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Abstract
We study the nonrelativistic Schrodinger equation for g-deformed Hulthen plus modified inversely quadratic
Yukawa potential using the generalized parametric form of Nlkiforov-Uvarov method. The energy eigenvalues
and the corresponding normalized wave functions expressed in terms of hypergeometric function are obtained.
We have also discussed four (4) special cases of this potential, i.e. Woods-Saxon, Hulthen, Morse and inversely
quadratic potentials.
Keywords: Nonrelativistic Schrodinger equation, q-deformed Hulthen potential, modified inversely quadratic
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1.0 Introduction

The exact solutions of the nonrelativistic and relativistic equations with the central potentials play important role
in quantum physics and solving these equations is still of interest and have been successful over the years [1-10].
Recently, the study of exponential-type potential has attracted a lot of interest by many authors [11-12].
However, it is well known that the exact solutions of Schrédinger equation are possible only for a few set of
quantum systems [13-14].

Moreover, when arbitrary angular momentum quantum number / is present, one can only solve the
Schrodinger equation approximately using suitable approximation schemes [15]. Some of such approximations
include conventional approximation scheme proposed by Greene and Aldrich [16], improved approximation
scheme by Jia et al. [17], elegant approximation scheme [18] etc. These approximations are used to deal with the
centrifugal term or potential barrier arising from the problem.

In solving nonrelativistic or relativistic wave equation whether for central or noncentral potential,
various methods are used. These methods include asymptotic iteration method (AIM) [19], supersymmetric

1
quantum mechanics (SUSYQM) [20], shifted N expression [21], factorization method [22, 23], Nikiforov-

Uvarov (NU) [24] and others [25, 26].

The aim of this paper is to apply the parametric generalization of Nikiforov-Uvarov (NU) method to
study the nonrelativistic Schrédinger equation under the g-deformed Hulthen plus modified inversely quadratic
Yukawa (qDHMIQY) potential defined as [27, 28]
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where V), V, are the potential depth, ¢ is the screening parameter and ¢ is the deformation parameter. This

potential is short ranged and hadronic which could be used to describe nucleon-nucleon interactions, meson-
meson interaction and also in various branches of nuclear physics and quantum chemistry.

2.0 The generalized parametric Nikiforov-Uvarov (NU) method

The NU method was presented by Nikiforov and Uvarov [24] and has been employed to solve second
order differential equations such as the Schrodinger wave equation (SWE), Klein-Gordon equation (KGE), Dirac
equation (DE) etc. The SWE

v (r)+[E-V(nly(r)=0 2
can be solved by transforming it into a hypergeometric type equation through using the transformation,
s =5(x) and its resulting equation is expressed as

' +f(s) 's+6(s) s)=
w'(s) G(S)w() Gz(s)w() 0, 3
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where O (s) and O (S) must be polynomials of at most second degree and 7 (S) is a polynomial with at most

first degree and /() is a function of the hypergeometric type.

The parametric generalization of the NU method is given by the generalized hypergeometirc-type
equation as [29]

" (€ =698) 1
4 (S)"‘#V(S)"'ﬁ[_é:lsz+§2S_§3]W(S):0' 4
s(1—c,8) s (1—c,9)
Equation (4) is solved by comparing it with Eq. (3) and the following polynomials are obtained:
F(s)=(c, —c,8), () = s(1— ¢,8),6(s) ==Es* + &5 = &, 5

According to the NU method, the energy eigenvalues equation and eigen functions, respectively, satisfy the
following sets of equation

c,n— (2n + 1)6‘5 +(2n+ 1)(\/2 +c, \/g)+ n(n—1)c; +c, +2c,c4 + 24/cgcy =0, 6

. e [CIO_L%_CH)_I]
W(s)=N, s (1—c,s) P % (1-2¢s), 7
where
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and P, is the orthogonal Jacobi polynomial.

