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Abstract 

Heat generated by silicon-based transistors due to high energy photo irradiation interferes with the 

electronic conductivity of transistors in the ICs. There is need to search for an alternative 

semiconductor material for making diodes and transistors with little or no heat dissipation. Dilute 

magnetic semiconductor such as Gallium Arsenide (GaAs) has demonstrated to be a better 

candidate to substitute silicon in electronic technology. UV-VIS-IR light was illuminated on the 

Ga1-xMnxAs samples of thickness 500nm−1000nm of varied doping levels during the study. 

Reflectance and transmittance spectra were determined using OSA SPECTRO 320 with light 

obtained from sodium lamp (240V, 100 W) with irradiance of 33.4807 W/m
2
. The maximum 

absorbance within the UV-VIS-IR range was, A≤ 83.82% at λ≈200nm and minimum absorbance 

was, A≥0.96% at λ≈300nm with Ga1-xMnxAs, x=20% having the highest absorbance value and Ga1-

xMnxAs, x=1%, the least absorbance. For Ga1-xMnxAs; x=0, x=10%, x=1% and x=20%; maximum 

absorbance occurred at UV region while for x=50%, maximum absorbance was observed at 

λ≈707nm. The results show that GaAs generate most heat due to its wide optical energy gap of 

1.43eV while for x=1% dissipates little heat because of its small optical energy gap of 0.36eV.  

Keywords: Optical absorbance, photo irradiation, Gallium Arsenide, Gallium manganese arsenide, 

doping, heat dissipation, ultraviolet light 

1. Introduction 

Electromagnetic (EM) radiations interact with matter and depending on its energy it can be 

transmitted, reflected or absorbed by the matter of an incident material. The energy of the incident 

EM radiation is quantized and given by, hCE λ=             (1)                                       where C  is 

the speed of light, λ is the wavelength of incident radiation and h is the plank’s constant. According 

to eqn (1), higher energy is obtained from UV region and other short wavelengths region such as 

VIS region. The transmission, reflection and absorption of light depend on the thickness of the 

incident material. The SPECTRO 320 with IS-Spec Win software produces transmittance and 
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reflectance spectra for the whole EM spectrum. The absorbance is determined from the 

relation, 1 ( )A T R= − +                                                   (2)                                                                                                               

where T is transmission in % and R is reflection in %. The absorbed part of incident radiation is 

used to pump electrons from ground state to an excited state. Electrons at the higher energy levels 

fall back as they seek stability and emit energy in form of heat sometimes through a process of 

fluorescence. With regard to eqn (1), it is apparent that the short wavelength EM radiations are 

likely to dissipate much heat as they have a lot of energy to excite the electrons to the highest 

energy levels. From the latter, materials with high absorbance values with respect to the EM 

radiation, dissipate most heat and vice versa for materials with low absorbance values.  

1.1 Photons absorbed by semiconductors 

If the energy of the individual photons is greater than the semiconductor band gap, the photons can 

be absorbed, transferring their energy to an electron (Dholakia
 
et al., 2003). This process pumps up 

the electron from the valence band to the conduction band. The absorption process thus creates an 

electron-hole pair as it results in an electron in the conduction band and a hole in the valence band. 

A substantial representation of the electron-hole pair generation is to view the valence band electron 

as part of a covalent bond. When the covalent bond is broken, the electron is set free to move in the 

crystal lattice of the semiconductor. The energy required to break the covalent bond is the energy 

band gap that provides the size of band gap. If the photon energy is less than band gap energy, it 

doesn’t carry enough energy to break the covalent bond and free an electron for conduction. Since 

the electrons can’t occupy the forbidden states between the valence and conduction bands, a photon 

with energy less than the band gap energy, cannot be absorbed and will pass through the study 

sample. In order to study the band gap of a semiconductor, light with variable photon energy near 

the band gap energy can be used. The photon energy at which transition between absorbing and 

non-absorbing behaviour takes place will correspond to the band gap energy. 

For higher energies there is no transmission because all the light is absorbed. Destructive 

interference can be observed at those higher energies. This is observed from the absorption tail of 

the photon absorption-photon energy curve. For energies above the absorption edge, R T+  gets 

very low because in the spectral range most photons are absorbed by the sample. In a rough 

approximation, we can calculate the absorption coefficient α  according to the equation, 

dR T e α−+ =  where d is the sample thickness. 

