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Abstract 

In this paper we investigated the combined influence of dissipation, heat sources, Soret and Dufour effects on the 

convective heat and mass transfer flow of a viscous fluid through porous medium in a rectangular cavity using 

Darcy model. Making use of the incompressibility the governing non-linear coupled equations for the 

momentum, energy and diffusion are derived in terms of the non-dimensional stream function, temperature and 

concentration. The Galerkin finite element analysis with linear triangular elements is used to obtain the Global 

stiffness matrices for the values of stream function, temperature and concentration. These coupled matrices are 

solved using iterative procedure and expressions for the stream function, temperature and concentration are 

obtained as linear combinations of the shape functions. The behaviour of temperature, concentration, Nusselt 

number and Sherwood number are discussed computationally for different values of the non-dimensional 

governing parameters. 

Keywords: Soret and Dufour effects, heat sources, rectangular duct, finite element analysis. 

 

1. Introduction 

Natural convection is of great importance in many industrial applications. Convection plays a dominant role in 

crystal growth in which it affects the fluid-phase composition and temperature at the phase interface that results 

in a single crystal since poor crystal quality is due to turbulence. It is the foundation in modern electronics 

industry to produce pure and perfect crystals to make transistors, lasers rods, microwave devices, infrared 

detectors, memory devices, and integrated circuits. Natural convection adversely affects local growth conditions 

and enhances the overall transport rate. The combination of temperature and concentration gradients in the fluid 

will lead to buoyancy-driven flows. This has an importance influence on the solidification process in a binary 

system. When heat and mass transfer occurs simultaneously, it leads to a complex fluid motion called double-

diffusive convection.  

 Double-diffusion occurs in a wide range of scientific fields such as oceanography, astrophysics, 

geology, biology and chemical processes. Ostrach (1887) reported complete reviews on the subject. Bejan (1985) 

reported a fundamental study of scale analysis relative to heat and mass transfer within cavities submitted to 

horizontal combined and pure temperature and concentration gradients. Kamotani et al. (1985) considered an 

experimental study of natural convection in shallow enclosures with horizontal temperature and concentration 

gradients. Other experimental studies dealing with thermo solutal convection in rectangular enclosures were 

reported by Lee et al. (1990). Hyun et.al., (1990) reported numerical solutions for unsteady double-diffusive 

convection in a rectangular enclosure with aiding and opposing temperature and concentration gradients that 

were in good agreement with reported experimental results. Other related numerical studies dealing with double-

diffusive natural convection in cavities were considered by Beghein et al. (1992) and Nishimura et al. (1998). 

Bera et al. (1998) studied umerically the heat and mass transfer in a anisotropic porous enclosure due to constant 

heating and cooling. Morega et al (1996) studied double-diffusive convection by chebyshev collocation method, 

Technol. Electrically conducting fluids in the presence of a magnetic field have been used extensively in many 

applications such as crystal growth. Oreper and Szekely (1983) have found that the presence of a magnetic field 

can suppress natural convection currents and that the factors in determining the quality of the crystal. Alchaar et 

al. (1995) have considered natural convection heat transfer in a rectangular enclosure with a transverse magnetic 

field. Rudraiah et al. (1995) and Al-Najem et al. (1998) have studied the effects of a magnetic field on free 

convection in a rectangular enclosure. Researchers Sandeep and Sugunamma (2013), Mohankrishna et al. (2014), 

Sugunamma and Sandeep (2011), Jayachandra Babu et al. (2015) considered dissipative and radiating fluids and 

analyzed the flow and heat transfer behaviour through different channels. 

Natural convection heat transfer induced by internal heat generation has recently received considerable 

attention because of numerous applications in geophysics and energy-related engineering problems. Such 

applications include heat removal from nuclear fuel debris, underground disposal of radioactive waste materials, 

storage of foodstuff, and exothermic chemical reactions in packed-bed reactor. Kakac et al. (1985) gave 

fundamentals and applications of natural convection. Strach (1980) analyzed natural convection with combined 

driving forces. Churbanov et al. (1994) studied numerically unsteady natural convection of a heat generating 

fluid in a vertical rectangular enclosure with isothermal or adiabatic rigid walls. Their results were obtained 
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using a finite-difference scheme in the two-dimensional stream function-velocity formulation. Steady-state as 

well as oscillating solutions were obtained and compared with other numerical and experimental published data. 

