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Abstract

The correlation functions of one-dimensional Hubbard model in the presence of external magnetic field was
investigated through the conformal field technique. The long distance behaviour of the correlation functions and
their critical exponents for the model in the presence of a magnetic field are established by solving the dressed

charge matrix equations and setting the number of occupancies Ni to one, as an alternative to the usual zero

often used by authors in literatures. Our result shows the critical exponents of the correlation function grows
monotonically with magnetic field and reduces to definite values at zero magnetic field around various Fermi
points.
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1. Introduction

Over two decades ago Frahm and Korepin (1990) introduced the calculation of critical exponents for the one-
dimensional (1D) Hubbard model, using the finite size scaling and the principle of conformal field theory (CFT).
This enabled theorists to explore the physics of 1D correlated electron systems. Notwithstanding significant
works, the understanding of the behaviour of correlated electron systems is not yet complete. In one dimension
the Hubbard Hamiltonian provides opportunity to study correlation effects in 1D models (Lieb and Wu, 1968;
Woynarovich, 1989) and the correlation functions decay as power of the distance (Nenuwe and Akpojotor, 2015).
It is the calculation of the critical exponents characterizing this power-law behaviour that have attracted constant
theoretical interest. Outstanding results in this field have been obtained from conformal field techniques,
perturbation calculations and renormalization group methods in different models (Frahm and Korepin, 1990;
Parola and Sorella, 1990; Finkel’shtein, 1977; Luther and Peschel, 1975). The progress made in the
understanding of critical phenomena in quantum systems as a result of conformal invariance (Belavin ef al.,
1984) have provided great insights to the problem of calculation of these critical exponents. Although,
interacting 1D quantum systems might carry countless low-energy excitations, with linear dispersion relations,
but with different Fermi velocities, so the systems are not Lorentz invariant (Kawakami and Yang, 1991). When
the motion of these excitations are decoupled, one can now apply the CFT (Izergin et al., 1989). Usually, in the
application of the conformal field techniques, the non-negative integer N' characterizing particle-hole

excitations is always taken as zero, but in this paper we shall calculate the electron field correlation function and
the density-density correlation function around the Fermi points k,, 2k,, 3k,, 4k,, 5k,, 6k,, 7k, 8k,, 9k,, 11k,

and 13k, by setting the parameter N to one, and investigate how this affects the conformal dimensions and

F

critical exponents of the correlation functions. This paper is organized as follows. In section 2 we review the
Bethe Ansatz equations of the Hubbard model and the analytic form of the correlation functions predicted by
CFT is given. The dressed charge matrix elements are also calculated with the Wiener-Hopf technique and these
elements are used to obtain the magnetic field dependence of the conformal dimensions. The long-distance
behaviour of the electron field and density-density correlation functions and their unusual exponents for small
magnetic field are calculated in section 3. The electron field correlation function in momentum space and their
Tomonaga-Luttinger (TL) liquid behaviour is examined in section 4. Finally, section 5 is devoted to discussion
and conclusion.

2. The Dressed Charge Matrix and the Hubbard Model
The Hubbard model is basically the simplest model describing interacting spin-1/2 fermions in many-body
physics. In the presence of magnetic field it is defined by the Hamiltonian (Penc and Solyom, 1993)

H= —Z(c‘ff,ﬁcw +C,,C 00 ) + uz n.n - ,UZ(H/.T +n, ) _%Z(H” -n, ) s (1)

j

where cjﬂ(cw) is the creation (annihilation) operator with electron spin o at site j and »n,, =c] c,, is the number

j.oj.o

operator. u is the on-site Coulomb repulsion, u is the chemical potential and H is the external magnetic field. The
hopping integral #/=1. Lieb and Wu (1968) has solved Eqn. (1) exactly and obtained the Bethe Ansatz equations
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Where the quantum number /; and J, are integers or half-odd integer, N =N, + N, with N, and N, being the

number of electrons with sp1n up and down, and N; =N| down spins are characterized by the momenta k; of
holons and rapidities 4, of spinons.