( )2
1 dT R e α−≈ −

( )2

1
ln

1
T

d R
α

 
⇒ = −  

− 
                                                                         (3) 
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( )2
1 R− is approximately unity as the reflectivity is negligible and insignificant near the absorption 

edge (Dholakia
 
et al., 2003 and Ishu et al., 2006). (3) can be reduced to 

                                              [ ]1
ln T

d
α = −

1 1ln
Ad

α  ⇔ =                                                 (4)                

1.2 Energy band gap determination 

Band gap is the uppermost property of semiconductors which is differed from metals and insulators 

that determines their special electronic and optical properties and wide device applications (Tan et 

al., 2005). The optical band gap of the semiconducting film is determined by applying the Tauc 

model, ( )nopt

ghv D hv Eα = −                                             (5)                                                                            

where hv  is the photon energy, opt

gE is the optical band gap, D is the band tailing parameter and 

n=1/2 for direct band gap semiconductors e.g., GaAs (Ishu et al., 2006 and Yastruback, 2012). The 

dependence of the absorption coefficientα in terms of the direct and indirect transitions is most 

often performed with the help of the formulae derived for 3-D crystals shown by Tauc model 

(Dholakia
 
et al., 2003). Optical transmission is a very complex function and is strongly dependent 

on the absorption coefficient. The oscillating nature of the spectrum shows that the films are having 

uniform thickness. From a graph of ( )2
hvα with hv , optical band gap, opt

gE can be determined by 

extrapolation of best line of fit between ( )2
hvα  and hv  axis (Ishu

 
et al., 2006 and Lee et al., 2009). 

2. Methods 

The spectrometer was used to start the experiment that calculates and analyses the data obtained and 

represent it in form of a spectrum (reflection spectrum). The samples were fixed at the aperture in 

the SPECTRO 320 to let in light. Portion of light that penetrates the sample was collimated and 

directed to the OSA 320 using a fibre optic cable inside it for analysis. A similar process was 

followed to obtain the transmission spectrum at transmission window. Transmission and reflection 

spectra for each sample were obtained over the same UV-VIS-IR wavelength range. From such 

spectra, absorption data for each sample was determined with reference to eqn (2) at particular 

wavelengths in percentages. The optical wavelengths were converted into optical energies using eqn 

(1) and recorded in Table 1. The information so far obtained was used to generate an absorption (%) 

spectra spanning over the entire UV-VIS-IR wavelength range. Using eqn (5) and values in Table 1, 

optical absorption coefficients were determined then graphs of absorption coefficient versus photon 

energies were drawn. Straight lines of best fit were drawn in all graphs and by extrapolation, the 

optical band gaps were determined.  
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3. Results and discussions 

At wavelength λ≤700 nm or E≥1.76eV, Ga1-xMnxAs become porous and transparent to incident 

light. The maximum transmittance was observed to vary with respect to the doping levels that also 

dictate the maximum absorbed photon wavelength. Otherwise, it becomes opaque whereby the 

transmittance determines to the lowest value of 7.62% for x=0 at λ~1300nm; 29.17% for x=50% at 

λ~1300nm; 28.33% for x=10% at λ~1000nm; 18.00% for x=1% at λ~1500nm and 27.27% for 

x=20% at λ~1100nm. In this spectral region, some photons are reflected and the amount of 

reflectance slightly surpasses that of transmittance such that by applying eqn (2), the absorbance is 

approximately zero for all samples under study. At wavelength λ>700nm or E<1.76eV, the 

samples become more opaque that the transmission and reflection of photons are T≤50% and 

R≤48% respectively for all the samples. By application of eqn (2), the absorbance is determined to 

be A≠0. As indicated earlier, absorbance is zero at E≥1.4eV but at E≤1.4eV, Ga1-xMnxAs for 

x=50%, absorbs 47% of the illuminated photons as shown in Fig. 1. 

The region of photon absorption defines the energy band gap of the ferromagnetic dilute magnetic 

semiconductor. At this region, absorbed photons with higher energies can generate electron hole 

pairs by excitation or stimulation. Any excess energy will be lost perhaps through fluorescence and 

the generated pairs are sufficient to produce electric current. The energy band gap behaves as 

schottky barrier or ‘uphill’. Thus, it becomes difficult for the pairs to be transported through it and 

energy more than Eg (energy gap) is required to enhance the possibility of pair transportation. As a 

result of the generated current and the load (barrier) heat is generated that is due to joule heating in 

the energy gap. Thus, large absorbance suggests large amount of pair generation and in all samples 

under investigation it occurs at low Eg or narrow gap DMS depending on the doping levels.  Heat 

dissipated is dependent on the photon absorption percentage and the hall resistance of the Ferro-

DMS. In view of doping level variation in reference to the absorption spectra, it is apparent that 

doping levels vary proportionately with the photon absorption percentages, the hall resistances and 

the amount of electron-hole pairs generated. It shows that the incorporation of manganese atoms 

into the GaAs film alters its’ crystal structure and narrows its energy band gap. For pure GaAs 

(x=0), the photon absorption energy range is Eg≤1.4eV with maximum photon absorbance peak of 

66% as shown in Fig. 2. 