Other related works dealing with temperature-dependent heat generation effects can be found in the papers by 

Vajravelu and Nayfeh (1992) and Chamkha (1999). Sandeep et al. (2012), Sulochana and Sandeep (2015) 

discussed the heat transfer behaviour of some base and nanofluids in presence of radiation and chemical reaction. 

Literature suggests that the effect of viscous dissipation on heat transfer as been studied for different 

geometries. Thermal radiation plays a significant role in the overall surface heat transfer where convective heat 

transfer is small. Badruddin et al. (2006) have investigated the radiation and viscous dissipation on convective 

heat transfer in porous cavity. Nishimura et al. (1996) studied the oscillatory double-diffusive convection in a 

rectangular enclosure with combined horizontal temperature and concentration gradients. Santhi (2011) has 

investigated double diffusive flow in a rectangular cavity using Darcy model. She has analysed the effect of 

dissipation radiation on the double diffusive flow of a viscous fluid in the rectangular cavity. Chamka et al. 

(2002) have investigated the hydromagnetic double-diffusive convection in a rectangular enclosure with 

opposing temperature and concentration gradients. Sandeep and Sulochana (2015) presented dual solutions for 

radiative MHD nanofluid flow over an exponentially stretching sheet with heat generation/absorption. Sandeep 

et al. (2013) studied the radiation effect on the nanofluid flow over a vertical channel. Raju et al. (2015) 

discussed unsteady boundary layer flow of thermophoretic MHD nanofluid past a stretching sheet with space and 

time dependent internal heat source/sink. Radiation and soret effects of MHD nanofluid flow over a moving 

vertical plate in porous medium studied by Raju et al. (2015). 

In this paper an attempt has been made to discuss the combined influence of   dissipation, heat sources, 

Soret and Dufour effects on the convective heat and mass transfer flow of a viscous fluid through a porous 

medium in a rectangular cavity using Darcy model. Making use of the incompressibility the governing non-

linear coupled equations for the momentum, energy and diffusion are derived in terms of the non-dimensional 

stream function, temperature and concentration. The Galerkin finite element analysis with linear triangular 

elements is used to obtain the Global stiffness matrices for the values of stream function, temperature and 

concentration. These coupled matrices are solved using iterative procedure and expressions for the stream 

function, temperature and concentration are obtained as a linear combinations of the shape functions. The 

behaviour of temperature, concentration, Nusselt number and Sherwood number are discussed.                               

 

2. Mathematical Formulation 

We consider the mixed convective heat and mass transfer flow of a viscous incompressible fluid in a saturated 

porous medium confined in the rectangular duct (Fig. 1) whose base length is a and height b. The heat flux on 

the base and top walls is maintained constant. The Cartesian coordinate system O (x,y) is chosen with origin on 

the central axis of the duct and its base parallel to x-axis.  We assume that the convective fluid and the porous 

medium are everywhere in local thermodynamic equilibrium. There is no phase change of the fluid in the 

medium. The properties of the fluid and of the porous medium are homogeneous and isotropic. The porous 

medium is assumed to be closely packed so that Darcy’s momentum law is adequate in the porous medium. The 

Boussinesq approximation is applicable. Under these assumption the governing equations are given by 
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where u′ and v′ are Darcy velocities along θ(x, y) direction. T′, C,p′ and g′ are the temperature, 

Concentration,pressure and acceleration due to gravity, Tc ,Cc and Th ,Ch are the temperature and Concentration 

on the cold and warm side walls respectively. ρ′, µ, ν, and β are the density, coefficients of viscosity, kinematic 

viscosity and thermal expansion of he fluid, k is the permeability of the porous medium, K1 is the thermal 

conductivity, Cp is the specific heat at constant pressure , Q is the strength of the heat source,k11 and k12 are the 

cross diffusivities , β* is the volume coefficient of expansion with mass fraction concentration. 