3.0 Factorization method
In spherical coordinate the Schrodinger equation with central potential of Eq. (1) can be written as
follows [30]

hzla(zaj 1 a(. aj 1 9’
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The total wave function in Eq. (9) can be defined as

R(r
v(r.0.0) =22y, (0.9) 10
and by decomposing the spherical wave function in Eq. (9) using Eq. (10) we obtain the following equations:
d*R(r) [2;1 A }
———+| —(E-V(r))—— |R(r) =0, 11
| (E-VE) =R
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dé de sin
d*®(¢)
——=+m’P(p) =0, 13

where A =1(I+1) and m” are the separation constants. ¥, (6,9)= @(0)®(¢) is the the solution of Egs.
(12) and (13). ¥, (9, ¢)) are the spherical harmonics and their solutions are well known [21]. Equations (11) is

the radial part of Schrodinger equation which is subject for discussion in the preceding section.

4.0 Solutions of the radial Schrodinger equation
For eigenvalues and corresponding eigen functions of the radial part of the Schrodinger equation, we
substitute Eq. (1) into (11) to obtain
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Equation (14) has no analytical or exact solution for [ # 0 due to the centrifugal term, but can be solved
approximately. Here we make use of the approximation proposed by Greene and Aldrich [16] as

1 dgte™™

B b — 15
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Substituting Eq. (15) into Eq. (14) yields
2 -2ar 2y, —4ar 29 2ar
R 2 V 47V, 4
m+ “HN gy Dol i€ _ Ao de R(r)=0. 16
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Taking the transformation, § = e , Eq. (16) reduces to

dzR(s)+ (1-gs) dR(s) 1
ds® s(l—gs) ds  s*(1-gs)

) [— (4282 + qA'—B')52 + (2q82 + A'—/i)s - sz]R(s) =0,17

where the following dimensionless quantities have been defined as

2 /’lE ' ﬂV ' le'lvl
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Comparing Eq. (17) with Eq. (4) and making use of Eq. (8), we obtain the following parameters:
¢ =lc,=c;=¢
E =g’ +qA-B', & =2qe + A=A, & =¢7
2

¢, =0, cs =—%,c6 =%+q282+qA'—B' 19

2

c, =-2qe* —A+A, ¢, =€, ¢, =%—B'+q/l, ¢ =1+2¢

2 2
¢, =2 qg+qe+ %—B#qﬂ ,Cpp =&, Cpy =— %+q€+1/%—3'+qﬂ .

Substituting Eqs.(18) and (19) into Eq. (6), we obtain the energy spectrum for the g —deformed Hulthen plus
modified inversely quadratic Yukawa potential as

a’h’ a’h’  2a*h?
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Solving Eq.(20) more explicitly, we obtain the energy eigenvalues as
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Using Eqgs.(7) and (19), corresponding wave functions for this system is obtained as
1
R(s)=N s°(1—gs)2"™ PP (1-2gs), 22
1 g
where v=—,]9 —p +gA.
g\ 4
. —2ar
With s =¢" , Eq. (22) can also be written as
1
R(r) — ane—Zar(;‘ (1 _ qe—2ar )2+V Pn(2£,2V) (1 _ 2q672ar ) 23
where N, is a normalization constant.
The relation between the hypergeometric function and the Jacobi polynomial are [32]
I'n+a+1 1-
ll’n("”’)(z)zgzl‘?1 —n,n+a+b+l;1+a;—Z 24
nll'(a+1) 2
with @ = 2& > —1,b = 2v > —1 under the transformation z =1—2ge .
The normalization constant /N, can be found from normalization condition as [33]
o el
j( ) R dr=a — R,(r)| ds=1 25
s

By using the following integral formula [34]
jola — )22 E(—nn+ 28+ A+1)1424; zF dz
_ (n+S+DnT(n+25+2)TRATCQ2A+1) 26
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With the help of Eq. (26) and after some calculations the normalization constant /N, under special condition that

g =1 is obtained as

n!2€(n +v+ ; + eJF(Z(v + ; +&)+ nj
an = ] 27
Ol(n v+ 2]1"(11 +2e+1)I(n+2v+1)

