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Abstract 

We analyze the effect of thermal radiation on mixed convective heat and mass transfer flow of a viscous, 

electrically conducting incompressible fluid through a porous medium in a vertical channel bounded by flat walls. 

A non-uniform temperature is imposed on the walls and the concentration on these walls is taken to be constant. 

Assuming the slope δ of the boundary temperature to be small, we solve the governing equations by a 

perturbation technique. The velocity, the temperature, the concentration, the rate of heat and mass transfer has 

been analyzed for different variations of the governing parameters. The dissipative effects on the flow, heat and 

mass transfer are clearly brought out. 
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1. INTRODUCTION 

The analysis of heat transfer in a viscous heat generating fluid is important in engineering processes pertain to 

flow in which a fluid supports an exothermal chemical or nuclear reaction or problems concerned with 

dissociating fluids. The Volumetric heat generation has been assumed to be constant [Ajay Kumar Singh(2003), 

Bejamin Gebhort et.al.(1988), Bejan et.al.(1985),Cheng (1979), Ostrach(1954), Palm(1975)] or a function of 

space variable [Chen et.al.(1980), Low(1955)]. For example a hypothetical core-disruptive accident in a liquid 

metal fast breeder reactor (LMFBR) could result in the setting of fragmented fuel debris as horizontal surfaces 

below the core. The porous debris could be saturated sodium coolant and heat generation will result from the 

radioactive decay of the fuel particulate [Gabor et.al.(1974),].  Keeping this in view, porous medium with 

internal heat source have been discussed by several authors [Buretta(1972), Gobar et.al.(1974), Palm(1975)]. 

 In the above mentioned investigations the bounding walls are maintained at constant temperature. 

However, there are a few physical situations which warrant the boundary temperature to be maintained non-

uniform. It is evident that in forced or free convection flow in a channel (pipe) a secondary flow can be created 

either by corrugating the boundaries or by maintaining non-uniform wall temperature such a secondary flow may 

be of interest in a few technological processes. For example in drawing optical glass fibers of extremely low loss 

and wide bandwidth, the process of modified chemical vapour deposition (MCVD) [Low(1955), Simpikins 

et.al.(1979)] has been suggested in recent times. Ravindranath et al (2010) have studied the combined effect of 

convective heat and mass transfer on hydro magnetic electrically conducting viscous incompressible fluid 

through a porous medium in a vertical channel bounded by flat walls which are maintained at non-uniform 

temperatures. 

 All the above mentioned studies are based on the hypothesis that the effect of dissipation is neglected. 

This is possible in case of ordinary fluid flow like air and water under gravitational force. But this effect is 

expected to be relevant for fluids with high values of the dynamic viscous flows. Moreover Gebhart(1962), 

Gebhart and Mollen dorf(1969) have shown that that viscous dissipation heat in the natural convective flow is 

important when the flow field is of extreme size or at  extremely low temperature or in high gravitational filed.  

On the other hand Barletta has pointed out that relevant effect of viscous dissipation on the temperature profiles 

and on the Nusselt numbers may occur in the fully developed forced convection in tubes. In view of this several 

authors notably,  Soudalgekar and Pop, Raptis etc al, Barletta(1997, 1998). El-hakeing(2000), Bulent Yesilata 

(2002) and Israel et al (2003) have studied the effect of viscous dissipation on the convective flows past on 

infinite vertical plates and through vertical channels and Ducts. The effect of viscous dissipation has been 

studied by Nakayama and Pop for steady free convection boundary layer over non-isothermal bodies of arbitrary 

shape embedded in porous media. They used integral method to show that the viscous dissipation results in 

lowering the level of the heat transfer rate from the body. Costa has analyzed a natural convection in enclosures 

with viscous dissipation. Recently Prasad has discussed the effect of dissipation on the mixed convective heat 

and mass transfer flow of a viscous fluid through a porous medium in a vertical channel bounded by flat walls. 

Vijayabhaskar Reddy (2009) has analyzed the combined influence of radiation and thermo-diffusion on 

convective heat and mass transfer flow of a viscous fluid through a porous medium in vertical channel whose 

walls are maintained at non-uniform temperatures. 

In this paper, we discuss the Effect of dissipation; thermal radiation and radiation absorption on 
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convective heat and mass transfer flow of a viscous electrically conducting chemically reacting fluid through a 

porous medium in a Non linear coupled equation governing flow heat and mass transfer have been solved with 

the slope δ of the boundary temperature as a perturbation parameter. The effect of various forces on the flow 

characteristics have been discussed graphically. 