The boundary conditions are 

u′ = v′ = 0   on the boundary of the duct 

T′ = Tc ,C=Cc   on the side wall to the left 

T′ = Th ,C=Ch   on the side wall to the right      (7) 

0=
∂

′∂

y

T
 ,  0=

∂
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y

C
  on the top ( y = 0) and bottom      

0== vu                                 walls(y = 0)which are insulated. 

 

We now introduce the following non-dimensional variables 

x′ =  ax; ; y′ = by  ; c = b/a 

u′ = (ν/a) u ; v′ = (ν/a)v ; p′ = (ν2ρ/a
2
)p 

T′ = T0 + θ (Th – Tc) C′ = C0 + φ (Th – Tc)       (8) 

The governing equations in the non-dimensional form are 

x

p

a

K
u

∂

∂








−=

2
           (9) 

2222

)()(

v

CCkag

v

TTkag

v

kag

y

p

a

k
v chch φβθβ −

+
−

+−
∂

∂
−=

•

              (10) 

( ) 








∂

∂
+

∂

∂
+++−









∂

∂
+

∂

∂
=









∂

∂
+

∂

∂
2

2

2

2
22

2

2

2

2

Pr
yx

DuvuE
yxy

v
x

u C

φφ
αθ

θθθθ
             (11)

                                         

2 2 2 2

2 2 2 2

ScSo
Sc u v

x y x y N x y

ϕ ϕ ϕ ϕ θ θ    ∂ ∂ ∂ ∂ ∂ ∂
+ = + + +    

∂ ∂ ∂ ∂ ∂ ∂     
                               (12) 

In view of the equation of continuity we introduce the stream function ψ as
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Eliminating p from the equation (9) and (10) and making use of (11) the equations in terms of ψ and θ are 
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3. Finite Element Analysis and Solution of the Problem 

The region is divided into a finite number of three node triangular elements, in each of which the element 

equation is derived using Galerkin weighted residual method. In each element fi the approximate solution for an 

unknown f in the variational formulation is expressed as a linear combination of shape function. ( ) ,3,2,1=kN i

k  

which are linear polynomials in x and y. This approximate solution of the unknown f coincides with actual 

values at each node of the element. The variational formulation results in a 3 x 3 matrix equation (stiffness 

matrix) for the unknown local nodal values of the given element. These stiffness matrices are assembled in terms 

of global nodal values using inter element continuity and boundary conditions resulting in global matrix 

equation.In each case there are r distinct global nodes in the finite element domain and fp (p = 1,2,……r) is the 

global nodal values of any unknown f defined over the domain then ∑∑
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fp’ s are determined from the global matrix equation.  Based on these lines we now make a finite element 

analysis of the given problem governed by (14)-(16) subjected to the conditions (17) – (18). 
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Under Galerkin method this error is made orthogonal over the domain of ei to the respective shape functions 

(weight functions)  
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Using Green’s theorem we reduce the surface integral (22) & (23) without affecting ψ terms and obtain 
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where ΓI is the boundary of ei. 

Substituting L.H.S. of  (19) for ψi
 , θi

  and φi
  in (24) & (25) we get 
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 Repeating the above process with each of s elements, we obtain sets of such matrix equations. 

Introducing the global coordinates and global values for 
i

pθ and making use of inter element continuity and 

boundary conditions relevant to the problem the above stiffness matrices are assembled to obtain a global matrix 

equation. This global matrix is r x r square matrix if there are r distinct global nodes in the domain of flow 
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and following the Galerkin method we obtain 
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In obtaining (31) the Green’s theorem is applied w.r.t derivatives of ψ without affecting θ terms. 

Using (19) and (20) in (31) we have 
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In the problem under consideration, for computational purpose, we choose uniform mesh of 10 triangular 

element (Fig. ii). The domain has vertices whose global coordinates are (0,0), (1,0) and (1,c) in the non-

dimensional form. Let e1, e2…..e10 be the ten elements and let θ1, θ2, …..θ10 be the global values of θ and ψ1, 

ψ2,……ψ10 be the global values of ψ at the ten global nodes of the domain (Fig. ii). 

