

( ) (  )
( )   (  )

( ) are positive constants  and              

 

They satisfy  Lipschitz condition:  

 (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
    (  ̂   )( )    

 (  
  )( )((   )

   )  (  
  )( )((   )  )  (  ̂   )

( )  (   )  (   )
     (  ̂   )( )    

With the Lipschitz condition, we place a restriction on the behavior of functions (  
  )( )(   

   )   

and(  
  )( )(     )  . (   

   ) and (     ) are points belonging to the interval  [(  ̂   )
( ) (  ̂   )

( )] . It is to 

be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of the fact, that if (  ̂   )

( )    
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then the function  (  
  )( )(     ) , the SECOND augmentation coefficient would be absolutely continuous.  

Definition of (  ̂   )
( ) (  ̂   )

( ) :  

(I) (  ̂   )
( ) (  ̂   )

( )   are positive constants 

      
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )    

 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

There exists two constants (  ̂   )
( ) and (  ̂   )

( ) which together 

with (  ̂   )
( ) (  ̂   )

( ) ( ̂  )
( )    (  ̂   )

( )  and the constants 

(  )
( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
( )   (  )

( )             

  satisfy the inequalities  

 

 

(  ̂   )( )   (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( ) (  ̂   )
( )      

 

(  ̂   )( )    (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( )  (  ̂   )
( )      

Where we suppose  

(J)    (  )
( ) (  

 )( ) (  
  )( ) (  )

( ) (  
 )( ) (  

  )( )                       

The functions (  
  )( ) (  

  )( ) are positive continuous increasing and bounded. 

Definition of (  )
( )   (r )

( ): 

     (  
  )( )(     )  (  )

( )  (  ̂   )
( )  

     (  
  )( )(     )    (  )

( )  (  
 )( )  (  ̂   )

( ) 

 

       (  
  )( ) (     )  (  )

( )  

li    (  
  )( ) (     )    (  )

( )           

 Definition of (  ̂   )
( ) (  ̂   )

( ) : 

Where (  ̂   )
( ) (  ̂   )

( ) (  )
( )   (  )

( )  are positive constants   and              

 

 

 

They satisfy  Lipschitz condition: 

 (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
    (  ̂   )( )   

 (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
     (  ̂   )( )   

 

 

 

With the Lipschitz condition, we place a restriction on the behavior of functions (  
  )( )(   

   )   

and(  
  )( )(     )  . (   

   ) And (     ) are points belonging to the interval  [(  ̂   )
( ) (  ̂   )

( )] . It is to 

be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of the fact, that if (  ̂   )

( )    

then the function  (  
  )( )(     ) , the THIRD augmentation coefficient, would be absolutely continuous.  

 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

(K) (  ̂   )
( ) (  ̂   )

( )   are positive constants 

 



Advances in Physics Theories and Applications                                                                                                                www.iiste.org 

ISSN 2224-719X (Paper)  ISSN 2225-0638 (Online) 

Vol 7, 2012  

 

 

253 

      
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )    

There exists two constants There exists two constants (  ̂   )
( ) and (  ̂   )

( ) which together with 

(  ̂   )
( ) (  ̂   )

( ) ( ̂  )
( )    (  ̂   )

( )  and the constants 

(  )
( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
( )   (  )

( )                   
satisfy the inequalities  

 

(  ̂   )( )   (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( ) (  ̂   )
( )     

 

(  ̂   )( )    (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( )  (  ̂   )
( )     

 

 

 

 

 

 

Where we suppose  

(L) (  )
( ) (  

 )( ) (  
  )( ) (  )

( ) (  
 )( ) (  

  )( )                       

 

(M) The functions (  
  )( ) (  

  )( ) are positive continuous increasing and bounded. 

 

Definition of (  )
( )   (  )

( ): 

     (  
  )( )(     )  (  )

( )  (  ̂   )
( )  

     (  
  )( )((   )  )    (  )

( )  (  
 )( )  (  ̂   )

( ) 

 

  

(N)        (  
  )( ) (     )  (  )

( ) 

li    (  
  )( ) ((   )  )    (  )

( )         

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

Where (  ̂   )
( ) (  ̂   )

( ) (  )
( )   (  )

( )  are positive constants and              

 

   They satisfy  Lipschitz condition: 

 (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
    (  ̂   )( )   

 (  
  )( )((   )

   )  (  
  )( )((   )  )  (  ̂   )

( )  (   )  (   )
     (  ̂   )( )   

 

With the Lipschitz condition, we place a restriction on the behavior of functions (  
  )( )(   

   )   

and(  
  )( )(     )  . (   

   ) and (     ) are points belonging to the interval  [(  ̂   )
( ) (  ̂   )

( )] . It is to 

be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of the fact, that if (  ̂   )

( )    

then the function  (  
  )( )(     ) , the FOURTH augmentation coefficient WOULD be absolutely 

continuous.  

 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

(  ̂   )
( ) (  ̂   )

( )   are positive constants 

 
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )     
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Definition of (  ̂   )
( ) (  ̂   )

( ) : 

(O) There exists two constants (  ̂   )
( ) and (  ̂   )

( ) which together with 

(  ̂   )
( ) (  ̂   )

( ) ( ̂  )
( )    (  ̂   )

( )  and the constants 

(  )
( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
( )   (  )

( )             
satisfy the inequalities  

 

(  ̂   )( )   (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( ) (  ̂   )
( )     

 

(  ̂   )( )    (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( )  (  ̂   )
( )     

 

Where we suppose  

(P) (  )
( ) (  

 )( ) (  
  )( ) (  )

( ) (  
 )( ) (  

  )( )                      

(Q) The functions (  
  )( ) (  

  )( ) are positive continuous increasing and bounded. 

Definition of (  )
( )   (  )

( ): 

     (  
  )( )(     )  (  )

( )  (  ̂   )
( )  

     (  
  )( )((   )  )    (  )

( )  (  
 )( )  (  ̂   )

( ) 

 

  

(R)        (  
  )( ) (     )  (  )

( ) 

     li    (  
  )( ) (     )    (  )

( )           

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

Where (  ̂   )
( ) (  ̂   )

( ) (  )
( )   (  )

( )  are positive constants  and              

 

They satisfy  Lipschitz condition: 

   (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
    (  ̂   )( )   

 (  
  )( )((   )

   )  (  
  )( )((   )  )  (  ̂   )

( )  (   )  (   )
     (  ̂   )( )   

 

With the Lipschitz condition, we place a restriction on the behavior of functions (  
  )( )(   

   )   

and(  
  )( )(     )  . (   

   ) and (     ) are points belonging to the interval  [(  ̂   )
( ) (  ̂   )

( )] . It is to 

be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of the fact, that if (  ̂   )

( )    

then the function  (  
  )( )(     ) , theFIFTH augmentation coefficient attributable would be absolutely 

continuous.  