In the thermodynamic limit, with continuous momentum and rapidity variables, the Lieb-Wu equations become
integral equations for the ground state distribution functions of momenta p (k) and of rapidities p (1) , obeying

the equations
cosk

J. a(sink-A)p (A)dA ,
T J-

1
P =5+

| o . 4
p(=5-| a(Asink)p (k- j (- wp

The state corresponding to the solution of Eqns. (2) and (3) has energy and momentum given by
E (I D)-E, —%v (A7 +4; )+%v (AT+A)+O(N")  (5)

2
P(I, D)~ P = (27 -2k, ~k, D, + (272, ,)D, +W”(Af A +AT—A7) (6)

Where the conformal dimensions are given by

2N (7)

2A7(AN,D) = (Z“DL +z.p + ZAN —ZAN, j +

2detZ

Z AN —Z AN, N (8)
2detZ ’

The positive integers N_ , for holon and spinon describes particle-hole excitations, with N (N_) being the

2A° (AN,D) = (Z”D‘ +Z D £

number of occupancies that a particle at the right (left) Fermi level jumps to, AN (AN ,) represents the change
in the number of electrons (down-spin) with respect to the ground state, D, represents the number of particles
which transfer from one Fermi level of the holon to the other and D, represents the number of particles which
transfer from one Fermi level of the spinon to the other, and both D_ and D are either integer or half-odd integer
values. Finally, the dressed charge matrix Z describing anomalous behaviour of critical exponents is given by

zZ Z
Z=| " T 9
[ZM Z} ’ ©)
and the elements are defined by the solutions of the following coupled integral equations
2
z“(k)=1+j dA a,(k-2)E.(2) (10)
%

ko A
2= dka(1-k)2.0- [ dua(i-g)zw (1)
zw(k)=r_“ dA a(k-2)Z.(A) (12)

Z.(h)= 1+.r° dk a, (21— k)Zm(k)—Jw dp a,(A-2)Z. () (13)
-k -4

Where the kernel is defined as
nu

0 (=211 (14)

T (nu) +x°
The values of 4, and k, are usually fixed by

n = j " (k)di =Ik° 2.5 (15)
" —j . (A)dA j Z, (’” dd= j Zzg‘) dk (16)

For small magnetic field we solve the dressed charge matrlx equations by Wiener-Hopf technique (Fabian et al.,
2005; Yang and Yang, 1966) for terms up to order 1/u in the strong coupling limit. With Eqn. (16), we write (13)

as
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Fourier transforming (17), we obtain

Z.(A)=++2mna(A)- J K-z, (wdu (18)
4220

Where the kernels are given by
1

sz —
) 2u cosh(zA/u)
i - 19)
KA =l exp(—iwA) o
2J 1+ exp(awu)
We solve Eqn. (18) by introducing the function
YA =Z (A+4), (20)
and expanding it as
YA =D 3,2 21)
Where y (1) are defined as the solutions of the Wiener-Hopf equations
v (D =g, W+ [KA-py,wdu (22
0
= >
&) j R

g A =++27zns(A+ 1)
The driving terms g (1) and the solutions y (1) becomes smaller as n increases because A4 is large. Our
procedure follows Fabian et al. (2005). Assuming the function y (1) and g, (4) are known. We define

7 (@)= j exp(iA)y, (A)dA
Z (24)
(@)= j exp(iod)y, (A)d A

Where the functions y’ (@) are analytic on the upper and lower planes respectively, with

y(@) =y, (@) +y,(0) (25)
Also we assume

5 () = #() =0 (26)
In terms of these functions we express the Fourier transform of Eqn. (23) as

~ y, (@ ~

f@=—2D ) @7)

- 1+exp(—2u|w|)
Where g (w) is the Fourier transform of g (1) . Now we split Eqn. (23) into the sum of two parts that are
analytical and non-zero in the upper and lower half planes. To obtain this we use the factorization

1+exp(=2u| @) = G ()G (@) (28)
> ) h:[ﬂ) I
G (@) =G ()Y [ M2 " 5 09
G-\ 7

With G*(w) being analytic and non-zero in the upper and lower half planes respectively and are normalized as

limG* (@) =1 (30)
Useful special function of G*(w) are

G'(0)=+2

ol .

2u 2u e
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Using Eqns. (27) and (28), we obtain
v, (@)

e+ G (0)y,(0) =G (v)g,(w) (32)
G (w)

Decompose the right hand side of Eqn. (32) into the sum of two functions
G (0)g, (@) =0/ (w)+ 0, (w) (33)

This implies that
V(@) =G (0)Q, (®)

- A 34
7o) =22 Y
G (w)

To obtain the solution of Eqn. (22) for y,(4) , we set the driving term to be

~ be™

=270 T 35

g(@)=270(@)+ 2cosh(uw) (35)
We decompose the first term by using

27:5(50)::‘[ — j (£—0) (36)

w+ie w-ie

The second term of Eqn. (35) is meromorphic function of @ with simple poles located at

o =Zn+1)
2u . . (37)
174 _ 3ir Sim

s

0:_’ a)x ~ a)z =T e
2u 2u 2u
Note, there is no pole at @ =0 . The decomposition of the factor 1/cosh(uw) gives
1

mz A+(0))+A7(0)) (38)
)l ED
U “=d 0+ @, (39)