 

2. FORMULATION OF THE PROBLEM 

We analyze the steady motion of viscous, incompressible fluid through a porous medium in a vertical channel 

bounded by flat walls which are maintained at a non-uniform wall temperature in the presence of a constant heat 

source and the concentration on these walls are taken to be constant. The Boussinesq approximation is used so 

that the density variation will be considered only in the buoyancy force. The viscous, Darcy dissipations and the 

joule heating are taken into account in the energy equation. Also the kinematic viscosityν, the thermal 

conducting k are treated as constants. We choose a rectangular Cartesian system 0(x, y) with x-axis in the 

vertical direction and y-axis normal to the walls. The walls of the channel are at y = ± L. The equations 

governing the steady flow, heat and mass transfer in terms of stream function ψ are 
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Equation of Diffusion:    
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Equation of State:             
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         (6) 

where   eρ
  is the density of the fluid in the equilibrium state, Te , Ce are the temperature and Concentration in 

the equilibrium state (u, v) are the velocity components along O(x ,y ) directions, p is the pressure, T ,C are the 

temperature and Concentration in the flow region,ρis the density of the fluid,µ is the constant coefficient of 

viscosity , Cp is the specific heat at constant pressure,λis the coefficient of thermal conductivity ,k is the 

magnetic permeability of the porous medium , β is the coefficient of thermal expansion, 
•β
is the coefficient of 

expansion with mass fraction ,D1 is the molecular diffusivity ,Q is the strength of the constant internal heat 

source , qr is the radiative heat flux diffusivity and 
1

1k is chemical reaction coefficient. 

Invoking Rosseland approximation for radiation 
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Expanding 
4T ′  in Taylor’s series about Te neglecting higher order terms  
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where
•σ is the Stefan-Boltzmann constant Rβ

 is the Extinction coefficient. 
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In the equilibrium state 
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  Where DDe pppp ,+=
 being the hydrodynamic pressure. 

The flow is maintained by a constant volume flux for which a characteristic velocity is defined as 

∫
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The boundary conditions for the velocity and temperature fields are  

u = 0, v = 0            on y = ±L  

)/( LxTT e δγ=−
    on y = ±L 

C = C1                      on y = -L  

C = C2             on y = +L                                     (9) 
γ

 is chosen to be twice differentiable function,δ is a small parameter characterizing the slope of the temperature 

variation on the boundary. 

In view of the continuity equation we define the stream function ψ as 

                   u = -ψ y, v = ψ x              (10) 

the equation governing the flow in terms of ψ are 
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Where    u = -ψ y , v = ψ x      

Introducing the non-dimensional variables in (11)- (13) as   
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the governing equations in the non-dimensional form ( after dropping the dashes ) are  
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and the energy and  diffusion equations in the non-dimensional form are  
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The corresponding boundary conditions are  
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The value of ψ on the boundary assumes the constant volumetric flow in consistent with the hypothesis (8) .Also 

the wall temperature varies in the axial direction in accordance with the prescribed arbitrary function γ(x). 

3. ANALYSIS OF THE FLOW 

     The main aim of the analysis is to discuss the perturbations created over a combined free and forced 

convection flow due to non-uniform slowly varying temperature imposed on the boundaries. We introduce the 

transformation  

xx δ=
  

With this transformation the equations (15) - (17) reduce to  

      

ψθψ
ψψ

δ 214
2

)(
),(

),(
FDNC

R

G
F

yx

F
R yy

−−+−=
∂

∂

                  (22) 

and the energy  &diffusion equations in the non-dimensional form are  

CQ
yx

MD

xyG

ERP
NF

yxxy
RP c

1

22221

2

2

2

22

2

22

1

2

2

1

)))()()((

))())((()(

+
∂

∂
+

∂

∂
++

+
∂

∂
+

∂

∂
++=

∂

∂

∂

∂
+

∂

∂

∂

∂
−

− ψψ
δ

ψ
δ

ψ
θ

θψθψ
δ

 (23)    



Advances in Physics Theories and Applications                                                                                                  www.iiste.org 

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) 

Vol.44, 2015         

 

82 
 

CkCF
y

C

xx

C

y
RSc 1

2)( −=
∂

∂

∂

∂
+

∂

∂

∂

∂
−

ψψ
δ

                             (24) 

where         
2

2

2

2
22

yx
F

∂

∂
+

∂

∂
= δ

 

for small values of the slope δ,the flow develops slowly with axial gradient of order δ  and hence we take  
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We follow the perturbation scheme and analyze through first order as a regular perturbation problem at finite 
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Assuming Ec<<1 to be small we take the asymptotic expansions as 
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Substituting the expansions (37) in equations (26)-(36) and separating the like powers of Ec we get the following 

equations 
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The equations (39) – (48) are solved algebraically subject to the relevant boundary conditions. For the sake of 

brevity the solutions are not presented here. 
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4.  NUSSELT NUMBER and SHERWOOD NUMBER 