 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

(S) (  ̂   )
( ) (  ̂   )

( )   are positive constants 

      
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )    

 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

(T) There exists two constants (  ̂   )
( ) and (  ̂   )

( ) which together with 

(  ̂   )
( ) (  ̂   )

( ) ( ̂  )
( )    (  ̂   )

( )  and the constants 
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(  )
( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
( )   (  )

( )                   satisfy the inequalities  

 
 

(  ̂   )( )   (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( ) (  ̂   )
( )     

 

(  ̂   )( )    (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( )  (  ̂   )
( )     

Where we suppose  

(  )
( ) (  

 )( ) (  
  )( ) (  )

( ) (  
 )( ) (  

  )( )                       

(U) The functions (  
  )( ) (  

  )( ) are positive continuous increasing and bounded. 

Definition of (  )
( )   (  )

( ): 

     (  
  )( )(     )  (  )

( )  (  ̂   )
( )  

     (  
  )( )((   )  )    (  )

( )  (  
 )( )  (  ̂   )

( ) 

 

        (  
  )( ) (     )  (  )

( ) 

     li    (  
  )( ) ((   )  )    (  )

( )           

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

            Where (  ̂   )
( ) (  ̂   )

( ) (  )
( )   (  )

( )  are positive constants and              

 

They satisfy  Lipschitz condition: 

 (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
    (  ̂   )( )   

 (  
  )( )((   )

   )  (  
  )( )((   )  )  (  ̂   )

( )  (   )  (   )
     (  ̂   )( )   

 

With the Lipschitz condition, we place a restriction on the behavior of functions (  
  )( )(   

   )   

and(  
  )( )(     )  . (   

   ) and (     ) are points belonging to the interval  [(  ̂   )
( ) (  ̂   )

( )] . It is to 

be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of the fact, that if (  ̂   )

( )    

then the function  (  
  )( )(     ) , the SIXTH augmentation coefficient  would be absolutely continuous.  

 

Definition of (  ̂   )
( ) (  ̂   )

( ) :  

(  ̂   )
( ) (  ̂   )

( )   are positive constants 

      
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )    

 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

There exists two constants (  ̂   )
( ) and (  ̂   )

( ) which together with 

(  ̂   )
( ) (  ̂   )

( ) ( ̂  )
( )    (  ̂   )

( )  and the constants 

(  )
( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
( )   (  )

( )             
satisfy the inequalities  

 

(  ̂   )( )   (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( ) (  ̂   )
( )     

 

(  ̂   )( )    (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( )  (  ̂   )
( )     
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Theorem 1: if the conditions IN THE FOREGOING above are fulfilled, there exists a solution satisfying 

the conditions 

Definition of     ( )    ( ) : 

   ( )   (  ̂   )
( )

 (  ̂   )( )    ,        ( )    
    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

    

 

 Definition of     ( )    ( ) 

   ( )   (  ̂   )
( ) (  ̂   )( )    ,        ( )    

    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

    

 

   ( )   (  ̂   )
( ) (  ̂   )( )    ,        ( )    

    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

    

 

Definition of     ( )    ( ) : 

   ( )   (  ̂   )
( )

 (  ̂   )( )    ,        ( )    
    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

                                         

 

Definition of     ( )    ( ) : 

   ( )   (  ̂   )
( )

 (  ̂   )( )    ,        ( )    
    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

    

 

Definition of     ( )    ( ) : 

   ( )   (  ̂   )
( )

 (  ̂   )( )    ,        ( )    
    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

    

 

Proof: Consider operator   ( )  defined on the space of sextuples of continuous functions        :       

which satisfy                                          

 

  ( )    
      ( )    

      
  (  ̂   )

( )    
  (  ̂   )

( )     

    ( )    
  (  ̂   )

( ) (  ̂   )( )      

    ( )    
  (  ̂   )

( ) (  ̂   )( )    

By 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )     

  )( )(   ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

 

  ̅  ( )     
   ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
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 ̅  ( )     
   ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))   ( (  ))]   (  ) 
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
   

T̅  (t)  T  
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

Where  (  )  is the integrand that is integrated over an interval (   ) 

 

Proof:  

Consider operator   ( )  defined on the space of sextuples of continuous functions        :       which 

satisfy             

 

  ( )    
      ( )    

      
  (  ̂   )

( )    
  (  ̂   )

( )     

    ( )    
  (  ̂   )

( ) (  ̂   )( )      

    ( )    
  (  ̂   )

( ) (  ̂   )( )    

By 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )     

  )( )(   ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

Where  (  )  is the integrand that is integrated over an interval (   ) 

 

Proof:  

Consider operator   ( )  defined on the space of sextuples of continuous functions        :       which 

satisfy         

 

  ( )    
      ( )    

      
  (  ̂   )

( )    
  (  ̂   )

( )     

    ( )    
  (  ̂   )

( ) (  ̂   )( )      

    ( )    
  (  ̂   )

( ) (  ̂   )( )    

By 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )     

  )( )(   ( (  ))  (  )))    ( (  ))]   (  )
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  ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
   

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))   ( (  ))]   (  ) 
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
   

T̅  (t)  T  
   ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

Where  (  )  is the integrand that is integrated over an interval (   ) 

 

 Consider operator   ( )  defined on the space of sextuples of continuous functions        :       which 

satisfy                               

 

  ( )    
      ( )    

      
  (  ̂   )

( )    
  (  ̂   )

( )     

    ( )    
  (  ̂   )

( ) (  ̂   )( )      

    ( )    
  (  ̂   )

( ) (  ̂   )( )    

By 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )     

  )( )(   ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

 

  ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
    

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
   

T̅  (t)  T  
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

Where  (  )  is the integrand that is integrated over an interval (   ) 

 

Consider operator   ( )  defined on the space of sextuples of continuous functions        :       which 

satisfy               

 

 

  ( )    
      ( )    

      
  (  ̂   )

( )    
  (  ̂   )

( )     

    ( )    
  (  ̂   )

( ) (  ̂   )( )      

    ( )    
  (  ̂   )

( ) (  ̂   )( )    

By  
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 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )     

  )( )(   ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

  ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))   ( (  ))]   (  ) 
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
   

T̅  (t)  T  
   ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
 

Where  (  )  is the integrand that is integrated over an interval (   ) 

 

Consider operator   ( )  defined on the space of sextuples of continuous functions        :       which 

satisfy      

 

  ( )    
      ( )    

      
  (  ̂   )

( )    
  (  ̂   )

( )      

    ( )    
  (  ̂   )

( ) (  ̂   )( )      

    ( )    
  (  ̂   )

( ) (  ̂   )( )    

By 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )     

  )( )(   ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

 

  ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
   

T̅  (t)  T  
   ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
 

Where  (  )  is the integrand that is integrated over an interval (   ) 

 

(a) The operator  ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it 

is obvious that 

    ( )     
  ∫ [(   )

( ) (   
  (  ̂   )

( ) (  ̂   )( ) (  ))] 
 

 
  (  )    

           (  (   )
( ) )   

  
(   )( )(  ̂   )( )

(  ̂   )( ) ( (  ̂   )( )   )  

 

 From which it follows that  
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(   ( )     
 )  (  ̂   )( )  

(   )( )

(  ̂   )( ) [((  ̂   )
( )     

 ) 
(  

(  ̂   )( )    
 

   
 )

 (  ̂   )
( )]  

(  
 ) is as defined in the statement of theorem 1 

Analogous inequalities hold also for                        

(b) The operator  ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it 

is obvious that 

 

    ( )     
  ∫ [(   )

( ) (   
  (  ̂   )