. 1 i (1)
A(@=——-L
(@) cosh(uw) u Z O+ o,
Using Eqn. (39) we can express the function f~ (w)/cosh(u®) , for any function f~(x) that is analytic and bounded

in the lower half-plane as the sum of two functions (@) analytic in the upper/lower half-plane

L@ _ @)+ x (@) (40)
cosh(uw)

@=L 3 VS o)

u's  oto,

S o) iED) (o) @
- -, 1 - -,
X (@)= =y
cosh(uw) u4 0+,
Applying the formula Eqn.(41) to Eqns. (35) and (33), we obtain
~ . 1 1 b . _
g(w)=m( i J+—[z (@) + 1 ()] (42)
w+ie w-ie 2
g(w)=L+ﬁ v (e ai. b_e™ by M@g)
w+ie 2ué— 0+, w—ie 2 cosh(uw) 2u4— w0+,
Now,
.y .o - -idgw C - - ~idg® PR 1\ (3 —idgw
G’(a))g(a))zalG (@Jrﬂ )G (@)™ aiG (.a))+b G (@)e™  bi 0 (-1 G (@)e
w+ie 2u4 0+ 0, w-ie 2 cosh(uw) 2u4= 0+ o, (44)
=0/(0)+0, ()
Therefore,
T -(_ —idgw PR 1NV (3 (— ~ido@y
0 (@)= GG C0) b G @)™ b (G w0
w—ie 2 cosh(uw) 2y 0+,
c- o (1N (— —idgw
0'(@)= MG @) B CG o) o
w+iE 2y o= o+,
For n=0
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The functions y;(w) are obtained by using Eqn. (34)
G ()e ™
aiG (0 Sr)e ™
Fi@ =G (@) L0 (48)

+ie 2u 0+

From Eqn. (23) for n=0, by setting a=1/2, b=2zn_1in Eqn. (48), we obtain

ﬂwr

1iG(0) ;sz( t)e o
2a)+z£ u w+ =

7(0) =G (@) H’)(49)

By definition

$(0)=—— I (e “do=—ilimoy (@  (50)
27 o

H =,—H, (5D
2e

H = 47'n |_ TN, Cuss1
3u Su’

Where H is magnetic field, H_ is critical field, » strong coupling, H, magnetic field at zero temperature and
A, corresponds to Fermi points. Combining the result Eqn. (49) with Eqn. (50), we obtain the first order

contribution to Z as follows

_fom.
1iG(0) , ani G (5)e
2 w+ie u w+ =

~ilim @y (@) = ~ilim 0G" () (52)

As £ — 0, we use Eqns. (30) and (31) on Eqn. (52) to obtain

7,(0) = —m{ Liv2 | i Jee™ J (53)
2 w u W+
Simplifying further, we obtain
P(O== EIE N RNy
u 1+%
\/_ 7m \/Z i, since e =x (54)
= H,
\/— ﬂ'n i
H,
Using Eqn. (51), we obtain
Y,(0)= \/— \/_H ]
o (55)

=ﬁ(%+iij+o(m)

u H

Next, the second order contribution to y(0)=Z_(4,) is obtained by taking the Fourier transform of Eqn. (23) for
n=1.

&)= [ K+ u+22)n,du

(56)
exp(=2i4,0) 7, (-0)

1+ exp(2u|a)|)

g(w)=

From Eqn. (28)
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1+ exp(2u|a) G (w)G (W) 57)
s 3 1
= exp(—2iA@) 7 (~@w)| 1 -————— | (58
g, (@) = exp(-2i4,0) ¥, ( w)( G (w)] (58)
From Eqn. (33),
G (w)g (0)=0 (w)+0, () (59)

We have decomposed G (w)g,(w) into Q°(w) which is analytic in the upper and lower half-planes. Q' () is
given by

L Fexp(RiANii(—x)
0 (@)= j

X—w—i€ G (x)

dc  (60)

Where & is a small positive constant. G*(x) has a branch cut along the negative imaginary axis and by
deforming the contour of integration we rewrite Eqn. (58) as

e ,[ exp(=2i4,x) 7 (ix) 1 B 1 0
27i X—i@® G (-ix—€) G'(-ix+¢€) (61)

