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Abstract

In the classical Physics, the particles are described by their masses, charges, spins, number of particles, ....,
which are constants values. But that was not exactly in the quantum Physics, in which, the particles
properties like masses, charges, spins, number of particles, ..., are not constants values, they change in the
interactions.

So we need unchanged properties in the interactions, we need that to know how we describe the nature
according to the quantum principles. For that the quantum fields theory was born, It is a marriage between
the quantum mechanics and the Symmetries, like the space XYZ points Symmetry. In general the
Symmetries are described by continuous transformations {U} form groups, to satisfy the Symmetries, the
interactions must preserve them. Therefore the Lagrange structure L(d,¢,¢) is invariant under the
continuous transformations {U}, L' =L with ¢, =Ud¢; for both free and interaction situations. With that we
have a principle to build the Lagrange and describe the associated particles. That is generated to the gauge
invariance and gauge fields.

With that we have no problem with the changes on the masses, charges, spins,... , the particles are now
classified by their symmetries, not by them. The method of calculation the changes on masses, charges,
spins, ... is the renormalization. One easy method is comparing the bare Lagrange Lo(9,.¢0,¢0) and the bare
fields ¢, with the interaction Lagrange L(d,¢,¢) and interacted fields ¢ , the both in the same group
representation, we consider the bare fields ¢, as free and classical fields, so it is unchanged in the
interactions and the associated bare masses, bare charges, bare spins,... are fixed values.

But to compare the interaction Lagrange with the bare one, the interaction results, like the self energy, ...,
must be finite(without divergences). For that we modify the propagator like eqg2.2 for the photons and eql.2
for the fermions, we set a—0 in the final results. But for the quarks we fix Z, and search for ka—0 so we
can ignore the modifying and have the usual propagators. When ka>1 we can’t ignore it, we give them a
physical meaning, like to relate that modifying to Field dual behavior, free and composition, pairing
particles-antiparticles appears as a scalar particle, we apply that for the quarks chapter 9 we find the static
quarks interaction potential, we study the quarks plasma and use our results in Friedmann equations
solutions.

The key words: Lagrange parameters, the chiral symmetry satisfying, nuclear potential, quarks static
potential, fields dual behavior, quarks plasma phase, quarks condensation phase, the Big Bang, neither dark
energy nor dark Matter.

1. The fermion self-energy in the electromagnetic interaction

We find the Lagrange parameters Z, and Z,,, and make the results like the physical mass, using the modified
propagators like 1.1 and let a —0 in the final results, as usual in the renormalization[1], [2]. But here we
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absorb the self energy to the Lagrange parameters Z, and Z,,(eql.11). We do that for the electrons and
generate it for the quarks. In the path integral of the electrons field we use the Lagrange

L =iwy"0,w —myy +eA wy“y the self energy becomes[2]

£ Diagram 1.1
m electron self energy for the interaction
with electromagnetic field
P p+E P
21 . -pm L
iZ(P) = (ie)?- J(Z ) [v“S(P + £)y" 1Am (¢?)  and S(P/)_pT free fermion's propagator 1.1

For photons propagator we modify:

a’k? g, 1
Aw(k?) =2 (1 = L p=at 1.2
)= ig[ 1+a2k2] s tope PR

The electron self-energy 1.1 becomes:

iz(P)=e J' N ! ! 1.3

fp+ 0P+ m P+ ml 1+ B
with N =y, (- B/ +m) y

Using the Feynman formula:

1 1 1
¢ [dR, = 2{ dxdxdx, 5 (%, +%, +x; —1 14
((p+ 0+ m?)-((*+m])- (L+ B(°) = [((p+()+m)x1+((+m)x2+(1+ﬂ/ )x} J '£ MGG )

and setting the transformation: g=#4+x.p

And changing the integral to be over g and making transformation to Euclidean space the electron self
energy becomes

dg 1 N
iZ(P) =e’i F,— 15
I(2 ) ﬂ‘f ‘[q°+DT
and D D= —x#p® +x,p* + xym? + x;m2 4+ (1 —x, — xz)% 1.6

The linear term in q integrates to zero, using 4=1+XiPp, N becomes[2]
N —-2(1x) 6 -4m 1.7

F(b - a—%)l‘(a+ %)

o
C @y ror

d
~(b-a-3)

Using the relation:

The integral over g in Euclidean space is:

_ 21 r(3'2)r(2) -(3-2) _ 21 N -1
() =¢e 5 j dF3N7(4”)ZF(3)F(2)D e ﬂdeS 6750 18

The self energy becomes
-2(1-x%) § —4m
ﬁ{—xlz P?+% P +xm* +x,m? + (1% —Xz)ﬂ

3(P)= e—J'dxij' X, 1.9

167[ D 167[
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2 1 1-% —(1— _2
_ ¢ 2J‘dxl I dxz—( %) f - 2m
8r 0 0 [ﬁf +(1_X1_X2)]
Which is a finite result(without diverges). Now we renormalize the fermions propagator to give the real
states and let a—0 .

