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Abstract 
We study Schrödinger equation for inversely quadratic Yukawa plus Mobius square potential using the 

generalized parametric form of Nikiforov-Uvarov method. We obtain energy eigenvalues and the corresponding 

normalized wave function expressed in terms of the hypergeometric functions. Three special cases of this 

potential have been discussed. Numerical values of the energy eigenvalues are also computed for various states. 
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1.  INTRODUCTION 
Over the years theoretical physics has been successful in explaining the behavior of different particles in 

different potentials.  This has been made possible through obtaining exact or approximate solutions of the non-

relativistic and relativistic wave equations for different physical systems of interest.  The exact or approximate 

solutions of these equations with the central potential play an important role in quantum mechanics (Schiff,1955; 

Dirac,1958; Landau and Lifshitz,1977 and Greiner,1989).  For example, the exact solutions of the hydrogen 

atom and a harmonic oscillator (Dirac,1958 and Greiner,1989) have been investigated in recent times (Dong, 

2003).  In fact, exact solutions of a quantum system are significant in Physics.  Solving the non-relativistic and 

relativistic equation is still an interesting work in the existing literature (Ikot et.al.,2011; Antia et.al., 2013; Ikot 

et.al.,2013; Qiang and Dong,2009; Zhang et.al., 2005 and Qiang and Dong,2008). 

 Recently, the study of exponential-like type potentials have attracted much attention (Qiang and Dong, 

2009 and Yahaya et.al.,2010). However, the bound state solutions of the Schrödinger equation of some of these 

potentials are possible for few cases such as Coulumb potential (Dong and Dong, 2002), Woods-Saxon 

(Berkdemir et.al., 2008), Hulthen (Flugge,1971), Manning-Rosen (Ikhdair, 2011) and others  

 Moreover, when the arbitrary angular momentum quantum number l  is present, one can only solve the 

Schrödinger equation approximately using a suitable approximation scheme (Lu, 2005). Some of such 

approximations include conventional approximation scheme proposed by Greene and Aldrich (Greene and 

Aldrich, 1976), improved approximation scheme by Jia et.al., (2009), elegant approximation scheme (Hill,1954) 

and recently a good approximation by Yazarloo et al. (2012).  These approximation are used to deal with the 

centrifugal term and many authors have investigated approximately the bound state solutions of the Schrödinger 

equation with exponential-like potentials.  For further details readers can refer to most recent works (Arda et.al., 

2010; Arda and Sever, 2011 and Yi et.al., 2004). 

 Various methods have been used to solve Schrödinger Klein-Gordon and Dirac equations, exactly or 

approximately.  These methods include asymptotic iteration method (AIM) (Yauk and Bahar, 2012), 

Suppersymmetric quantum mechanics (SUSYQM) (Hassanabadi et.al., 2012), Nikiforov-Uvarov (NU) method 

(Nikiforov and Uvarov, 1988) and others (Ikot, 2012 and Hassanabadi et.al., 2011). 

 The main aim of this paper is to use the proposed approximation in ref. (Yazarloo et.al., 2012) and the 

Nikiforov-Uvarov method to obtain the approximate bound state solutions of the Schrödinger equation with 

inversely quadratic Yukawa plus Mobius square (IQYMS) potential defined as  
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where 210 ,, VVV
are the potential depths and 

DCBA ,,,
 are the potential parameters and α is the screening 

parameter (range).  The hypothetical IQYMS potential is a short ranged and hadronic.  It could be used to 

describe nucleon-nucleon interactions, meson-meson interaction and has other applications in atomic and nuclear 

physics, chemical and other related areas. The rest of the paper is organised as follows. In section 2, the 

parametric Nikiforov-Uvarov method is presented. Factorization method is presented in section 3. In section 4, 

solutions of the radial part of Schrodinger equation with IQYMS potential is presented. We discuss the results of 

our work in section 5.  Finally, we present a brief conclusion in section 6. 
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2. THE GENERALIZED PARAMETRIC NIKIFOROV-UVAROV (NU)  METHOD  
The NU method was presented by Nikiforov-Uvarov (Nikiforov and Uvarov, 1988) and has been employed to 

solve second order differential equations such as the Schrödinger wave equation (SWE), Klein-Gordon equation 

(KGE), Dirac equation etc.  The SWE 
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can be solved by transforming it into a hypergeometric-type equation through using the transformation, 

)(xss =
 and its resulting equation is expressed as 
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where
)(sσ

 and 
)(~ sσ

must be polynomials of at most second-degree and 
)(~ sτ

is a polynomial with at most 

first-degree and 
)(sΨ

is a function of the hypergeometric type. 