0

O(0) =

From Eqn. (29), as @ — ix

1 TC-o)(ux) =
G'(-ix—¢) ox \,,j € (62)

o 2dgx =4 % iux, _iux

Q+(w): ll J‘e yn(lx)r‘(%_%)(ﬂ] (e}z_e;zjdx
Quyiy x—iw T

Since, sinx= (e —e™)/2i

. gk 4 =
O'(w)= LAJ‘L‘)(UC)[HJ (4 —«)sin(ux)dx

@ryiq x—io (7 64)
For x >0 the integrand rapidly decrease because A4 >>1, and hence the integral is approximated by expanding

the terms other than exp(-24,x) around x =0. Therefore, we obtain

X NL““efz@ 2_u
0 (@)= [ (ﬁ +0(x)
' (65)
1 u 1
= | — 10| —
—ia)[zﬁn/lo ’ (ﬂg JJ
From Eqn. (34), we obtain
G u 1
yi@)=—" [2 N +0(/102 J] (66)
Using
y(0)=-ilimwy/(w) and limG (w)=1 , 67)
we obtain
1
0)=———+0| — 68
yl() 2\/57[/10-"_ [/102] ( )
From Eqn. (51)
()= L, 0( 1 J
a2 In(H,/H InH,/HY
V2 In(H,/H) \(nH,/H) 69)

8In(H,/H) (InH,/H)
Therefore, with Eqns. (55) and (69), we obtain

»,(0)= \/5 +0( ! J
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zw(zo)zx/i(%ﬂh’ ! J+0( ! ] (70)

+
u H_ 8In(H,/H) (nH,/H)
Now to evaluate the dressed charge matrix element Z (k,), we take the Fourier transform of eqns. (16) and (18)
and obtain
Z (k)y=++27wnK(k)— I K(k=2)Z_(A)ydA  (71)
[ZB
Applying the same process in the determination of Eqn. (70), we obtain
nln2 2 H H 72)
7 H, H In(H,/H)
Similarly, with the same process, we obtain the other two elements of the dressed charge matrix as

Z.(ky=14 02 201 o
- TR TANTS R U AT

\/En‘H+O[ H J

1
Z (k)=—+
.\-:(()) 2

and

Z, (&)= (74)

H, H [In(H,/H)T
From Eqn. (16) together with the property that Z (k) ~Z (k,)+O(%) for u>>1 and k, =7zn [(1+*), the down-

spin density n_is obtained as
n=—t——t— (75)

Using Eqn. (75) on Eqns. (70) and (72), we obtain the dressed charge matrix equations as

Z (k)=1+ i[lnz —i[ij_}r O[L]
u 7'\ H, H’[In(H,/H)T

z (1):*/5”‘ L a
T e A (77)

(76)

H [In(H,/H)Y

Z k)=t 2H nln2f1 2 H o H
* 2 7T H u \2 TH H In(H,/H) (78)
Z(A)=A2| Ly LH _2[H ) 1
‘ 2 ul2H x\H )| 8in(H, H)

A}

(InH,/H) (79)

At half-filling » =1, and by neglecting corrections to order (1/u), the elements of the dressed charge become
Z.(k)=1 (80)
Z.(A4)=0 81)

1 2 H
Z (k,) STrH (82)

Z.(A)=\2 [L;] (83)

2 8In(H,/H)

To obtain the conformal dimensions in terms of small magnetic field we use Eqns. (80) to (83) on Eqns. (7)
and (8). Note that,

(detz) =(22+2:)(22+2)~(2.2.+2.2.)
detZ=27, (84)

Therefore, the magnetic field dependence of the conformal dimensions are given by
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2A'(AN,D)=|Z D +D|———— |* AN, +2N?
\2 ©#H) 227

:[@w,)tm 22&] Lo
T H

on=Lip sfan —av | Lo 2, ]
2 2 7 H 4In(H,/H)

x4 D! +| AN, — AN, l—i,i +2N
2 7 H,

According to the principles of CFT, the general expression for correlation function contains factors from holons
and spinons, given by (Parola and Sorella, 1990)

a,(D,,D,) exp(—2iDk, x)exp(—2i(D, + D)k, x)

— (x—ivt)™ (x+ive)™ (x—ive)™ (x+ive)™

(85)

G(t,x) =

87

Where &z and kg are the Fermi momenta for electrons with spin up and down, respectively. v, and v, are the
Fermi velocities of holon and spinon and a; are constant coefficients.