( ) (  ̂   )( ) (  ))] 
 

 
  (  )  

(  (   )
( ) )   

  
(   )( )(  ̂   )( )

(  ̂   )( ) ( (  ̂   )( )   )  

 

 From which it follows that 

(   ( )     
 )  (  ̂   )( )  

(   )( )

(  ̂   )( ) [((  ̂   )
( )     

 ) 
(  

(  ̂   )( )    
 

   
 )

 (  ̂   )
( )]  

 

Analogous inequalities hold also for                        

(a) The operator  ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it 

is obvious that 

    ( )     
  ∫ [(   )

( ) (   
  (  ̂   )

( ) (  ̂   )( ) (  ))] 
 

 
  (  )    

           (  (   )
( ) )   

  
(   )( )(  ̂   )( )

(  ̂   )( ) ( (  ̂   )( )   )  

 

 From which it follows that 

(   ( )     
 )  (  ̂   )( )  

(   )( )

(  ̂   )( ) [((  ̂   )
( )     

 ) 
(  

(  ̂   )( )    
 

   
 )

 (  ̂   )
( )]  

 

Analogous inequalities hold also for                        

(b) The operator  ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it 

is obvious that 

    ( )     
  ∫ [(   )

( ) (   
  (  ̂   )

( ) (  ̂   )( ) (  ))] 
 

 
  (  )    

           (  (   )
( ) )   

  
(   )( )(  ̂   )( )

(  ̂   )( ) ( (  ̂   )( )   )  

 

 From which it follows that 

(   ( )     
 )  (  ̂   )( )  

(   )( )

(  ̂   )( ) [((  ̂   )
( )     

 ) 
(  

(  ̂   )( )    
 

   
 )

 (  ̂   )
( )]  

(  
 ) is as defined in the statement of theorem 1 

 

(c) The operator  ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it 

is obvious that 

    ( )     
  ∫ [(   )

( ) (   
  (  ̂   )

( ) (  ̂   )( ) (  ))] 
 

 
  (  )    
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           (  (   )
( ) )   

  
(   )( )(  ̂   )( )

(  ̂   )( ) ( (  ̂   )( )   )  

 From which it follows that 

(   ( )     
 )  (  ̂   )( )  

(   )( )

(  ̂   )( ) [((  ̂   )
( )     

 ) 
(  

(  ̂   )( )    
 

   
 )

 (  ̂   )
( )]  

(  
 ) is as defined in the statement of theorem 1 

 

(d) The operator  ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it 

is obvious that 

  

    ( )     
  ∫ [(   )

( ) (   
  (  ̂   )

( ) (  ̂   )( ) (  ))] 
 

 
  (  )    

           (  (   )
( ) )   

  
(   )( )(  ̂   )( )

(  ̂   )( ) ( (  ̂   )( )   )  

 

 From which it follows that 

(   ( )     
 )  (  ̂   )( )  

(   )( )

(  ̂   )( ) [((  ̂   )
( )     

 ) 
(  

(  ̂   )( )    
 

   
 )

 (  ̂   )
( )]  

(  
 ) is as defined in the statement of theorem 6 

Analogous inequalities hold also for                       

 

It is now sufficient to take 
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )     and to choose 

( P̂   )
( ) an  (  ̂   )

( ) large to have 

 

(  )
( )

( ̂  )( ) [(  ̂  )
( )  ((  ̂   )

( )    
 ) 

 (
(  ̂   )( )   

 

  
 )

]  (  ̂   )
( )  

 

(  )
( )

( ̂  )( ) [((  ̂   )
( )    

 ) 
 (  

(  ̂   )( )   
 

  
 )

 (  ̂   )
( )]  (  ̂   )

( )  

 

In order that the operator  ( ) transforms the space of sextuples of functions        satisfying GLOBAL 

EQUATIONS into itself 

 

The operator  ( ) is a contraction with respect to the metric  

 (( ( )  ( )) ( ( )  ( )))    

   
 

    
    

 

 |  
( )( )    

( )( )|  ( ̂  )( )     
    

 |  
( )( )    

( )( )|  ( ̂  )( )    

 

 Indeed if we denote   

Definition of  ̃  ̃ :   (  ̃  ̃ )   ( )(   ) 
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It results 

| ̃  
( )

  ̃ 
( )

|  ∫ (   )
( ) 

 
|   

( )
    

( )
|  (  ̂  )( ) (  ) (  ̂  )( ) (  )   (  )    

∫  (   
 )( )|   

( )
    

( )
|  (  ̂  )( ) (  )  (  ̂  )( ) (  )

 

 
   

(   
  )( )(   

( )
  (  ))|   

( )
    

( )
|  (  ̂  )( ) (  ) (  ̂  )( ) (  )   

   
( )

 (   
  )( )(   

( )
  (  ))  (   

  )( )(   
( )

  (  ))    
 (  ̂  )( ) (  ) (  ̂  )( ) (  )   (  )  

Where  (  ) represents integrand that is integrated over the interval    t  

From the hypotheses  it follows 

| ( )   ( )|  (  ̂  )( )  
 

(  ̂  )( ) ((   )
( )   (   

 )( )  (  ̂  )
( )  (  ̂  )

( )(  ̂  )
( )) (( ( )  ( )   ( )  ( )))  

And analogous inequalities for          . Taking into account the hypothesis  the result follows 

 

Remark 1: The fact that we supposed (   
  )( ) an  (   

  )( ) depending also on t can be considered as not 

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition 

necessary to prove the uniqueness of the solution bounded by (  ̂  )
( ) (  ̂  )( )      (  ̂  )

( ) (  ̂  )( )  

respectively of     

If instead of proving the existence of the solution on   , we have to prove it only on a compact then it 

suffices to consider that (  
  )( ) an  (  

  )( )            depend only on T   and respectively on 

 (             ) and hypothesis can replaced by a usual Lipschitz condition. 

 

Remark 2: There does not exist any    where    ( )           ( )      

From 19 to 24 it results  

   ( )    
  [ ∫ {(  

 )( ) (  
  )( )(   ( (  ))  (  ))}  (  )

 
 ]     

   ( )    
  ( (  

 )( ) )      for t    

 

Definition of  ((  ̂  )
( ))

 
  ((  ̂  )

( ))
 
     ((  ̂  )

( ))
 
 : 

Remark 3: if     is bounded, the same property have also              . indeed if  

    (  ̂  )
( ) it follows 

    

  
 ((  ̂  )

( ))
 
 (   

 )( )    and by integrating  

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  

In the same way , one can obtain 

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  

 If             is bounded, the same property follows for           and            respectively. 

 

Remark 4: If         bounded, from below, the same property holds for                The proof is 

analogous with the preceding one. An analogous property is true if     is bounded from below. 

 

 Remark 5: If  T    is bounded from below and li    ((  
  )( ) ( ( )  ))  (   

 )( ) then          
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Definition of  ( )( ) an     : 

Indeed let     be so that for        

(   )
( )  (  

  )( )( ( )  )         ( )  ( )( )  

Then  
     

  
 (   )

( )( )( )        which leads to  

     (
(   )( )( )( )

  
) (       )     

        If we take t  such that         
 

 
  it results  

     (
(   )( )( )( )

 
)           

 

  
  By taking now      sufficiently small one sees that T    is unbounded. 

