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Abstract 

Magnetic wiggler assisted phase matched second harmonic of a Gaussian laser pulse 

in a plasma is studied.  The wiggler provides additional momentum required for phase 

matching, however this is only for a particular instant. The required wiggler wave number 

increases with pulse duration and plasma density. The efficiency of the process drops sharply 

away from the phase matching instant. 
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Introduction 

Laser –plasma interaction is an area of significant research activity from past several 

decades [1-3]. The advancements in laser technology has made it possible to generate 

ultrashort laser pulses (fs) with intensity above 10
20

W/cm
2
. At such high nonlinear due to 

relativistic effects. A host of nonlinear effects are observed viz. generation of large amplitude 

plasma waves, tunnel ionized plasma, plasma channel formation, modulational  instability, 

laser self focusing, harmonic generation, electron cooling etc. Amongst these, harmonic 

generation is one of the prominent nonlinear effect with applications in plasma diagnostics, 

shorter wavelength generation  

 

and in theoretical understanding of nonlinear effects in plasma [5-12]. In a second harmonic 

generation process two photons of fundamental wave combine to generate a photon of twice 

the frequency of fundamental wave. The phase matching conditions for a second harmonic 

generation process demand, 

12 2ω=ω , and 12 k2k
�
ℏ

�
ℏ = , 

where )2(1)2(1 k,
�

ω are frequency and wave vectors of fundamental (second harmonic) wave, and 

ℏ is Planck’s constant. 
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 Since plasma is a dispersive medium, 12 k2k > and the above mentioned conditions for 

phase matching are not satisfied, thereby making the process a non-resonant one. If the 

process is made a resonant – one the efficiency of the process can be enhanced significantly. 

Various schemes are proposed to make the process  a resonant one. Ivanov et al. [13] have 

proposed a phase matching process by cascading of two phase – matched third order 

processes for fifth harmonic generation. Dimmock et al. [14] have analyzed phase matched 

second harmonic generation and optical parametric oscillations in bireferingent 

semiconductor waveguides by exploiting the waveguide geometry. Balcou et al.[15] have 

reviewed high order harmonic generation process and proposed a new scheme for phase 

matching by using the effect of the spatially varying atomic phase displayed by the high 

harmonics. Parashar and Pandey [16,17] have proposed to employ a density ripple or a 

magnetic wiggler of wave number 0k
�

, to compensate for momentum mismatch i.e., 

120 k2kk
�
ℏ

�
ℏ

�
ℏ −= . Their studies showed significant enhancement in second harmonic 

generation efficiency. In this communication we extend their work to study second harmonic 

generation of a Gaussian laser pulse in the presence of a magnetic wiggler including 

relativistic effects. The physics of the process is as follows: The electron oscillatory velocity 

at )k,(
�

ω couples with wiggler magnetic field to exert a force at )kk,( w

��
+ω . The electron 

density oscillations due to ponderomotive force couples with electron velocity at )k,(
�

ω to 

produce a nonlinear current density at )kk2,2( w

��
+ω which produces the second harmonic 

radiation. 

Nonlinear current density 

Consider the propagation of a Gaussian laser pulse through a plasma of electron density 0
0n . 

The electric and magnetic fields of laser pulse are, 

( )zktωie)ŷix̂(AΕ −−+=
�

, 

Ek
ω

c
B

���
×= , 

22
g τ)v/z(t2

0

2
eAA

−−
=

,                       
(1) 

where ( ) ηηω= ,ck is the refractive index of the plasma, and cηcvg ≈=  is the group 

velocity. The oscillatory velocity of electrons due to laser on solving the equation of motion 

( ) ( ) BvceEedtvdm
����

×−−=  is  

z)kt(ωi

0

kω, e
γωmi

Ee
v

−−=

�
�

,  (2) 
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where - e and m are electronic charge and mass respectively, ( ) cmωAea,2a1γ 212

0 =+≈  

and 1a < . In terms of 0γ  and the plasma frequency ( ) 212

0p menπ4ω = , the refractive index, 

in the limit ,1
22

p <<ωω  can be written as  

( ) 0

222

p γωω2ω1ωη −= .          (3) 

There also exists a wiggler magnetic field given by 

zki

0w
we)ŷix̂(BB −=

�

.
  (4) 

For second harmonic generation, the second harmonic wave vector 12 k2k > . For the process 

to be a resonant one, the phase matching condition demand 

12 ω2ω =
,
 

w12 kk2k ℏℏℏ +=
.
    (5) 

To satisfy the phase matching conditions in Eq. (5), the required wiggler wave number wk  is 

γω

ω

4

3
k

0p

w ≈ .                (6) 

In Figures (1) & (2), we have shown variation of normalized wiggler wave number pw /kc ω

with τ/t /

 
)c/ztt( / −=   at different values of   0a  for 1.0/p =ωω and 0.2 respectively. The 

wiggler wave number required for phase matching increases with time and plasma density. It 

decreases with pulse amplitude.  