3. Correlation Functions in Magnetic Field

We now use the results obtained in the last section to obtain the magnetic field dependence of the unusual
exponents of the electron field correlation function and density-density correlation function by setting the non-
negative integer N* =1. First we consider the electron field correlation function with up-spin which originates
from the quantum numbers (D., D,) = (1/2,-1/2), (3/2,-3/2), (5/2,-5/2), (5/2,-5/2), (7/2,-7/2), (9/2,-9/2), (11/2,-
11/2), (13/2,-13/2), AN, =1 and AN, = 0. Therefore, the corresponding conformal dimensions for (D,,D,) =

(1/2,-1/2) are

=Ll L H (88)
4 2 mH,
_ﬂ_i£+1££J
16 27°H x'\H
2 (89)
A =B, L H 1V H
‘16 2 H '\ H

VN (Y I 78 G
2l 27 2 2 H 8In(H,/H)

¢

1 H 1 H
27° H In(H,/H) #* H’In(H,/H)

+2(90)

.5 2 H 1
2N =—+ -
"2 7o H o 16In(H,/H)
B 1

16In(H,/H)

Where the contributions from (H /H, )2 and terms of order O(H/HC In(H,/H )) are neglected. Using Eqns.
(89) and (91) on (87), we obtain
a, exp(—ik, ,x)

oD
2A° =2

|x+ivct|g(I |x+ivxt|‘9‘1 ©2)
The critical exponent is given by
0,, =277 +2A 93)
This implies that
37 1 H
KT a

and
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2 7 H 8In(H,/H)
Next, we obtain the conformal dimensions for (D,, D,)= (3/2, —3/2) as
a3l 3 H (96)
472 7T H
2A° = 7,15 H
‘16 2 H
33 3 H ©7)
2N =—+ —
‘16 2 H
» :1{_3{_14&}}
2] 27 2 2 H
(98)

1 s 2H 4(HY
+ = —| = 42
4In(H,/H) |2 = H 7'\ H

4 H 5

2A =4 +
: o H  8In(H,/H)
99)
=228, 3
T2 7 H  SIn(H,/H)
Using Eqns. (97) and (99) on (87), we obtain
a, ex;l(—3ikF7Tx)a (100)
|x+iv e |x+ive
The critical exponent
45 9 H
0,=—+——, 101
c2 8 7[2 H(, ( )
and
0{2 :E_%i_i._ 5 (102)
270 2 H  4in(H,/H)
Next, for (D,, D,)=(5/2, —5/2), we obtain the conformal dimensions as
2Af:(£il+i£] 2 (103)
4 2 71 H
op 81,35 H
‘16 27 H
41 15 H (104)
N =y
‘16 2 H

1 13 2H 4(HY
+ =+ - = }+2
4In(H,/H) |2 = H 7'\ H

13 6 H 13
== +

2A° -
"2 7 H  8In(H,/H) (106)
2A =4+ 4 A + 13
' 7 H_ 8In(H,/H)
Using Eqns. (104) and (106) on (87), we obtain
a, exp(=5ik, , x) (107)

. O3 . O3
|x + zvct| |x + zv5t|

The critical exponent
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0, =—+—— 108
c3 8 7[2 HC ( )
and
21 2 H 13
== (109)

= _ - - 4 -
Y2 m H  4In(H,/H)
For (D,, D,)=(7/2, —7/2), we obtain the conformal dimensions as

2Aj=(1¢l+l£] +2 (110)
4 2 71 H
13, 6 0
© 16 27 H.
57 35 H( (1)
A =22y 2
‘16 2 H
2AT =10- 8 # + 25
‘ 7 H_ 8In(H,/H)
(112)
_ 13 6 H 25
2N =—+ ++
"2 o H  8In(H,/H)
2AT =10—- 8 o + 25
' 7 H_ 8In(H,/H)
(113)
13 6 H 25
2N =—+ ++
2 o H  8In(H,/H)
Using Eqns. (111) and (113) on (87), we obtain
a, exp(=T7ik, . x
: pg( ik, 4 )g (114)
|x+iv | [x+ive
The critical exponent
8 49 H
0, =—+—— 115
c4 8 7_[2 HE ( )
and
33 2 H 25
(116)

E e
Y2 7 H  Aln(H,/H)
For (D,, D,)=(9/2, —9/2), we obtain the conformal dimensions as