The same property holds for      if li    (   
  )( ) ( ( )  )  (   

 )( ) 

We now state a more precise theorem about the behaviors at infinity of the solutions  

 

It is now sufficient to take 
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )     and to choose 

(  ̂   )
( )     (  ̂   )

( ) large to have 

 

(  )
( )

( ̂  )( ) [(  ̂  )
( )  ((  ̂   )

( )    
 ) 

 (
(  ̂   )( )   

 

  
 )

]  (  ̂   )
( )  

 

(  )
( )

( ̂  )( ) [((  ̂   )
( )    

 ) 
 (  

(  ̂   )( )   
 

  
 )

 (  ̂   )
( )]  (  ̂   )

( )  

 

In order that the operator  ( ) transforms the space of sextuples of functions        satisfying   

The operator  ( ) is a contraction with respect to the metric  

 (((   )
( ) (   )

( )) ((   )
( ) (   )

( )))    
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We now state a more precise theorem about the behaviors at infinity of the solutions  
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(   )(             ) and hypothesis can replaced by a usual Lipschitz condition. 

Remark 2: There does not exist any    where    ( )           ( )      
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The operator  ( ) is a contraction with respect to the metric  
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In the same way , one can obtain 
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The same property holds for      if li    (   
  )( ) ((   )( )  ( )  )  (   

 )( ) 

We now state a more precise theorem about the behaviors at infinity of the solutions  

 

Behavior of the solutions  

If we denote and define 

 Definition of  (  )
( )  (  )

( )  (  )
( )  (  )

( ) : 

(a)   )
( )  (  )

( )  (  )
( )  (  )

( )   four constants satisfying 

 (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )(      )  (   
  )( )(      )   (  )

( )   

  (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )(   )  (   
  )( )(   )   (  )

( )  

 

Definition of  (  )
( ) (  )

( ) (  )
( ) (  )

( )  ( )  ( ) : 

(b) By   (  )
( )     (  )

( )    and respectively (  )
( )     (  )

( )    the roots of    the equations  

(   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )    and  (   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )     

 

Definition of  ( ̅ )
( )  ( ̅ )

( ) ( ̅ )
( ) ( ̅ )

( ) : 

  By ( ̅ )
( )     ( ̅ )

( )    and  respectively  ( ̅ )
( )     ( ̅ )

( )    the  roots of the equations 

(   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     and  (   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )     

 

Definition of  (  )
( )  (  )

( )  (  )
( ) (  )

( ) (  )
( ) :- 

(c) If we define (  )
( )  (  )

( )  (  )
( ) (  )

( )    by 

      (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 
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       (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )  

      and  (  )
( )  

   
 

   
   

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )   

and analogously 

  (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 

(  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )   

and (  )
( )  

   
 

   
   

(   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )  where (  )
( ) ( ̅ )

( ) 

are defined  respectively 

 

Then the solution satisfies the inequalities 

    
  ((  )( ) (   )( ))     ( )     

  (  )( )   

where (  )
( ) is defined  

 

      (  )( )    
  ((  )( ) (   )( ))     ( )  

 

(  )( )    
  (  )( )   

 

( 
(   )( )   

 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( )  ]     

   (  )( )     ( )  

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

  (  )( )    (   
 )( )       

   (   
 )( ) )  

 

   
  (  )( )     ( )     

  ((  )( ) (   )( ))    
 

 

(  )( )    
  (  )( )     ( )  

 

(  )( )    
  ((  )( ) (   )( ))    

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

[ (  )( )    (   
 )( ) ]     

   (   
 )( )     ( )    

(   )( )   
 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( ) ]     

   (  )( )   

 

 

Definition of (  )
( ) (  )

( ) (  )
( ) (  )

( ):- 

Where (  )
( )  (   )

( )(  )
( )  (   

 )( )   

             (  )
( )  (   )

( )  (   )
( )  

              (  )
( )  (   )

( )(  )
( )  (   

 )( )   

             (  )
( )  (   

 )( )  (   )
( )  

 

Behavior of the solutions   
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If we denote and define 

Definition of  (  )
( )  (  )

( )  (  )
( )  (  )

( ) : 

(d)   )
( )  (  )

( )  (  )
( )  (  )

( )   four constants satisfying 

 

 (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )(T     )  (   
  )( )(T     )   (  )

( )    

 (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )((   )  )  (   
  )( )((   )  )   (  )

( )   

Definition of  (  )
( ) (  )

( ) (  )
( ) (  )

( ) :  

By   (  )
( )     (  )

( )    and respectively (  )
( )     (  )

( )    the roots  

(e) of    the equations  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )      

and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )    and  

Definition of  ( ̅ )
( )  ( ̅ )

( ) ( ̅ )
( ) ( ̅ )

( ) :  

By ( ̅ )
( )     ( ̅ )

( )    and  respectively  ( ̅ )
( )     ( ̅ )

( )    the  

roots of the equations (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )      

Definition of  (  )
( )  (  )

( )  (  )
( ) (  )

( ) :-  

(f) If we define (  )
( )  (  )

( )  (  )
( ) (  )

( )    by  

(  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( )   

(  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )   

and   (  )
( )  

   
 

   
   

 

 (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )   

and analogously 

(  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( )  

 (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )  

and (  )
( )  

   
 

   
   

 

(   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )    

Then the solution satisfies the inequalities 

     
 e((  )( ) (   )( ))     ( )     

 e(  )( )  

 

(  )
( ) is defined  
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      (  )( )    
 e((  )( ) (   )( ))     ( )  

 

(  )( )    
 e(  )( )    

( 
(   )( )   

 

(  )( )((  )( ) (   )( ) (  )( ))
[e((  )( ) (   )( ))  e (  )( )  ]     

 e (  )( )     ( )  

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

 e(  )( )  e (   
 )( )       

 e (   
 )( ) )    

 

T  
 e(  )( )     ( )  T  

 e((  )( ) (   )( ))    
 

 

(  )( ) T  
 e(  )( )     ( )  

 

(  )( ) T  
 e((  )( ) (   )( ))    

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

[e(  )( )  e (   
 )( ) ]  T  

 e (   
 )( )     ( )    

(   )( )   
 

(  )( )((  )( ) (   )( ) (  )( ))
[e((  )( ) (   )( ))  e (  )( ) ]  T  

 e (  )( )   

 

Definition of (  )
( ) (  )

( ) (R )
( ) (R )

( ):-  

Where (  )
( )  (   )

( )(  )
( )  (   

 )( )   

             (  )
( )  (   )

( )  (   )
( )  

 

(  )
( )  (   )

( )(  )
( )  (   

 )( )   

             (R )
( )  (   

 )( )  (   )
( ) 

 

Behavior of the solutions 

 If we denote and define 

 Definition of  (  )
( )  (  )

( )  (  )
( )  (  )

( ) : 

(a)   )
( )  (  )

( )  (  )
( )  (  )

( )   four constants satisfying 

 (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )(      )  (   
  )( )(      )   (  )

( )  

  (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )(   )  (   
  )( )((   )  )   (  )

( )  

 

Definition of  (  )
( ) (  )