The local rate of heat transfer coefficient (Nusselt number Nu) on the walls has been calculated using the 

formula  
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The local rate of mass transfer coefficient (Sherwood Number Sh) on the walls has been calculated using the 

formula  
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6.  DISCUSSION OF THE NUMERICAL RESULTS 

We discuss the effect of chemical reaction, and radiation absorption on the mixed convective heat and mass 

transfer flow of a viscous fluid through a porous medium in a vertical channel whose walls are maintained at 

non-uniform temperature. The non-linear, coupled equations have been solved by using a regular perturbation 

technique with the slope δ of the boundary temperature as a perturbation parameter. 
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 The axial velocity (u) is exhibited in figs 1 – 6 for different values of γ, Q1, N, α1 N1 and Ec. With 

reference to radiation absorption parameter Q1 we find that u exhibits a reversal flow for higher Q1≥3.5. |u| 

enhances with increase in Q1≥3.5 (fig. 1). Fig. 2 represents u with buoyancy ratio N. It is found that when the 

molecular buoyancy force dominates over the thermal buoyancy force the axial velocity enhances irrespective of 

the directions of the buoyancy forces. Fig. 3 represents u with chemical reaction parameterγ. We find an 

enhancement in the axial velocity in the degenerating chemical reaction case. An increase in the amplitude α1 of 

the boundary temperature results in a depreciation in u (fig. 4). From figs. 5&6 we find that higher the radiative 

heat flux/dissipative heat larger |u| in the flow region. 

The secondary velocity (v) which arises due to the non-uniformity of the boundary temperature is 

exhibited in figs. 7 – 12 for different parametric values. An in increase in the radiation absorption parameter Q1 

results in a depreciation in |v| in the left half and enhances in the right half of the channel (fig. 7) With reference 

to the buoyancy ratio N it can be seen that when the molecular buoyancy force dominates over the thermal 

buoyancy force the secondary velocity depreciates in the left half and enhances in the right half when the 

buoyancy forces act in the same direction and for the forces acting in opposite directions, it enhances in the 

entire flow region(fig. 8). An increase in the chemical reaction parameter γ results in depreciation in the left half 

and enhances in the right half of the channel (fig. 9). |v| reduces in the left half and enhances in the right half 

with an increase in the amplitude α1 of the boundary temperature (fig. 10). From figs. 11&12 we find that higher 

the radiative heat flux/dissipative heat smaller |v| in the left half and larger in the right half. 
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The non-dimensional temperature (θ) is shown in figs. 13 – 18 for different parametric values. An increase in the 

radiation absorption parameter Q1 results in an enhancement in actual temperature (fig. 13). The variation of θ 

with N indicates that the actual temperature depreciates with N>0 and enhances with |N| (<0) (fig. 14). With 

reference to the chemical reaction parameter γ it can be seen that the actual temperature depreciates with increase 

in γ≤1.5 and enhances with higher γ≥2.5 (fig. 15).Higher the amplitude α1 of the boundary temperature larger the 

actual temperature (fig. 16). From fig. 17&18 we find that higher the radiative heat flux/dissipative heat smaller 

the actual temperature. 

The non-dimensional concentration (C) is shown in figs. 19-24 for different values larger the radiation 

absorption parameter Q1 smaller the actual concentration (fig. 19). With respect to N, we notice that when the 

molecular buoyancy force dominates over the thermal buoyancy force the actual concentration enhances when 

the buoyancy forces act in the same direction and for the forces acting in opposite directions it reduces in the 

entire flow region (fig. 20). An increase in γ reduces the concentration while it enhances with α1 (figs.21, 22). 

From figs. 23&24 it can be observed that higher the radiative heat flux/dissipative heat larger the actual 

concentration. 
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 The rate of heat transfer for (Nusselt number) at y ±1 is shown in tables 1-4 for different values of, γ, Q1, 

N, α1, Ec, N1. An increase in the radiation absorption parameter Q1≤1.5 reduces |Nu| at y = +1 and enhances it at 

y = -1 while for higher Q1≥2.5, enhances for G>0 and reduces for G<0 at y = +1 and at y = -1, |Nu| reduces with 

Q1≥2.5. The variation of Nu with chemical reaction parameter γ shows that |Nu| at y = +1 reduces for G>0 and 

enhances for G<0 increase in with γ≤1.5 and for higher γ = 2.5, it depreciates and for still higher γ = 3.5, |Nu| 

enhances in the heating case and reduces in the cooling case. At y = -1, |Nu| reduces with increase in γ≤2.5 and 

for higher γ = 3.5, it enhances in the heating case and reduces in the cooling case. With reference to buoyancy 

ratio N, we find that when the molecular buoyancy force dominates over the thermal buoyancy force |Nu| 

reduces for G>0 and enhances for G<0 when the buoyancy forces act in the same direction and for the forces 

acting in opposite directions |Nu| enhances at both the walls.  