2A;=[3il+iij 12 (117)
4 2 mH
2A+:E+2i
‘16 27 H
81 63 H( (118)
2N =—
‘16 27 H
2Af=l —2i —l+ 2H + 4 +2(119)
2l 27\ 2 7 H 8In(H,/H)
oA L2 10H 4l
"2 o H  8In(H,/H)
8 H 41 (120)
2A =10+ ——+
\ 7 H  8In(H,/H)
Using Eqns. (118) and (120) on (87), we obtain
a, exp(—9ik, ,x)
— az1)
|x+zvct |x+lvst

The critical exponent
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117 81 H
605 :_+_2_
&8 7 H,

(122)

and
49 2 H 41

==t —
Y2 o H Aln(H,/H)
For (D,, D,)=(11/2, —11/2), we obtain the conformal dimensions as

(123)

2Af:(—i—+——] +2 (124)
7w H,

s 200, 143 1
16 27 H,
° 16 271 H

c

zAj:l{-ﬂi(-h 2 Hj} o126
8In(H, /H)

(125)

2| 27 2 7o H
v =p0- 28 6l
\ 7 H_ 8In(H,/H)
127)
.29 10 H 61
QA =4 +
2 o H 8In(H,/H)
Using Eqns. (125) and (127) on (87), we obtain
a, exp(—11lik,_,x)
. Oe6 FT Os6 (128)
|x+zvct |x+zvst
The critical exponent
157 121 H
0, =—+—— 129
c6b 8 ﬂ_z HC ( )
and
2 H 1
_® 24, 6L (130)

2 7 H  4ln(H,/H)

c

Finally, for (D., D,)=(13/2, —13/2), we obtain the conformal dimensions as

2Af:[£il+£iJ +2 (131)
4 2 7 H,
2 257 195 H
‘16 2 H
153 143 H( (132)
A =2 2
‘16 27 H
o=l By L 2 0, 85 533
2| 2 2 o H 8In(H,/H)
on =204 28 8
\ 7 H  8In(H,/H)
(134)
. 53 14 H 85
2A =22 +
"2 2 H  8In(H,/H)
Using Eqns. (132) and (134) on (87), we obtain
a, exp(—13ik_.x
? XL, ) (135)
e+ ive| |x+ive]”
The critical exponent
205 169 H
0, =—+—F— (136)
8 71 H,

c

and
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93 2 H 85

LS (137)
2 7 H  4ln(H,/H)

Combining Eqns. (92), (100), (107), (114), (121), (128) and (135), we obtain the long-distance asymptotic form
of the electron field correlation function with up-spin as

G (xut) = a, exp(—ik, .x) a, exp(-3ik, .x) a, exp(=5ik, ,x) a, exp(-Tik, x)

|x + iv(,tr‘I |x + ivitriI |x +iv, trd |x + ivstr}i2 |x + iv(,tr(3 |x + ivitrjs3 |x + iv(,tr“' |x + ivitr‘?4 138
a,exp(-9ik, .x) a, exp(-1lik, . x) a, exp(—13ik, . x) (138)

|x + iv(,tr‘5 |x + ivitr?s |x + iv(,tr‘b |x + ivitrw |x + iv(tr}(7 |x + ivstr}7
Lastly, we consider the density-density correlation function which originates from the quantum numbers
(D,,D,)=(-L1), (-2,2), (-3,3), (-4,4), AN, =AN_ =0 and N: =1 . Here the corresponding conformal
dimensions for (D,,D,)=(-11) are

‘4 mH

9 2 H (139)

N =4

4 7 H
2A*:£+;

"2 4ln(H,/H)

s | (140)

2A°

=t
"2 4In(H,/H)
Again contributions from (H /H, )2 are neglected. Using Eqns. (139) and (140) on (87), we obtain

a, exp(2ik, . x)

TR (141)
|x + zvct| |x + zvst|
The critical exponents are given by
9 4 H
0, =—+—— 142
2 o H (142)
and
1
0, =5+——— (143)
2In(H,/H)
For (D,,D,)=(-2,2) the conformal dimensions are
=34 St
- TR (144)
=342
7 H,
N —hp— L
‘ 4In(H, /H)
| (145)
2A =44 —
\ 4In(H,/H)
Using Eqns. (144) and (145) on (87), we obtain
exp(4ik
a, XE( ik, ,X) : (146)
|x+ ivct| ‘Z |x + ivxt| "
The critical exponents are given by
16 H
602 :6+FFC (147)
and
2
= (148)

0,=8+———
| In(H,/H)
Next, for (D,,D,)=(=3,3) the conformal dimensions are
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o VT, I8 H
4 “H,
17 18 H (149)
QA =—t—
‘4 mH
zAj:E+L
2 Aln(H,/H)
3 9 (150)
20 =—