( ) (  )
( ) (  )

( ) : 

(b) By   (  )
( )     (  )

( )    and respectively (  )
( )     (  )

( )    the roots of    the equations  

(   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )    and 

       By ( ̅ )
( )     ( ̅ )

( )    and  respectively  ( ̅ )
( )     ( ̅ )

( )    the 

      roots of the equations (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

     and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

 

Definition of  (  )
( )  (  )

( )  (  )
( ) (  )

( ) :- 

(c) If we define (  )
( )  (  )

( )  (  )
( ) (  )

( )    by 
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      (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 

       (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )  

      and  (  )
( )  

   
 

   
   

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )   

and analogously 

  (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 

  (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )      and (  )

( )  
   

 

   
   

 (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )    

Then the solution  satisfies the inequalities 

    
  ((  )( ) (   )( ))     ( )     

  (  )( )   

(  )
( ) is defined  

 

 

      (  )( )    
  ((  )( ) (   )( ))     ( )  

 

(  )( )    
  (  )( )    

( 
(   )( )   

 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( )  ]     

   (  )( )     ( )  

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

  (  )( )    (   
 )( )       

   (   
 )( ) )  

 

      
  (  )( )     ( )     

  ((  )( ) (   )( ))     
 

 

(  )( )    
  (  )( )     ( )  

 

(  )( )    
  ((  )( ) (   )( ))    

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

[ (  )( )    (   
 )( ) ]     

   (   
 )( )     ( )    

(   )( )   
 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( ) ]     

   (  )( )   

 

Definition of (  )
( ) (  )

( ) (  )
( ) (  )

( ):- 

Where (  )
( )  (   )

( )(  )
( )  (   

 )( )   

             (  )
( )  (   )

( )  (   )
( )  

              (  )
( )  (   )

( )(  )
( )  (   

 )( )   

                        (  )
( )  (   

 )( )  (   )
( ) 

 

Behavior of the solutions  

If we denote and define 

 

 Definition of  (  )
( )  (  )

( )  (  )
( )  (  )

( ) : 

 

(d) (  )
( )  (  )

( )  (  )
( )  (  )

( )   four constants satisfying 
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 (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )(      )  (   
  )( )(      )   (  )

( )   
 

  (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )((   )  )  (   
  )( )((   )  )   (  )

( )  

 

Definition of  (  )
( ) (  )

( ) (  )
( ) (  )

( )  ( )  ( ) : 

 

(e) By   (  )
( )     (  )

( )    and respectively (  )
( )     (  )

( )    the roots of    the equations  

(   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )    and 

 

 

Definition of  ( ̅ )
( )  ( ̅ )

( ) ( ̅ )
( ) ( ̅ )

( ) : 

 

       By ( ̅ )
( )     ( ̅ )

( )    and  respectively  ( ̅ )
( )     ( ̅ )

( )    the 

      roots of the equations (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

     and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

Definition of  (  )
( )  (  )

( )  (  )
( ) (  )

( ) (  )
( ) :- 

 

(f) If we define (  )
( )  (  )

( )  (  )
( ) (  )

( )    by 

 

      (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 

 

       (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )  

      and  (  )
( )  

   
 

   
   

 

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )  

 

 

 

and analogously 

 

       (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 

 

       (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )  

     and (  )
( )  

   
 

   
   

 

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )  where (  )
( ) ( ̅ )

( ) 

are defined by 59 and 64 respectively 

 

 

 

Then the solution satisfies the inequalities 

 

       
  ((  )( ) (   )( ))     ( )     

  (  )( )  
 

where (  )
( ) is defined  

 

 

 

 

 

 
 

      (  )( )    
  ((  )( ) (   )( ))     ( )  

 

(  )( )    
  (  )( )   

 

 

 

(
(   )( )   

 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( )  ]     

   (  )( )     ( )  

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

[ (  )( )    (   
 )( ) ]      

   (   
 )( ) )  

 

 

   
  (  )( )     ( )     

  ((  )( ) (   )( ))    
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(  )( )    
  (  )( )     ( )  

 

(  )( )    
  ((  )( ) (   )( ))   

 

 

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

[ (  )( )    (   
 )( ) ]     

   (   
 )( )     ( )    

 
(   )( )   

 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( ) ]     

   (  )( )   

 

 

Definition of (  )
( ) (  )

( ) (  )
( ) (  )

( ):- 

 

Where (  )
( )  (   )

( )(  )
( )  (   

 )( )  
  

             (  )
( )  (   )

( )  (   )
( )  

 

            (  )
( )  (   )

( )(  )
( )  (   

 )( )   

 

             (  )
( )  (   

 )( )  (   )
( )  

 

 

Behavior of the solutions  

If we denote and define 

 

 Definition of  (  )
( )  (  )

( )  (  )
( )  (  )

( ) : 

 

(g) (  )
( )  (  )

( )  (  )
( )  (  )

( )   four constants satisfying 

 

 (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )(      )  (   
  )( )(      )   (  )

( )   
 

  (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )((   )  )  (   
  )( )((   )  )   (  )

( )  

 

 

Definition of  (  )
( ) (  )

( ) (  )
( ) (  )

( )  ( )  ( ) : 

 

(h) By   (  )
( )     (  )

( )    and respectively (  )
( )     (  )

( )    the roots of    the equations  

(   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )    and 

 

 

Definition of  ( ̅ )
( )  ( ̅ )

( ) ( ̅ )
( ) ( ̅ )

( ) : 

 

       By ( ̅ )
( )     ( ̅ )

( )    and  respectively  ( ̅ )
( )     ( ̅ )

( )    the 

      roots of the equations (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

     and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

Definition of  (  )
( )  (  )

( )  (  )
( ) (  )

( ) (  )
( ) :- 

 

(i) If we define (  )
( )  (  )

( )  (  )
( ) (  )

( )    by 

 

      (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 

 

       (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )  

      and  (  )
( )  

   
 

   
   

 

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )  

 

 

and analogously 
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       (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 

 

       (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )  

     and (  )
( )  

   
 

   
   

 

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )  where (  )
( ) ( ̅ )

( ) 

are defined  respectively 

 

Then the solution satisfies the inequalities 

 

    
  ((  )( ) (   )( ))     ( )     

  (  )( )   

 

where (  )
( ) is defined  

 

 

      (  )( )    
  ((  )( ) (   )( ))     ( )  

 

(  )( )    
  (  )( )   

 

 

(
(   )( )   

 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( )  ]     
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(  )( )((  )( ) (   
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[ (  )( )    (   
 )( ) ]      

   (   
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  (  )( )     ( )  
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  ((  )( ) (   )( ))   

 

 

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

[ (  )( )    (   
 )( ) ]     

   (   
 )( )     ( )    

 
(   )( )   

 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( ) ]     

   (  )( )   

 

 

Definition of (  )
( ) (  )

( ) (  )
( ) (  )

( ):- 

 

Where (  )
( )  (   )

( )(  )
( )  (   

 )( )  
  

             (  )
( )  (   )

( )  (   )
( )  

 

                 (  )
( )  (   )

( )(  )
( )  (   

 )( )   

 

             (  )
( )  (   

 )( )  (   )
( )  

 

 