 

Table – 1 :  Average Nusselt number (Nu) at y = +1 

G I II III IV V VI VII VIII IX 

10
3 

2.4966 1.1439 2.5131 17.4401 -2.2929 -3.1258 3.9151 5.0946 5.4813 

3x10
3
 -35.5803 11.7064 -13.2871 11.6519 -1.7110 -3.7008 -82.6009 -137.023 -161.0368 

-10
3
 -3.1125 -5.1973 -4.1811 38.8079 -4.3125 -4.0886 -7.1154 -10.8455 -12.2723 

-3x10
3
 7.3057 38.1538 9.1886 66.7836 -7.3888 -6.4952 10.3065 11.4387 11.6622 

Q1 0.5 1.5 2.5 0.5 0.5 0.5 0.5 0.5 0.5 

γ 0.5 0.5 0.5 1.5 2.5 3.5 0.5 0.5 0.5 

N1 0.5 0.5 0.5 0.5 0.5 0.5 1.5 3.5 10 
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    Fig. 21 : Variation of C with γ 
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Fig. 23 : Variation of C with N1      Fig. 24 : Variation of C with Ec 
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Table – 2 :  Average Nusselt number (Nu) at y = +1 
G I II III IV V VI VII VIII IX X 

103 2.7777 2.4966 1.9513 1.6986 0.809 1.7605 -2.1393 5.0905 14.4857 -99.9873 

3x103 -21.6458 -35.5803 -99.874 -123.7599 11.603 14.9379 -19.3119 10.0603 -8.2457 -7.2631 

-103 -3.9538 -3.1125 -2.5664 -2.1833 -103.651 12.4913 16.1066 -14.9092 38.8027 43.5356 

-3x103 5.8023 7.3057 9.8605 15.1630 17.517 43.3018 -187.2302 3.9626 3.3884 3.1053 

α1 0.3 0.5 0.7 0.9 0.5 0.5 0.5 0.5 0.5 0.5 

N 1 1 1 1 2 -0.5 -0.8 1 1 1 

Ec 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.7 0.9 

Table – 3 : Average Nusselt number (Nu) at y = -1 

G I II III IV V VI VII VIII IX 

10
3 

-4.3921 12.8216 4.7046 -40.9296 1.9571 2.9216 -6.0366 -7.6208 -8.1276 

3x10
3
 16.8948 -5.0435 -4.3039 11.2166 1.4256 3.4728 26.2766 38.4331 42.9512 

-10
3
 -33.9033 7.8413 5.2843 -37.7085 3.9435 3.9024 13.7941 25.7996 31.8109 

-3x10
3
 3.5021 -28.6171 -7.1373 -60.4369 6.9501 6.2895 -16.9192 -25.7852 26.9861 

Q1 0.5 1.5 2.5 0.5 0.5 0.5 0.5 0.5 0.5 

γ 0.5 0.5 0.5 1.5 2.5 3.5 0.5 0.5 0.5 

N1 0.5 0.5 0.5 0.5 0.5 0.5 1.5 3.5 10 

 

Table – 4 :  Average Nusselt number (Nu) at y = - 1 

G I II III IV V VI VII VIII IX X 

103 -3.7541 -4.3921 -4.7541 -5.9541 0.1872 -2.9115 3.1958 -13.7739 26.7992 9.2486 

3x103 12.8216 14.8616 15.9216 16.8066 -10.9043 27.8459 61.8918 -10.0026 6.5644 6.0384 

-103 4.7046 5.7246 6.7646 7.8240 -50.0707 -22.9265 -31.6476 -6.0609 -8.7891 -6.4897 

-3x103 -12.8948 14.2948 -16.3942 -20.8849 -25.4542 31.3683 99.9298 -2.2598 -2.0901 -2.0116 

α1 0.3 0.5 0.7 0.9 0.5 0.5 0.5 0.5 0.5 0.5 

N 1 1 1 1 2 -0.5 -0.8 1 1 1 

Ec 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.7 0.9 

The variation of Nu with amplitude α1 of the boundary temperature shows that |Nu| at y = +1 

depreciates for G>0 and enhances for G<0 with increase in α1 while at y = -1, |Nu| enhances with α1 for all G. 