Comparing with the case of x=50%, pure GaAs is likely to generate more electron-hole pairs than 

the former when illuminated with UV-VIS-IR light without filters, indeed at the IR region, 

λ≥1300nm or E≤1.0eV. At 20% manganese doping level, optical transmittance and reflectance 
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draws towards each other seemingly to overlap such that the optical absorbance decreases. Indeed, 

it has the smallest higher absorbance value. This shows that it can generate little heat as compared 

to other doping levels under study. The optical destructive interference is observed at the beginning 

of the optical tailing parameter that defines the optical absorption edge at E≥1.6eV as in Fig. 3 

according to Pereira and Dias da Silva, 2008. 

From Table 1, and using eqn (4) Table 2 was generated which is a table of absorption coefficient as 

a function of optical energy gap and the incident photon energy. A plot of ( )2
hα ϑ versus hϑ  

provides a wavy-linear graph which can be used to determine the optical energy band gap for each 

doping levels as shown in Figs. 6, 7, 8, 9 and 10. For x=0, x=1%, x=10%, x=20% and x=50% 

energy band gap were 1.43eV, 0.36eV, 0.61eV, 0.69eV and 0.67eV respectively as in Table 1. A 

plot of ( )opt

gE eV versus doping levels X (%) as shown if Fig. 4 shows a drastic drop in opt

gE when 

manganese atoms (1%) is incorporated into GaAs host. This is the case at energy gap of 

approximately 0.36eV beyond which it increases until 0.61eV for X=20%. Beyond this point it 

becomes almost constant (an increase in X does not cause a significant change in the optical band 

gap). The initial drop in optical energy band gap correspond to a reduction in carrier concentration 

and this is attributed to the establishment of manganese interstitials according to Yastruback as 

shown in Fig. 5. This is a strange observation and is due to the presence of holes in the impurity 

band instead of the valence band. Here, an initial addition of manganese impurities create an 

impurity band which lies between conduction band and valence band. Photons of light incident on 

the band generates a hole-electron pair and the holes are excited into the conduction band with ease 

since the gap has been reduced by the initial impurities. This is why the optical band gap reduces to 

0.36eV when impurity of 1% is added into the GaAs lattice structure. A further increase of the 

impurities appears to compress the impurity band close to the valence band. Thus increasing the 

energy gap as the impurity band seem to overlap with the valence band. Generated holes upon 

impingement by the incident photons expiriences difficulty in jumping to the conduction band since 

the gap has so far been increased. This is observed by an increase in the energy gap to 0.61eV in 

Table 1 and in Fig. 4 .Any further increase in the impurity density increases the stress between the 

impurity band and the valence band. This continues until the bands almost overlap and cannot 

reduce anymore. This is observed by an optimum curve between 20%≤x≤50% in Fig. 4 .Wavy-

linear graphs, Figs. 6, 7, 8, 9 and10, shows that the absorption coefficient increase with the incident 

photon energy. The wavy-like behavior shows that the thin films are uniform. The wavy line in the 

graphs show the experimental results and the straight lines show the theoretical ones. An increase in 
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doping levels implies higher dopant density. The increasing density exerts some stress on the 

valence band and the impurity band seems to overlap with the valence band. Due to a near band 

overlap, the gap between the conduction band and near overlap increases. If the photons are 

directed into the bands, the hole-electron pair is generated on the near band overlap but on the 

impurity band side. The holes are excited into the conduction band over a wider energy space. This 

suggests an increased energy band gap. 

The overlapping increases until an optimum limit or yield point where the applied stress due to 

impurity density cannot be exceeded. At this point, any increase in the incident photon energy do 

not cause any positive effect on the optical energy gap of the semiconductors. This is the case with 

the direct band gap semiconductors. In indirect band gap semiconductors like  

pentavalent doped silicon, the holes are not in the impurity band but in the valence band. In this 

case, an increase in impurity density doesn’t affect impurity-valence interband gap as charge 

carriers are always in the valence band. If such semiconducrors are illuminated by an incident 

photons of varied energies, as impurity densities are increased, their gaps reduces linearly until the 

conduction band and valence band nearly overlap. In view of this, manganese impurity at 1% 

absorbs photons over a wide range of optical energies of E≤2.2 eV For pure GaAs absorption 

optical energy range occurs at E≤2.0 eVas in Figs. 11 and 12 respectively. Taking the case when 

X=0 as the control set up, it can be oserved that manganese impurity (1%) increases optical 

absorption range by 0.2eV.   