Behavior of the solutions 

 If we denote and define 

 

 Definition of  (  )
( )  (  )

( )  (  )
( )  (  )

( ) : 

 

(j) (  )
( )  (  )

( )  (  )
( )  (  )

( )   four constants satisfying 

 

 (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )(      )  (   
  )( )(      )   (  )

( )   
 

  (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )((   )  )  (   
  )( )((   )  )   (  )

( )  

 

 

Definition of  (  )
( ) (  )

( ) (  )
( ) (  )

( )  ( )  ( ) : 

 

(k) By   (  )
( )     (  )

( )    and respectively (  )
( )     (  )

( )    the roots of    the equations  
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(   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )    and 

 

Definition of  ( ̅ )
( )  ( ̅ )

( ) ( ̅ )
( ) ( ̅ )

( ) : 

 

       By ( ̅ )
( )     ( ̅ )

( )    and  respectively  ( ̅ )
( )     ( ̅ )

( )    the 

      roots of the equations (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

     and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

Definition of  (  )
( )  (  )

( )  (  )
( ) (  )

( ) (  )
( ) :- 

 

(l) If we define (  )
( )  (  )

( )  (  )
( ) (  )

( )    by 

 

      (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 

 

       (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )  

      and  (  )
( )  

   
 

   
   

 

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )  

 

 

and analogously 

 

       (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 

 

       (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )  

     and (  )
( )  

   
 

   
   

 

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )  where (  )
( ) ( ̅ )

( ) 

are defined respectively 

 

 

Then the solution  satisfies the inequalities 

 

      
  ((  )( ) (   )( ))     ( )     

  (  )( )  

 

where (  )
( ) is defined 

 

 

      (  )( )    
  ((  )( ) (   )( ))     ( )  

 

(  )( )    
  (  )( )   

 

 

(
(   )( )   

 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( )  ]     

   (  )( )     ( )  

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

[ (  )( )    (   
 )( ) ]      

   (   
 )( ) )  

 

 

   
  (  )( )     ( )     

  ((  )( ) (   )( ))    

 

 

 

(  )( )    
  (  )( )     ( )  

 

(  )( )    
  ((  )( ) (   )( ))   

 

 

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

[ (  )( )    (   
 )( ) ]     

   (   
 )( )     ( )    

 
(   )( )   

 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( ) ]     

   (  )( )   
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Definition of (  )
( ) (  )

( ) (  )
( ) (  )

( ):- 

 

Where (  )
( )  (   )

( )(  )
( )  (   

 )( )  
  

             (  )
( )  (   )

( )  (   )
( )  

 

             (  )
( )  (   )

( )(  )
( )  (   

 )( )   

 

             (  )
( )  (   

 )( )  (   )
( )  

 

Proof : From GLOBAL EQUATIONS we obtain  

  ( )

  
 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(     ))   (   

  )( )(     ) 
( )  (   )

( ) ( )  

Definition of  ( ) :-          ( )  
   

   
 

It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 

 

 From which one obtains  

Definition of ( ̅ )
( ) (  )

( ) :- 

 

(a) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

       ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( )  
(  )( ) (  )( )

(  )( ) (  )( )  

 it follows (  )
( )   ( )( )  (  )

( ) 

 

 In the same manner , we get 

  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

   From which we deduce (  )
( )   ( )( )  ( ̅ )

( ) 

 

 

(b) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

      (  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )   

            
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

 

(c) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 
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  (  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( ) 

And so with the notation of the first part of condition (c) , we have  

Definition of   ( )( ) :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
   

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the 

theorem. 

Particular case : 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition (  )
( )  

(  )
( ) then   ( )( )  (  )

( ) and as a consequence    ( )  (  )
( )   ( ) this also defines (  )

( ) for the 

special case  

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( )  and definition of (  )
( )  

 we obtain  

  ( )

  
 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(T   t))  (   

  )( )(T   t) 
( )  (   )

( ) ( )  

 

Definition of  ( ) :-          ( )  
   

   
 

 

It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 

 

From which one obtains  

Definition of ( ̅ )
( ) (  )

( ) :- 

(d) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

 

    ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    (C)( )  
(  )( ) (  )( )

(  )( ) (  )( )  

 it follows (  )
( )   ( )( )  (  )

( )  

 

In the same manner , we get  
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  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   (C̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

From which we deduce (  )
( )   ( )( )  ( ̅ )

( )  

(e) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

(  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )    

    
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

 

(f) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 

 

  (  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( ) 

And so with the notation of the first part of condition (c) , we have  

 

Definition of   ( )( ) :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

 

Particular case : 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition (  )
( )  

(  )
( ) then   ( )( )  (  )

( ) and as a consequence    ( )  (  )
( )   ( ) 

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( ) 

 

From GLOBAL EQUATIONS we obtain  

  ( )

  
 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(     ))  (   

  )( )(     ) 
( )  (   )

( ) ( )  

 

Definition of  ( ) :-          ( )  
   

   
 

It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 
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 From which one obtains  

(a) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

 

 ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( )  
(  )( ) (  )( )

(  )( ) (  )( )  

 it follows (  )
( )   ( )( )  (  )

( )  

 In the same manner , we get 

  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

Definition of ( ̅ )
( ) :- 

From which we deduce (  )
( )   ( )( )  ( ̅ )

( ) 

 

(b) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

 

 (  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )   

 
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

 

(c) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 

(  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( )  

And so with the notation of the first part of condition (c) , we have  

Definition of   ( )( ) :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the 

theorem. 

Particular case : 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition (  )
( )  

(  )
( ) then   ( )( )  (  )

( ) and as a consequence    ( )  (  )
( )   ( ) 
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Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( ) 

 From GLOBAL EQUATIONS we obtain  

 
  ( )

  
 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(     ))  (   

  )( )(     ) 
( )  (   )

( ) ( )  

 

 

Definition of  ( ) :-          ( )  
   

   
 

 

It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 

 From which one obtains  

 

Definition of ( ̅ )
( ) (  )

( ) :- 

 

(d) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

 

   ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( )  
(  )( ) (  )( )

(  )( ) (  )( )  

 

 it follows (  )
( )   ( )( )  (  )

( )  
 

 

In the same manner , we get 

 

  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

 

   From which we deduce (  )
( )   ( )( )  ( ̅ )

( ) 

 

 

(e) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

 

      (  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )   

 

            
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

 

(f) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 

 

  (  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( ) 

 

And so with the notation of the first part of condition (c) , we have  

Definition of   ( )( ) :- 

 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

In a completely analogous way, we obtain  
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Definition of   ( )( )  :- 
 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

   

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the 

theorem. 

 

Particular case : 

 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition (  )
( )  

(  )
( ) then   ( )( )  (  )

( ) and as a consequence    ( )  (  )
( )   ( ) this also defines (  )

( ) for 

the special case . 