 The parametric generalization of the NU method is given by the generalized hypergeometric-type 

equation as (Tezcan and Sever, 2009) 
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Equation (4) is solved by comparing it with Eq. (3) and the following polynomials are obtained: 
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According to the NU method, the energy eigenvalues equation and eigenfucvntions, respectively satisfy the 

following sets of equation 
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and nP
 is the orthogonal Jacobi polynomials. 

 
3 FACTORIZATION METHOD 

In spherical coordinate, the Schrödinger equation with the potential 
)(rV

 is given as (Landau and Lifshitz, 

1977) 
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Using the common ansatz for the wave function as  
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and substituting Eq. (10) into Eq. (9), we obtain the following sets of equations: 
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where
)1( += llλ

 and 
2

lm
are the separation constants.  

)()(),( ϕθϕθ ΦΘ=mlY
is the solution of Eqs. (12) 

and (13). sare the spherical harmonic and their solutions are well known (Schiff, 1955).  Equation (11) is the 

radial part of the Schrödinger equation which is subject of discussion in the next section. 

 

4. SOLUTIONS OF THE RADIAL PART OF SCHRÖDINGER  EQUATION WITH IQYMS 
POTENTIAL  
 Substituting potential of Eq. (1) into the radial Schrödinger equation of eq. (11), we obtain 
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It is well known that the Schrödinger equation of eq. (14) cannot be solved exactly for  0≠l by any known 

method. The way out is to use approximation for the centrifugal term.  On this note, we invoke a good 

approximation for the centrifugal barrier 
2

1

r  as (Yazarloo et.al., 2012) 
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which is valid for 1≤rα  when 1=C  and 1' −=D  (Yazarloo et.al., 2012; Qiang and Dong, 2007; Dong et.al., 

2007 and Wei et.al., 2008), similar to other related work (Greiner, 2000 and Dong, 2011). In addition, when 

performing a power series expansion and setting 0→α , Eq. (15) gives the desired 
2−r suggested by Greene 

and Aldrich (Greene and Aldrich, 1976). By substituting Eq. (15) into Eq. (14) and using the transformation 
res α−= , we have  
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Comparing Eq. (4) with eq. (16), we obtain the following parameters: 
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Substituting Eq. (18) into energy eigenvalues equation of Eq. (6) we obtain the energy equation for this system 

as  
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Solving Eq. (19) explicitly, we obtain the energy eigenvalues of the system as  



Advances in Physics Theories and Applications                                                                                                  www.iiste.org 

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) 

Vol.44, 2015         

 

5 
 

 

),1(
2

2

1'

2

1'

8

22

2

2

2
1

2

2
2

22

++







++



























−+









−++

−= ll
C

AV
V

n
C

D

n
C

D

Enl µ

α

α
α

γ

γβ

µ

α hh

  20 

where

2

1

2

2

22

2

2

2

2
122

2

2

2

2

2 2
)1(

'2'
2

'

4

'

'








+++








++−=

C

BV

C
ll

C

D

C

AV
V

C

D

C

ABV

C

D

C

D

D

C

αα

µ

α

µ

α
γ

hh
 

.
2

'

2
)1(

'2'
2

2 2

2

22

2

2

2

2
122

2
02 C

BV

CD

C

C

ABV
ll

C

D

C

AV
V

C

D

C

ABV
V

αα

µ

αα

µ

αα

µ
β

hhh
−+++








++








−=

 21 

Using Eqs. (7) and (18), the wave function of this system is obtained as  
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Furthermore, the relation between the hypergeometric function and the Jacobi polynomials are (Dong, 2007) 
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The normalization constant nlN
 can be found from normalization condition as (Ikot et.al., 2010) 
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By using the following integral formula (Ikhdair and Sever, 2010) 
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With the help of Eq. (26) and after some calculations the normalization constant nlN
under special condition that 

1=C  and 1' −=D  is obtained as  
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Finally, the total normalized wave function 
),,( ϕθrΨ

 of the inversely quadratic Yukawa plus Mobius square 

potential is obtained using Eq. (10) as 
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5.      DISCUSSION 

The variation of the IQYMS potential with the radial distance of separation between the interacting particles 
)(r

 

for different screening parameter 
)(α

 with 
0.5,3.02 =V

 and 0.10  in Figs. 1, 2 and 3 respectively.  At very 

lowα , the curves almost coincide.  Showing that the curves become interpretable at large α . This implies that 

the interacting particles are very massive.  Alas, the asymptotic nature of the curves cannot be over emphasized.  