For manganese doping at 10% as in Fig. 12 the optical absorption range reduces to E≤1.6eV 

showing that the absorption optical energy range reduces by 0.4eV. For 20% and 50%, optical 

absorption ranges reduce by 0.2eV and 0.1eV respectively. These observations show that little 

impurities of manganese atoms have large photon absorption surface area and the electron-hole pair 

generation become the highest. This is observed from a small optical energy gap of 0.36eV. 

Otherwise, the photon absorption surface area reduces as shown in Figs. 1, 3 and 12. In this case 

beyond manganese impurity doping levels of approximately 6%, according to Yastruback, the 

optical energy band gap increases to 0.61eV for x=10%, 0.69eV for x=20% and 0.67eV for x=50%. 

At 50% manganese impurity concentration, the situation is degenerate and the reduction in optical 

absorption range reduces to 0.1eV which corresponds to optical energy gap of 0.67eV with a 

reduction of 0.02eV from that at x=20%. 
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5. Conclusion  

The optical band gap of GaAs and manganese doped GaAs provides vast information on the trend 

of the nanotechnology advancement as to conform to the Moore’s law. The optical device 

advancement in optoelectronics is of great importance especially in designing optical transistors and 

optical diodes for making sensors. Compound semiconductors with direct band gap such as GaAs 

are best for this advancement. Here optical band gap of GaAs and its manganese doped counterparts 

have been determined. The optical band gap of GaAs is 1.43eV. Optical band gap for doped GaAs 

dropped significantly to 0.36eV for 1% manganese doping level. The reduction in the optical energy 

gap shows that the electron-hole photo generated pair can jump to the conduction band easily. The 

heat dissipated during such excitations is minimal for narrow band gaps as compared to GaAs with 

optical band gap of 1.43eV. This is in accordance with Ishu who ascertained that the addition of 

impurity into a semiconducting crystal lattice reduces its energy gap and dissipates little heat. 

Manganese doping levels in the range 1%≤x≤10% is most appropriate. It is presumed to dissipate 

little heat during electric current conduction as compared to undoped and highly doped GaAs. It is 

also observed that at X≥20% the optical band gap becomes almost constant despite of an increment 

in the impurity doping density. 
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Fig. 1: Absorbance (%) spectrum of Ga1-xMnxAs; x=50%  

 

Fig. 2: Optical absorbance with the optical energy band gap for pure GaAs 
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Fig. 3: Absorbance (%) spectrum of Ga1-xMnxAs; x=20%  

 

 

              Fig. 4: Optical energy gap with impurity doping variations of GaMnAs 

 

Fig. 5: Charge carrier concentration versus impurity levels obtained from Van der Pauw experiment 
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Fig. 6: Absorption coefficient versus incident photon energy for GaAs 

 

Fig. 7: Absorption coefficient versus incident photon energy for X=1% 

 

Fig. 8: Absorption coefficient versus incident photon energy for X=10% 
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Fig. 9: Absorption coefficient versus incident photon energy for X=20% 

 

Fig. 10: Absorption coefficient versus incident photon energy for X=50% 

 

Fig. 11: Absorbance (%) spectrum of Ga1-xMnxAs; x=1%  

 

Fig. 12: Absorbance (%) spectrum of Ga1-xMnxAs; x=10% 
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Table 1: Photon energy (eV) and absorbance (%) for Ga1-xMnxAs 

Energy 

(eV) 

Absorbance (%) 

X=0 

Eg
opt

=1.43eV 
X=1 

Eg
opt

=0.34eV 
X=10 

Eg
opt

=0.60eV 
X=20 

Eg
opt

=0.69eV 
X=50 

Eg
opt

=0.67eV 

0.83 90.74 48.00 36.65 30.61 14.99 

0.89 47.06 54.00 41.66 7.12 21.66 

0.96 62.43 38.00 31.66 25.30 40.83 

1.04 47.09 46.00 39.17 23.19 30.00 

1.13 35.42 56.00 40.83 46.51 35.00 

1.24 30.61 42.00 51.67 21.51 19.17 

1.38 21.18 29.00 41.66 39.84 47.50 

1.55 15.44 14.00 0 6.51 17.50 

1.76 12.69 12.00 0        0 1.66 

 

Table 2: Absorption coefficient and incident optical energy 

hϑ(eV) (αhϑ)
2
x10

13
(eV)

2 
m

-2
 

X=0 X=1% X=10% X=20% X=50% 

0.83 6.10 4.13 3.57 3.23 2.02 

0.89 4.70 5.04 4.41 1.22 2.99 

0.96 6.30 4.88 4.40 3.85 5.09 

1.04 6.42 6.34 5.82 4.28 5.00 

1.13 6.50 8.28 7.03 7.53 8.24 

1.24 7.20 8.59 9.57 5.79 5.36 

1.38 7.10 8.64 0 10.34 11.35 

1.55 7.20 0 0 0 0 

1.76 8.00 0 0 0 0 
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