 

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( )  and definition of (  )
( )   

        From  GLOBAL EQUATIONS we obtain  

 
  ( )

  
 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(     ))  (   

  )( )(     ) 
( )  (   )

( ) ( )  

 

 

Definition of  ( ) :-          ( )  
   

   
 

 

It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 

 

 

 From which one obtains  

 

Definition of ( ̅ )
( ) (  )

( ) :- 

 

(g) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

 

       ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( )  
(  )( ) (  )( )

(  )( ) (  )( )  

 

 it follows (  )
( )   ( )( )  (  )

( )  

 

 

In the same manner , we get 

 

  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

 

   From which we deduce (  )
( )   ( )( )  ( ̅ )

( ) 

 

 

(h) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

 

      (  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )   
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( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

(i) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 

 

  (  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( ) 

 

And so with the notation of the first part of condition (c) , we have  

Definition of   ( )( ) :- 

 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 
 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

   

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the 

theorem. 

 

Particular case : 

 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition (  )
( )  

(  )
( ) then   ( )( )  (  )

( ) and as a consequence    ( )  (  )
( )   ( ) this also defines (  )

( ) for 

the special case . 

 

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( )  and definition of (  )
( )  

 

 

we obtain  

 
  ( )

  
 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(     ))  (   

  )( )(     ) 
( )  (   )

( ) ( )  

 

 

Definition of  ( ) :-          ( )  
   

   
 

 

It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 

 

 

 From which one obtains  

 

Definition of ( ̅ )
( ) (  )

( ) :- 

 

(j) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

 

       ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( )  
(  )( ) (  )( )

(  )( ) (  )( )  
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 it follows (  )
( )   ( )( )  (  )

( )  

 

In the same manner , we get 

 

  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

 

   From which we deduce (  )
( )   ( )( )  ( ̅ )

( ) 

 

 

(k) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

 

      (  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )   

 

  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

 

(l) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 

 

  (  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( ) 

 

And so with the notation of the first part of condition (c) , we have  

Definition of   ( )( ) :- 

 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 
 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

   

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the 

theorem. 

 

Particular case : 

 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition (  )
( )  

(  )
( ) then   ( )( )  (  )

( ) and as a consequence    ( )  (  )
( )   ( ) this also defines (  )

( ) for 

the special case . 

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( )  and definition of (  )
( )  

 

We can prove the following 

Theorem 3: If (  
  )( )    (  

  )( ) are independent on   , and the conditions  

(   
 )( )(   

 )( )  (   )
( )(   )

( )      

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

(   
 )( )(   

 )( )  (   )
( )(   )

( )    ,  
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(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

      (   )
( ) (   )

( ) as defined, then the system 

 If (  
  )( )    (  

  )( ) are independent on t , and the conditions   

(   
 )( )(   

 )( )  (   )
( )(   )

( )       

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )      

(   
 )( )(   

 )( )  (   )
( )(   )

( )    ,   

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

      (   )
( ) (   )

( ) as defined are satisfied , then the system 

 

 If (  
  )( )    (  

  )( ) are independent on   , and the conditions 

(   
 )( )(   

 )( )  (   )
( )(   )

( )      

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

(   
 )( )(   

 )( )  (   )
( )(   )

( )    ,  

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

      (   )
( ) (   )

( ) as defined are satisfied , then the system 

 

If (  
  )( )    (  

  )( ) are independent on   , and the conditions  

(   
 )( )(   

 )( )  (   )
( )(   )

( )      

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

(   
 )( )(   

 )( )  (   )
( )(   )

( )    ,  

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

      (   )
( ) (   )

( ) as defined  are satisfied , then the system 

 

If (  
  )( )    (  

  )( ) are independent on   , and the conditions 

(   
 )( )(   

 )( )  (   )
( )(   )

( )      

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

(   
 )( )(   

 )( )  (   )
( )(   )

( )    ,  

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

      (   )
( ) (   )

( ) as defined  satisfied , then the system 

 

If (  
  )( )    (  

  )( ) are independent on   , and the conditions  

(   
 )( )(   

 )( )  (   )
( )(   )

( )      
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(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

(   
 )( )(   

 )( )  (   )
( )(   )

( )    ,  

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

      (   )
( ) (   )

( ) as defined are satisfied , then the system 

(   )
( )    [(   

 )( )  (   
  )( )(   )]         

(   )
( )    [(   

 )( )  (   
  )( )(   )]         

(   )
( )    [(   

 )( )  (   
  )( )(   )]         

(   )
( )     (   

 )( )  (   
  )( )( )           

(   )
( )     (   

 )( )  (   
  )( )( )           

(   )
( )     (   

 )( )  (   
  )( )( )           

has a unique positive solution , which is an equilibrium solution for the system  

(   )
( )    [(   

 )( )  (   
  )( )(   )]         

(   )
( )    [(   

 )( )  (   
  )( )(   )]         

(   )
( )    [(   

 )( )  (   
  )( )(   )]         

(   )
( )     (   

 )( )  (   
  )( )(   )           

(   )
( )     (   

 )( )  (   
  )( )(   )           

(   )
( )     (   

 )( )  (   
  )( )(   )           

has a unique positive solution , which is an equilibrium solution for   

(   )
( )    [(   

 )( )  (   
  )( )(   )]         

(   )
( )    [(   

 )( )  (   
  )( )(   )]         

(   )
( )    [(   

 )( )  (   
  )( )(   )]         

(   )
( )     (   

 )( )  (   
  )( )(   )           

(   )
( )     (   

 )( )  (   
  )( )(   )           

(   )
( )     (   

 )( )  (   
  )( )(   )           

has a unique positive solution , which is an equilibrium solution  

(   )
( )    [(   

 )( )  (   
  )( )(   )]        

 

 

(   )
( )    [(   

 )( )  (   
  )( )(   )]         

(   )
( )    [(   

 )( )  (   
  )( )(   )]        
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(   )
( )     (   

 )( )  (   
  )( )((   ))          

 

 

(   )
( )     (   

 )( )  (   
  )( )((   ))          

 

 

(   )
( )     (   

 )( )  (   
  )( )((   ))          

 

 

has a unique positive solution , which is an equilibrium solution for the system  

(   )
( )    [(   

 )( )  (   
  )( )(   )]         

(   )
( )    [(   

 )( )  (   
  )( )(   )]         

(   )
( )    [(   

 )( )  (   
  )( )(   )]        

 

 

(   )
( )     (   

 )( )  (   
  )( )(   )           

(   )
( )     (   

 )( )  (   
  )( )(   )           

(   )
( )     (   

 )( )  (   
  )( )(   )           

has a unique positive solution , which is an equilibrium solution for the system   

(   )
( )    [(   

 )( )  (   
  )( )(   )]        

 

 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        

 

 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        

 

 

(   )
( )     (   

 )( )  (   
  )( )(   )          

 

 

(   )
( )     (   

 )( )  (   
  )( )(   )          

 

 

(   )
( )     (   

 )( )  (   
  )( )(   )          

 

 

has a unique positive solution , which is an equilibrium solution for the system   

(a) Indeed the first two equations have a nontrivial solution          if  

 ( )  (   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )  

(   
  )( )(   )(   

  )( )(   )      

 

(a) Indeed the first two equations have a nontrivial solution          if  
 

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )  

(   
  )( )(   )(   

  )( )(   )      

 



Advances in Physics Theories and Applications                                                                                                                www.iiste.org 

ISSN 2224-719X (Paper)  ISSN 2225-0638 (Online) 

Vol 7, 2012  

 

 