                                      

 

4. Results and Discussion  

In this analysis we investigate the combined influence of dissipation, heat sources, Soret and Dufour effects on 

convective heat and mass transfer flow through a porous medium in a rectangular duct. The non-linear coupled 

equations governing the flow of heat and mass transfer have been solved by using Galerkin Finite Element 

technique with 3-noded triangular elements. We take the Prandtl number Pr = 0.71 in the analysis. The 

temperature and concentration have been discussed for different variations of Ra, N, α, Sc, So and Ec at different 

horizontal and vertical levels. The temperature distribution (θ ) is shown in figures 1-28 for different parametric 

values at different horizontal levels y= h/3,  y=2h/3 and vertical levels x=1/2, x=2/3. We follow the convention 

that non-dimensional temperature θ  is positive or negative according as the actual temperature T is > or < than 

Tc, temperature on the cold wall. 

 Figs 1-4 represent the temperature θ  with different values of the Rayleigh number Ra. It is found that 

the actual temperature enhances at y=h/3 level and vertical levels x=1/3 & x=2/3 and reduces at higher 

horizontal level y=2h/3 with increase in Ra >0, while increase in |Ra| (<0) reduces the actual temperature at 

y=h/3, x=1/3 and 2/3 levels and enhances at y=2h/3 level. The effect of heat sources on the temperature θ  is 

exhibited in figs 5-8 at different levels. It is found that an increase in the strength of the heat generating sources 

(α>0) reduces the actual temperature at y=h/3, x=1/3 & x=2/3 levels and enhances at y=2h/3 , while  in the case 

of heat absorbing source the actual temperature enhances at y=h/3, x=1/3 & 2/3 levels and at y=2h/3 level the 

actual temperature reduces with |α|<4 and for higher |α|>6 we notice an enhancement in the actual temperature 

in the vertical strip (0.666<0.798) and reduces in the strip (0.846, 0.93). 

 Figs 9-12 represent θ  with Soret parameter So. It is found that the actual temperature reduces with 

So >0 at all level, while increase in |So| (<0) enhances the actual temperature at y=h/3, x=1/3 and 2/3 levels and 

reduces at y=2h/3 level. The influence of Dufour effect (Du) on θ  is shown in figs 13-16 at different levels. It is 

found that the actual temperature enhances at y=h/3, 2h/3 and x=2/3 levels and reduces at x=1/3 level with 

increase in Du. 

 The rate of heat transfer (Nusselt number) on the side x=1 is shown in the tables 1 and 2 for different 

parameter variations. It is found that the rate of heat transfer reduces as we move along the vertical direction. 

The variation of Nu with Rayleigh number Ra and Sc shown that the Nusselt number reduces with increase in Ra 

and enhances with Sc on all the three quadrants. With reference to heat source parameter αwe find that the 

Nusselt number enhances with increase in the strength of the heat generating source and reduces with that of heat 

absorbing source at all levels. With reference to buoyancy ratio N, we find that when the molecular buoyancy 

force dominates over the thermal buoyancy force, the Nusselt number on the lower and middle quadrants reduces 

and enhances on the upper most quadrant when the buoyancy forces are in the same direction and for the forces 

acting in opposite direction the Nusselt number enhances on lower quadrant and reduces on the middle & upper 

quadrant (table-1). The variation of Nu with Ec shows that higher the dissipative heat larger the Nusselt number 

on the lower and middle quadrants and reduces on the upper quadrant. With reference to So we find that the 

Nusselt number enhances with increase in So >0  and reduces with |So|<o on all the three quadrants. Also higher 

the diffusion thermo effect smaller the Nusselt number on all the three quadrants 
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Fig. 1 Variation of θ with Ra at 
3

2h
y =  level α=2, ε=0.1, Sc=0.22, N=1, SB0B=0.5, Du=0.01 

 

Fig. 2 Variation of θ with Ra at 
3

h
y =  level α=2, ε=0.1, Sc=0.22, N=1, SB0B=0.5, Du=0.01 

 

Fig. 3 Variation of θ with Ra at 
3

1
x =  level α=2, ε=0.1, Sc=0.22, N=1, SB0B=0.5, Du=0.01 
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Fig. 4   Variation of θ with Ra at 
3