The variation of Nu with Eckert number indicates that |Nu| at y = +1 enhances with increase in Ec for |G| = 10
3
 

and for |G| = 3x10
3
 it depreciates with Ec. At y = -1, |Nu| depreciates with Ec for |G| = 3x10

3
 and for |G| = 10

3
, 

the rate of heat transfer enhances with Ec≤0.07 and depreciates with higher Ec≥0.09. The variation of Nu with 

radiation parameter N1 indicates that higher the radiative heat flux larger |Nu| at y = ±1. 

 The rate of mass transfer (Sherwood number) at y = ±1 is shows in tables 5-8 for different parametric 

values. The variation of Sh with radiation observed parameter Q1 shows that an increase in Q1 enhances |Sh| at 

y=+1 and reduces at y = -1 and enhances at y = -1. With reference to chemical reaction parameterγ, we find that 

|Sh| at y = +1 reduces with increase in γ≤2.5 and enhances with higher γ≥3.5 and at y = -1 it enhances with γ for 

all G. w.r.t Eckert number Ec, we observe that higher the dissipative heat smaller (Sh) at y=+1 and larger at y = -

1 for all G. 

Table – 5 : Average Sherwood number (Sh) at y = +1 

G I II III IV V VI VII VIII IX 

10
3 

4.8571 5.0294 4.4836 4.7585 4.7109 4.8342 4.5575 4.3667 4.1999 

3x10
3
 4.2451 5.0294 4.4836 4.1986 3.9586 4.2936 5.0026 4.9716 4.9433 

-10
3
 5.2049 5.7788 12.4838 4.9589 4.8912 5.1296 4.1618 3.8838 3.6411 

-3x10
3
 4.1441 3.4561 2.9364 3.8948 3.7409 4.6485 3.8301 3.4903 3.2069 

Q1 0.5 1.5 2.5 0.5 0.5 0.5 0.5 0.5 0.5 

γ 0.5 0.5 0.5 1.5 2.5 3.5 0.5 0.5 0.5 

Ec 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.7 0.9 

 

Table – 7 : Average Sherwood number (Sh) at y = - 1 

G I II III IV V VI VII VIII IX 

10
3 

-1.0659 -2.6862 -3.5983 -1.0949 -1.1256 -1.1509 -1.0819 -1.0933 -1.1049 

3x10
3
 -1.0564 -6.3561 -3.5023 -1.0650 -1.0849 -1.1186 -0.9599 -1.0591 -1.0603 

-10
3
 -1.0863 -2.1186 -3.4738 -1.0246 -1.1526 -1.1709 -1.1086 -1.1318 -1.1559 

-3x10
3
 -1.1032 -2.4362 -4.9247 -1.1509 -1.1909 -1.2112 -1.1381 -1.1751 -1.2145 

Q1 0.5 1.5 2.5 0.5 0.5 0.5 0.5 0.5 0.5 

γ 0.5 0.5 0.5 1.5 2.5 3.5 0.5 0.5 0.5 

Ec 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.7 0.9 
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7. CONCLUSIONS 

In this paper we briefly discussed the Effect of Dissipation, thermal radiation, radiation absorption on convective 

heat and mass transfer flow in a non-uniformly heated vertical channel. 

� An increase in the radiation absorption Q1 enhances the primary velocity u and the temperature 

θ and reduces the secondary velocity v and concentration C. 

� An increase in the buoyancy ratio N>0 enhances u and C and reduces θ and an increase in |N| 

enhances u and θ and reduces C. 

� An increase in the chemical reaction parameter γ enhances u and reduces C. θ reduces with 

γ≤1.5 and enhances with γ≥2.5. The secondary velocity v reduces in the left half and enhances 

in the right half of the channel. 

� An increase in the amplitude α1 boundary temperature reduces u and enhances θ and C. The 

secondary velocity v reduces in the left half and enhances in the right half with increase in α1. 

� u and C enhances, v and θ reduces with increase in the radiation parameter N1. 

� The primary velocity u and the concentration C enhances with Ec while v and θ reduces with 

Ec. 

� An increase in Q1 or α1 or γ reduces the rate of heat transfer at the both walls, while it enhances 

with N1 and Ec. 

� The rate of mass transfer reduces with G and enhances Q1 at y ±1. The Sherwood number at  

Y= +1 reduces with γ and Ec and enhances at y =-1. 
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