292 

(a) Indeed the first two equations have a nontrivial solution          if  

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )  

(   
  )( )(   )(   

  )( )(   )      

 

(a) Indeed the first two equations have a nontrivial solution          if  

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )  

(   
  )( )(   )(   

  )( )(   )      

 

(a) Indeed the first two equations have a nontrivial solution          if  

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )  

(   
  )( )(   )(   

  )( )(   )      

 

(a) Indeed the first two equations have a nontrivial solution          if  

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )  

(   
  )( )(   )(   

  )( )(   )      

 

Definition  and uniqueness of T  
   :-   

After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows that there 

exists a unique      
    for which   (   

 )   . With this value , we obtain from the three first equations  

     
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

      ,           
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

 

 

Definition  and uniqueness of T  
   :-   

After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows that there 

exists a unique   T  
    for which   (T  

 )   . With this value , we obtain from the three first equations  

 

     
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

      ,           
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

 
 

Definition  and uniqueness of T  
   :-   

After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows that there 

exists a unique      
    for which   (   

 )   . With this value , we obtain from the three first equations  

     
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

      ,           
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

 

 

Definition  and uniqueness of T  
   :-   

After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows that there 

exists a unique      
    for which   (   

 )   . With this value , we obtain from the three first equations  

     
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

      ,           
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

 

 

Definition  and uniqueness of T  
   :-   

After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows that there 
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exists a unique      
    for which   (   

 )   . With this value , we obtain from the three first equations  

     
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

      ,           
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

 

Definition  and uniqueness of T  
   :-   

After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows that there 

exists a unique      
    for which   (   

 )   . With this value , we obtain from the three first equations  

     
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

      ,           
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

 

 

(e) By the same argument, the equations 92,93  admit solutions         if  

 ( )  (   
 )( )(   

 )( )  (   )
( )(   )

( )    

[(   
 )( )(   

  )( )( )  (   
 )( )(   

  )( )( )] (   
  )( )( )(   

  )( )( )     

 Where in  (           )         must be replaced by their values from 96. It is easy to see that   is a 

decreasing function in     taking into account the hypothesis   ( )      ( )     it follows that there 

exists a unique    
  such that  (  )    

 

(f) By the same argument, the equations 92,93  admit solutions         if  

 

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )    

[(   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )] (   
  )( )(   )(   

  )( )(   )      

 

Where in (   )(           )         must be replaced by their values from 96. It is easy to see that   is a 

decreasing function in     taking into account the hypothesis   ( )      ( )     it follows that there 

exists a unique    
  such that  ((   )

 )    

 

(g) By the same argument, the concatenated equations  admit solutions         if  

 

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )    

[(   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )] (   
  )( )(   )(   

  )( )(   )      

Where in    (           )         must be replaced by their values from 96. It is easy to see that   is a 

decreasing function in     taking into account the hypothesis   ( )      ( )     it follows that there 

exists a unique    
  such that  ((   )

 )    

 

(h) By the same argument, the equations of modules  admit solutions         if  

 

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )    

[(   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )] (   
  )( )(   )(   

  )( )(   )      

Where in (   )(           )         must be replaced by their values from 96. It is easy to see that   is a 

decreasing function in     taking into account the hypothesis   ( )      ( )     it follows that there 

exists a unique    
  such that  ((   )

 )    

 

(i) By the same argument, the equations (modules)  admit solutions         if  
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 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )    

[(   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )] (   
  )( )(   )(   

  )( )(   )      

Where in (   )(           )         must be replaced by their values from 96. It is easy to see that   is a 

decreasing function in     taking into account the hypothesis   ( )      ( )     it follows that there 

exists a unique    
  such that  ((   )

 )    

(j) By the same argument, the equations (modules) admit solutions         if  

 

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )    

[(   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )] (   
  )( )(   )(   

  )( )(   )      

Where in (   )(           )         must be replaced by their values It is easy to see that   is a 

decreasing function in     taking into account the hypothesis   ( )      ( )     it follows that there 

exists a unique    
  such that  (  )    

 

 

 

 

Finally we obtain the unique solution of 89 to 94 

   
  gi en  y  (  )    ,    

  gi en  y  (   
 )    and 

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

    ,      
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

     

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )(  )]
      ,      

  
(   )( )   

 

[(   
 )( ) (   

  )( )(  )]
 

Obviously, these values represent an equilibrium solution  

 

Finally we obtain the unique solution   

   
  gi en  y  ((   )

 )    , T  
  gi en  y  (T  

 )    and  

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

    ,      
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

     
 

T  
  

(   )( )   
 

[(   
 )( ) (   

  )( )((   ) )]
      ,   T  

  
(   )( )   

 

[(   
 )( ) (   

  )( )((   ) )]
 

 

Obviously, these values represent an equilibrium solution  

Finally we obtain the unique solution  

   
  gi en  y  ((   )

 )    ,    
  gi en  y  (   

 )    and 

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

    ,      
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

     

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

      ,      
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

 

Obviously, these values represent an equilibrium solution  

 

Finally we obtain the unique solution   
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  gi en  y  (   )    ,    

  gi en  y  (   
 )    and 

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

    ,      
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

    

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )((   ) )]
      ,      

  
(   )( )   

 

[(   
 )( ) (   

  )( )((   ) )]
 

Obviously, these values represent an equilibrium solution  

 

Finally we obtain the unique solution  

   
  gi en  y  ((   )

 )    ,    
  gi en  y  (   

 )    and 

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

    ,      
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

 

 

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )((   ) )]
      ,      

  
(   )( )   

 

[(   
 )( ) (   

  )( )((   ) )]
 

Obviously, these values represent an equilibrium solution 

 

Finally we obtain the unique solution 

   
  gi en  y  ((   )

 )    ,    
  gi en  y  (   

 )    and 

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

    ,      
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

     

 

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )((   ) )]
      ,      

  
(   )( )   

 

[(   
 )( ) (   

  )( )((   ) )]
 

Obviously, these values represent an equilibrium solution  

 

ASYMPTOTIC STABILITY ANALYSIS 

Theorem 4:   If the conditions of the previous theorem are satisfied and if the functions (  
  )( )     (  

  )( )  

Belong to  ( )(   ) then the above equilibrium point is asymptotically stable. 

Proof:  Denote 

Definition of       :- 

                           
             ,      

     

                      
 (   

  )( )

    
(   

 )  (   )
( )   ,  

 (  
  )( )

   
(    )       

 

Then taking into account equations (global) and neglecting the terms of power 2, we obtain   

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    (   )
( )   

       

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    (   )
( )   

       

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    (   )
( )   

       

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    ∑ ( (  )( )   
   )
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  ((   

 )( )  (   )
( ))    (   )

( )    ∑ ( (  )( )   
   )

  
       

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    ∑ ( (  )( )   
   )

  
       

 If the conditions of the previous theorem are satisfied and if the functions (a 
  )( ) an  (  

  )( )  Belong to 

C( )(   ) then the above equilibrium point is asymptotically stable 

 

Denote 

Definition of       :- 

 

     
             , T  T 

      

 (   
  )( )
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And as one sees, all the coefficients are positive. It follows that all the roots have negative real part, and this 

proves the theorem. 
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