The electron velocity k,vω

�
 beats with laser magnetic field B

�
 to produce a ponderomotive 

force 
/

pF
�

 at )kk,( w1 +ω , 

z])k(k-tω[i-

0

0

2

wω,k

/

p
we

γcωm2

BAe
ẑBv

c2

e
F

+−=×−=
���

 .     (7) 

The electron velocity 
/v
�

due to 
/

pF
�

is 

z])k(k-tω[i-

0

22

0

2
/ we

γcωim

BAe
ẑv

+=
�

       (8) 

Using Eq.(8) in equation of continuity 0)vn(.t/n =∇+∂∂
�

, the electron density perturbation 
/n at )kk,( w1 +ω  is obtained as 
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/ 2
[ ( ) ]/ 0 0 0

2 3

0

( ). ( )
wi t k k zw wk k v n e A B k k n

n e
m i c

ω

ω ω γ
− − ++ +

= =

� � �

.     (9) 

This electron density perturbation beats with k,vω

�
to give second harmonic nonlinear current 

density 

k,

/NL

kk2,2 ven
2

1
J

w ω+ω −=
��

  

  = 
]z)kk2(t2[i

w42

0

3

0

24

0 we)kk(
cm2

BAen
)ŷix̂(

+−ω−+
ωγ

+ .    (10) 

There also exists a self consistent second harmonic field 
( )[ ]zkk2t2i

22
weA)ŷix̂(E

+−ω−

ω +=
�

. 

The linear current  density 
L

2J ω

�
 due to ω2E

�
 is, 

ω
−=

ω

ω
mi2

Een
J

2

2

0L

2

�
�

.         (11) 

Second  harmonic field 

The wave equation governing the third harmonic field is  

( )
2 2

2 22 2 2
2 22 2 2 2 2

1 1 4
垐2 ( ) w

L
i t k k zNLE E J

i J x i y Q e
z c t c t c

ωω ω ω
ω

π
ω

 − − + ∂ ∂ ∂ −
− − = = +

∂ ∂ ∂

� � �
�

,                           (12) 

where , .
cm

eA
aand,

cm

eB
,)kk(

c

Aa
iQ 0

cw
c

2

0

2

2

p

2
ω

==ω+
ω

γω

ω
−=  

On further simplification of Eq. (12) considering the group velocity of third harmonic as c and  

( )( )0

22

p2 81c2k γωω−ω= , we obtain  

2

222

ik2

Q

t

A

c

1

z

A
=

∂

∂
+

∂

∂
.                                          (13) 

Introducing a new set of variables ,czt't,z'z −==  Eq. (13) reduces to  

'zi

2

22 e
ki2

Q

'z

A ∆−=
∂

∂
,                                            (14) 

where, w2 kk2k −−=∆ . For the Gaussian pulse  )/'texp(aa 222

0

2 τ−= , cmeAa 00 ω= , 

( ) ( )[ ] 21222

00 'texp2a1 τ−+=γ  is a function of time . For a given wk , one cannot have phase 

matching ( )0=∆  for harmonic generation at all times. If one matches the wiggler wave 

number at the peak of the laser pulse ( )0't = , i.e.  
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,
c4

3
k

00

2

2

p

w
γω

ωω
≈                                            

(15) 

where ( ) 2/12

000 2a1+=γ . 

At all other times we have. 

,1k
0

00

w 







−

γ

γ
=∆                                              

(16) 

and Eq. (14) gives. 

( )[ ]
( )1kk2

1eQ
A

000w2

'z1i

2

2

000

−γγ

−
=

−γγ∆−

.         (17) 

At a distance z = L 

[ ]2
00 02

0 2 00 0

( )
exp ( / 1) 1

2 2 ( / 1)

p c w
w

w

A a k k
i k L

A k k

ω ω
γ γ

ω γ ω γ γ

+
= − −

−
.                   (18) 

In Fig.(3) we have shown the variation of  A/A 2  with τ/t /  for 1.0/p =ωω and 0.25. The 

other parameters are: 1a 0 = , 
3

p 10c/L =ω , 001.0/c =ωω . The efficiency increases with 

plasma density. 

 

Results and Discussion 

  The application of a wiggler magnetic field provides the additional momentum 

required to generate resonant second harmonic generation. It also provides the necessary 

transverse electron velocity for the process. The phase matching condition for a short duration 

laser pulse can be satisfied only for an instant and for the remaining period the process is off 

resonant. The peak efficiency is observed only for the instant when the phase condition is 

satisfied and drops of sharply away from the resonance. The duration of resonance can be 

increased if a tapered wiggler or a plasma with tapered electron density is used. For the 

parameters mentioned above, they can be realized by employing a CO2 laser (10.6µm, 

10
16

W/cm
2
) in a plasma of electron density ~10

17
cm

-3
, wiggler with λw=0.5mm, B0=100kG 

and plasma length L=10cm. 

Conclusion 

 A magnetic wiggler can be applied to generate resonant second harmonic radiation 

from a short pulse Gaussian laser pulse in plasmas. The analysis shows a temporal evolution 

of the intensity of harmonic radiation and because the phase matching conditions are satisfied 

only for a very short duration the peak intensity depends upon the wiggler wave number 

chosen for that instant only. The study is useful for free electron lasers and one can have peak 
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intensity for a larger duration   if one applies a staged magnetic field or a tapered magnetic 

wiggler. A guide magnetic field can also be applied to exploit the cyclotron resonance 

condition in the millimeter wave range. 
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Fig.1  Variation of normalized wiggler wave number  with   for a0=0.1, 0.25 and 0.50 

respectively at  . 
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Fig.2 Variation of normalized wiggler wave number pw /kc ω with τ/t /  for a0=0.1, 0.25 and 

0.50 respectively at 25.0/p =ωω .  
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Fig.3 Variation of normalized second harmonic field  A/A 2 with τ/t /  for 1.0/p =ωω  and 

0.5 respectively, the other parameters are a0=0.1, 01.0/c =ωω  and 
3

p 10c/L =ω . 
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