Finally, the total normalized wave function W (7,8, @) for the g deformed Hulthen plus modified inversely
quadratic Yukawa potential is obtained using Eq. (10) as
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Fig. 1: Variation of Hulthen plus Yukawa potential with r for V, =0.1,V, =0.5 with o =0.1 and
a=0.01
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Fig. 2: Variation of gDHMIQY potential with r for V, =0.1,V, = 0.5 with & =0.1 and
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Fig. 3: Comparison of the centrifugal term f1=—- with the approximation f2 for & = 0.1 forg=1
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5.0 Results and Discussion

The behaviors of Hulthen plus Yukawa potential is presented in Fig.1 while our gDHMIQY potential
with 7 for ¢ =1 is presented in Fig. 2. Comparison of Fig.1 with Fig. 2 shows that our gDHMIQY potential
accounted for positive potential unlike the Hulthen plus Yukawa potential that accounted for negative potential.
In order to test accuracy of our work, we have compared the approximation of Eq.(15) for & = 0.1 denoted as

f2 for g =1 with the centrifugal term f1= — in Fig.3. This shows that the approximation is in good agreement
r
with the centrifugal term.
Further, we are going to study four special cases of the ¢ -deformed Hulthen plus modified inversely

quadratic Yukawa potential and their corresponding energy eigenvalues by making appropriate choice for the
potential parameters.
5.1 Woods-Saxon potential

If we set V, =0,q =—1 , itis found that our potential in Eq. (1) reduces to Woods-Saxon potential of
the form [35]

2ar
V,e

l+e?*
Substituting these parameters into Eq. (21) we obtain the corresponding eigenvalues

V(r)=- , 29

1\ v, 1
i o (n2+n+2j+2a2;lz—l(l+l)—(2n+1) Z—l(l+1) )

nl 2
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2 4

5.2 Hulthen potential
Setting V; =0, =1 into Eq. (1), we obtain Hulthen potential of the form [28]

—2ar
V,e
1 _ e—20tl’

V(r)=- , 31

with the energy eigenvalue as
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53 Morse potential
L . :
If we set V, =g =0and map V, — -V, and & —>% in Eq. (1) we obtain Morse potential of the

form [36]
1
V(r)=V,e ? 44
Substituting these parameters into Eq.(21), the required energy spectrum of Morse potential is obtained
accordingly.

5.3 Inversely quadratic potential
Setting Vo =0, q= 1, = 0 into Eq.(1), we obtain inversely quadratic potential of the form [38]

V
V(r)= - . 45
r
Substituting these parameters into Eq.(21), the energy eigenvalues the potential in Eq.(45) is obtained.

6.0 Conclusion

In this paper, we have studied the bound state solutions of the nonrelativistic Schrodinger equation g-
deformed Hulthen plus modified inversely quadratic Yukawa potential under the frame work of parametric
Nikiforov-Uvarov method with the help of approximation scheme in ref.[16] to evaluate the centrifugal term.
The bound states energy eigenvalues and the corresponding normalized wave functions in terms of
hypergeometric function are obtained. Our results could be used to study the interactions and binding energies
of the central potential for diatomic molecules in the nonrelativistic framework. The results will also have many
applications in chemical and molecular physics and the recently reported result of neutron-proton pairs in heavy
nuclei using perturbation theory [37]. The variation of Hulthen plus Yukawa potential with r for various
screening parameter ¢ is discussed in Fig. 1. The behaviors of our potential with ¥ with & = 0.1 and 0.01
for ¢ =1 is presented in Fig. 2 while comparison of the approximation used in this work with the centrifugal

term is shown in Fig. 3. By appropriate choice of potential parameters our potential in Eq. (1) reduces to four (4)
well known potentials: Woods-Saxon, Hulthen, Morse and inversely quadratic potentials and their respective
energy eigenvalues are also evaluated.
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