+—
2 4In(H,/H)

Using Eqns. (149) and (150) on (87), we obtain

a, exp(6ik . .x) (151)

|x+iv[.t|9“ |x+ivjt|9‘3 ,
17 36 H
=St (152)

and

6,=13+ %
‘ 2In(H,/H)
Finally, for (D,,D,) =(—4,4) the conformal dimensions are

=642
T H

(153)

I~ H (154)
2N =6+——
‘ 7' H
4

2AT =10+ —
" In(H,/H)

(155)

2A =10+ ——
T In(H,/H)

Using Eqns. (154) and (155) on (87), we obtain
a, exp(8ik, ,x)

(156)

. 64 . b4
|x+ lV[.t| |x +ivit

64 H
Q4:12+;F (157)

c

and
8

6 —
In(H,/H)

), =20 (158)

Combining Eqns. (141), (146), (151) and (156), we obtain the long-distance asymptotic form of the density-
density correlation function as

a, exp(2ik, .x) a, exp(4ik, .x) a, exp(6ik, . x) a,exp(8ik, ,x) (159)

G(x,t) =

Os4

. Ol . 51 . b2 . 52 . 9c3 . O3 . G4 .
|x+1v{,t| |x+lV\f| |X+ZVLZ| |x+1v}\t| |x+1th| |X+lV}\l| |X+ZVLI| |x+lV\f

4. Correlation Function in Momentum Space
The electron field correlation function Eqn. (138) has singularities at the Fermi points

k., 3k, SkF'T, 7km’ 9%, ;, llkm and 13k, , respectively. Therefore, at k=k,, , the momentum
distribution is given by
G'(k=k,,)=[sgn(k—k, )" |k—k,,
, (160)
~sgn(k—k, )|k —k,
The critical exponent
1 H
v:€“+€“—1:§+—2—, (161)
’ ’ 8 7 H,
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and

2s=2(A7 -A +A! -A)) =1 (162)
Here we neglect logarithmic field dependence. Eqn. (160) represents the momentum distribution function around
k. for the electron field correlator. It exhibits a typical power-law behaviour of the TL liquid, with critical

exponent given by Eqn. (161). This unusual exponent grows monotonically with magnetic field as shown in
Figure 1, and at zero magnetic field v — 8.125.

8 25
82251 /
/
8.2 /"
7
v 8.175 /”
7
$.15 //
7
8.1254”
0 025 05 075 1
HH,

Figure 1. The critical exponent v around the Fermi point &, as a function of magnetic field H/H, in the
Hubbard model.

Another singularity is at k = 3k, . The momentum distribution here is

G'(k= 3k, ,) = [sgn(k =3k, ) |k -3k, , ", (163)
with critical exponent
V=¢9(,Y2+6v72—1=%9+i£ (164)

7 H,
Eqn. (163) shows typical power-law singularity of the TL liquid around the Fermi point 3k, , and the critical

exponent Eqn. (164) grows monotonically with magnetic field as shown in Figure 2. At zero magnetic field goes
to v goesto 11.125.

¥
1175 //
/
/
//
, 113 >
/
/
/
2 /
11.251 /
/
,
0 025 0.5 0.75 1
HE

Figure 2. The critical exponent v around the Fermi point 3k, as a function of magnetic field H/H, in the
Hubbard model

36



Advances in Physics Theories and Applications WWww.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) g

NSTe

Next at k = 5k, ., the momentum distribution is given by

G' (k= 5k, ;) =[sgn(k -5k, , ) |k =5k, , ' (165)
with the unusual exponent
137 23 H
V:Q’3+0S’3_1:?+?FC (166)

Also, Eqn. (165) represents the momentum distribution function around the Fermi point 5k, for the electron field
correlator, and it exhibits a typical power-law behaviour of the TL liquid with critical exponent given by Eqn.
(166). Here, at zero magnetic field the unusual exponent goes to 17.125 and it grows monotonically with
growing magnetic field as shown in Figure 3.

195
19.254 7

191 o

18.75- .
18,51 /

V18254 /7
184 /

(=]
.