2
x =  level  α=2, ε=0.1, Sc=0.22, N=1, SB0B=0.5, Du=0.01 

 

Fig. 5 Variation of θ with  α at 
3

2h
y =  level Ra=10, ε=0.1, Sc=0.22, N=1, SB0B=0.5, Du=0.01 

 

Fig. 6 Variation of θ with α at 
3

h
y =  level Ra=10, ε=0.1, Sc=0.22, N=1, SB0B=0.5, Du=0.01 
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Fig. 7 Variation of θ with  α at 
3

1
x =  level Ra=10, ε=0.1, Sc=0.22, N=1, SB0B=0.5, Du=0.01 

 

Fig. 8 Variation of θ with α at 
3

2
x =  level Ra=10, ε=0.1, Sc=0.22, N=1, SB0B=0.5, Du=0.01 

 

Fig. 9 Variation of θ with S0 at 
3

2h
y =  level Ra=10, α=2, Sc=0.22, N=1, SB0B=0.5, Du=0.01 
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Fig. 10 Variation of θ with S0 at 
3

h
y =  level Ra=10, α=2, Sc=0.22, N=1, SB0B=0.5, Du=0.01 

 

Fig. 11 Variation of θ with S0 at 
3

1
x =  level Ra=10, α=2, Sc=0.22, N=1, SB0B=0.5, Du=0.01 

 

Fig. 12 Variation of θ with S0 at 
3

2
x =  level Ra=10, α=2, Sc=0.22, N=1, SB0B=0.5, Du=0.01 
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Fig. 13 Variation of θ with Du at 
3

2h
y =  level Ra=10, α=2, ε=0.1, N=1, SB0B=0.5, Du=0.01 

 

Fig. 14 Variation of θ with Du at 
3

h
y =  level Ra=10, α=2, ε=0.1, N=1, SB0B=0.5, Du=0.01 

 

Fig. 15Variation of θ with Du at 
3

1
x =  level Ra=10, α=2, ε=0.1, N=1, SB0B=0.5, Du=0.01 
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Fig. 16 Variation of θ with Du at 
3

2
x =  level Ra=10, α=2, ε=0.1, N=1, SB0B=0.5, Du=0.01 

 
I II III IV V VI VII 

Nu1 3.341757 3.313125 3.466986 3.137157 3.050394 3.340593 3.33255 

Nu2 3.1493595 3.1261704 3.2209167 3.02723856 2.97211446 3.1476702 3.1468878 

Nu3 2.9569617 2.9392164 2.97484725 2.9173203 2.894694 2.9547474 2.9612259 

Ra 10 20 10 10 10 10 10 

Sc 1.3 1.3 1.3 1.3 1.3 0.66 1.3 

N 1 1 1 1 1 1 2 

 

Table 2 Nusselt Number Nu at x=2/3 

 

 
I II III IV V VI 

Nu1 3.342975 3.345429 3.356769 3.311673 3.2965374 3.341676 

Nu2 3.1498278 3.1507659 3.1612887 3.1257351 3.1139961 3.1474062 

Nu3 2.9566818 2.9561025 2.9658075 2.9397981 2.932548 2.9531352 

Ec 0.01 0.03 0.01 0.01 0.01 0.01 

So 0.5 0.5 1 -0.5 -1 0.5 

Du 0.05 0.05 0.05 0.05 0.05 0.07 

 

5. Conclusions 

This paper presents the numerical solution of combined influence of dissipation, heat sources, Soret and Dufour 

effects on the convective heat and mass transfer flow of a viscous fluid  through porous medium in a rectangular 

cavity using Darcy model. Making use of the incompressibility the governing non-linear coupled equations for 

the momentum, energy and diffusion are derived in terms of the non-dimensional stream function, temperature 

and concentration. The conclusions of the present study are made as follows: 

• An increase in Rayleigh number causes to increase in the temperature profiles in vertical level and 

reduces in horizontal level. 

• A raise in the value of heat source parameter enhances the temperature profiles of the flow. 

• For higher values of the dissipative heat enhances the actual temperature. 

• Decrease in molecular diffusivity depreciates actual temperature at both the vertical and horizontal 

levels. 
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