This is subject to the fact that the origin of the interaction coordinate (taken to be the point 0=r ) is a point of 

singularity of the IQYMS potential.  At depth as low as 
3.02 =V

(as in Fig. 1) the curves all seem to be 

monotone decreasing on the radial interval 
[ )∞,δ

, where 
fmfm 5.00 << δ

. This tendency is retained for 

the very massive hadrons.  But at high depth 
0.100.52 andV =

(see Figs 2 and 3) and for the less massive 

hadrons, the monotonicity of the curves begin to increase and the interacting potential becomes constant at a 

certain interaction distance for a particular screening parameter (alpha, 
)α

. 

 In order to test accuracy of our work, we compute numerical values.  Numerical result of the 

approximation scheme we employed is displayed in Fig. 4, showing that this approximation is good for the 

parameter of alpha, 01.0=α  (short range). The energy spectrum of the IQYMS potential is reported 

numerically for various states with different screening parameters 
)(α

 in table 1.  There is no degeneracies for 

the considered eigen state.  The energy eigenvalues increases with n  and l  values and drop abruptly as l  

reduces.  Thus the particles with lower angular momentum can be easily separated from the IQYMS potential. 

 Now a few special cases of our results are discussed below.  By adjusting some potential parameters 

some well known potentials can be obtained.  Setting 
1',1,021 −==== DCVV

 into Eq. (1), Yukawa 

potential (Yukawa, 1935)  

  r
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is obtained with the corresponding energy  
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Similarly, we set 
1,1,0 1

21 −==== DcVV
 and 0→α  into Eq. (1), the potential reduces to Coulomb 

potential (Greiner, 2000) 
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the corresponding energy eigenvalues become  
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When 
,010 == VV

the potential of Eq. (1) reduces to Mobius square potential.  The generalized form of 

Mobius square potential can be written as 
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Comparing Eq. (33) with Deng-Fan potential (Dong, 2011)  
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for 1=C  and 1' −=D , we have 
22
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2
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, where

1−= dr
eb

α
 and dr  is equilibrium inter-nuclear distance. Substituting these parameters into Eq. (20) give the 

energy spectrum of Deng-Fan potentials as  
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6.      CONCLUSION 
In this paper, we have obtained the approximate bound state solutions of the Schrödinger equation with inversely 

quadratic Yukawa plus Mobius square (IQYMS) potential via parametric Nikiforov-Uvarov (NU) method.  The 

energy eigenvlaues and the corresponding total normalized wave functions expressed in terms of hypergeometric 

functions for the system are also obtained.  The numerical values of our result are presented in table 1. The 

behaviours of our potential are discussed in Figs.1, 2 and 3. Under appropriate choice of some parameters, our 

potential reduces to few well known potentials in the literature such as Yukawa, Deng-Fan and Coulomb 

potentials. 
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Table 1: Energy eigenvaluesE(eV) of the IQYMS potential for

,1,3.0,1.0,2.0,1' 210 =======−= µCBAVVVD
 with 01.0=α  and 02.0=α  

ln,
 

E(eV)
 

01.0=α  02.0=α  

0,0
 

3.95023073400 1.01502341400 

1,0
 

4.08047936200 1.08126032600 

2,0
 

4.34577613800 1.21853223000 

3,0
 

4.75572010200 1.43643528600 

4,0
 

5.32470981500 1.74936373400 

0,1
 

4.38905007500 0.11277021670 

1,1
 

0.45337706840 0.12012983800 

2,1
 

0.48285447020 0.13538220070 

3,1
 

0.52840377280 0.15959354470 

0,2
 

0.15799894460 0.04058994168 

1,2
 

0.16320888010 0.04323937976 

2,2
 

0.17382073200 0.04873017912 

3,2
 

0.19021846170 0.05744618616 

0,3
 

0.08060645179 0.02070351490 

1,3
 

0.52840377280 0.02205524943 

2,3
 

0.08867877758 0.02485663849 

3,3
 

0.09704495154 0.02930352208 
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Figure 4: 
2

1

r and its approximation for α=0.01. 
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