N

r—

0 025 0.5
HH,

Figure 3. The critical exponent v around the Fermi point 5k, as a function of magnetic field H/H_ in the

Hubbard model
At k =Tk, , the momentum distribution is
G (k =Tk, ) =[sgn(k — Tk, )T [k =7k, | (167)
and
2 47 H
v=6,+6, -1 :%+—Z—
T Ho (168)

Eqn. (167) exhibits a typical power-law behaviour of the TL liquid around 7k, , , with critical exponent given by

Eqn. (168). This unusual exponent v — 26.125 as the magnetic field goes to zero and increases monotonically
with magnetic field as shown in Figure 4.
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Figure 4. The critical exponent v around the Fermi point 7k, as a function of magnetic field H/H_ in the
Hubbard model

At k =9k, the momentum distribution takes the form

v

G'(k =9k, )= [sgn(k—9%k, ) k=9, .| . (169)
with
V:Q5+€55—1:ﬁ+7—?£, (170)
’ 7 &8 7 H,

and Eqn. (169) also exhibits a typical power-law behaviour of the TL liquid around the Fermi point 9%, ,, with

critical exponent v — 38.125 as the magnetic field goes to zero and increases monotonically with magnetic field
as illustrated by Figure 5.

46.1254 /

0 025 05 0.75 1
H/H,

Figure 5. The critical exponent v around the Fermi point 9%, as a function of magnetic field H/H, in the

Hubbard model
At k =11k, , , the momentum distribution is
G'(k=11k,_,) = [sgn(k~11k,,)]" |k ~11k,,[ A7)
and
425 119 H
V=05’6+3m—1=?+ 7[2 F{ (172)

Eqn. (171) exhibits a typical power-law behaviour of the TL liquid around 11k, ,, with critical exponent given

by Eqn. (172). This unusual exponent v — 53.125 as the magnetic field goes to zero and increases
monotonically with magnetic field as shown in Figure 6.
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Figure 6. The critical exponent v around the Fermi point 11k, as a function of magnetic field H/H_ in the
Hubbard model

Finally, at k =13k, the momentum distribution takes the form

v

G (k = 13k, ;) = [sgn(k—13k, , N° k= 13k, ., (173)
with
v=6_,+6_ -1 =@+lﬁi, 174)
T 8 7 H,
and Eqn. (173) also exhibits a typical power-law behaviour of the TL liquid around the Fermi point 13k, ,, with

critical exponent v — 71.125 as the magnetic field goes to zero and increases monotonically with magnetic field
as depicted in Figure 7.
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Figure 7. The critical exponent v around the Fermi point 13k, as a function of magnetic field H/H_ in the
Hubbard model

5. Discussion
In this study we have calculated the electron field and density-density correlation functions and their unusual
exponents by using the non-negative integer N characterizing particle-hole excitations as 1 in the 1D Hubbard
model. Based on the principles of CFT we obtain expressions for the critical exponent that describes the long-
distance behaviour of the correlation functions in coordinate and momentum space. The unusual behaviour of the
exponent of correlation functions depends on the magnetic field and grows monotonically with increasing
magnetic field. As the magnetic field goes to zero, the critical exponent goes to 8.125, 11.125, 17.125, 26.125
38.125, 53.125 and 71.125 around the Fermi points k,, 3k,, 5k,, 7k., 9k, 11k, and 13k, respectively. It was
observed that the k, part arises from the excitation of (NjS,ANC,ANx,DC,DX) =(L10,1/2,-1/2), the 3k, part
from (N* LAN_,D D )= (1,1,0,3/2,-3/2)

(N.,,AN_,AN ,D_,D)=(1,1,0,5/2,-5/2), the 7k, part from (N

s

, the 5k, part from
AN_,AN_,D.,D)=(1,1,0,7/2,-7/2), 9%,
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part from (N* AN ,D ,D)=(1,1,0,9/2,-9/2) , the 11k part from

(ij,ANL,,ANy,DL,,DA_)=(1,1,0,11/2,—11/2) , and the 13k, part from (]\fiy,ANL,,ANy,DC,DK)z
(1,1,0,13/2,-13/2) . This implies both holon and spinon excitations are responsible for the k,, 3k
Sk

In conclusion, the electron field correlation function and the unusual exponents has been obtained around the
Fermi points k,, 3k,, 5k,, 7k, 9k,, 11k, and 13k, respectively, and the density-density correlation function

around 2k,, 4k,, 6k, and 8k, . These results indicate that correlation functions of 1D Hubbard model exhibit

Fo

7k, 9k,., 11k, and 13k, oscillation parts respectively.

Fo

Fo Fo

power-law behaviour of Tomonaga-Luttinger liquid as the exponent v changes monotonically with magnetic
field. The properties around the Fermi points for N7, =1 has led to greater understanding of the non-Fermi liquid

TL unusual exponents of correlation functions in 1D correlated electron systems. This can also be investigated
further to explore more physics around electron correlated systems.
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