with f =—x7p®+xp* +xm? + x,m’

The interacted electrons propagator becomes[2]:
S(P) ' = F+m-3(F) 1.10
To renormalize the interacted field we rewrite: S(#)™* = ' +m-2(F)=2,F +Z,m 11

The parameters Z, and Z,, are the renormalization parameters, later we try to make them constants like
eqg5.2 , for the interacted field ¥ we have:

(0ly (Pyw(-P) |0) =

1 1 1 1 1
}Ff m-3(#) |ZJ7(+Zm ZZiF(+Zz’1me

We can rewrite (0| Z,w (PWZ,w(-F) |0) =

)Ff +Z, 1z m
And make m=2,"Z,m and y,=[Zy 112

With that we have bare fields ¥, they are like the free fields and like the classical fields, so we can make

them independent on the interaction, so ~7o a"’o a(;“

—op’ —op*
make ¥ the interacted field with mass m the physical mass, but we have to make ReX(-m)=0 in 1.10 but
with (m,)’< 0.

-0 by that we renormalize the interaction. We

2 1 1-x
From110and 111 Z, =1+ [dx, [ d ot 1.13
8r% s [ HA-x—x,)]
=1+ S j.dxi 1J:dex 2 . f =—x’p? +xp° +xm’ +x,m’ 1.14
87”9 ) ’ ﬂf"'(l X = X)] - a .

By that we removed the self energy of the interacted electron and make the mass varies.
we get the physical mass of the interacted electron, like usual, then let a—0 .
for easy we ignore the masses mand m, in f so f —-x’p®+xp* therefore

*

1 1-; 1 1
ldx1 ! dx, 7[,8f+(1 oy _l‘dxl(l—xi)ln[l+a2p2x1]

:#[—az p*+In(@®p® +1) + 2a°p* Ina’ p* +1) +(a’ pz)2 In(1+1/a’ pz)}: p=a’

Z(az pz)z

We have for x=a’p?>—0: a—0
z, =1+i(§—ln x+o(x)j o=
4\ 2 4

For Z,, we have

L In(1+a%p? 2152
J'dxiln(lJr 212 ]: ( 5 Zp )+In[l+zasz
0 arpx p

a’p a

therefore Z,, becomes Z, =1+ g(1— Inx+0(x)) : x=a’p’ >0 whena—0
T
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We run the mass min m,=2,"Z m:
In(my)=—In(Z,)+In(Z,) + In(m): dim(mo) -0
X
We consider only the first order in o=c¢*/4n<1 we use In(x+1)=x-x*/2+...

3 3 1,
Inz, :In(1+zr(z—ln(x)jjzln[brgg—zzln(x)Jz In((1+3a/87r)(1—b1y)):In(1+3a/87r)—b1y—5(b1y) ..

. aldr
withb,=——— and y =In(x
L v aa/ee Y=
For Z,
a o 1 2
Ian:In(1+———ln(x)j:In((l+a/7z)(1—b2y)):In(1+a/7r)—bzy—5(b2y) +..
T T
with b, =27
l+alrx
Therefore

In(my)=—-In(1+3c /87z)+b1y+%(bly)2 +..+In(l+alx)-by —%(bzy)2 +...+In(m)

d d
—my,=—m, =0
d In(x) dy

That becomes

In(mo)=—In(1+30:/87r)+b1y+%(b1y)2 +...+In(1+o:/;r)—b2y—%(b2y)2 +...+In(m)

3a'l 87 . . o'l x
= Tranygy Y bt (o) Y b))+t

-b,"y—-b,—(b,y)(b,"y+b,)+...4+ m/m

alrx

We consider only the first order in o, we will see o'~a2, S0 b'~ o

1=ﬂ—>a/4ﬂ+o(a2)
1+3a /87
Therefore
3a'l8x . . a'l r . .
=m+b1 y+aldr+0(a?) + (by)(b, y+b1)+...+1+0[/ﬂ—b2 y—alz-0(a®)-(b,y)b,'y+b,)+
e Amim

The first order o/ 4r—a !l 7w =-3c /47 we write like

0:[M+bl'y+0(a2)+(b1y)(b1'y+b1)+...+ ol x —bz'y+O(a2)—(b2y)(b2'y+b2)+...+}m—m3—a+m'
1+3a /87 l+alrx v 4
. . 3a , —m 2,2
We choice the solution -m=—+m'= = ———0: y=In@@*p*) > whena—0
L% et KLY T K R Y R+

The constants k; can be determined to satisfy
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3a'l8x , ) . alr . 2 .
Sl -t b1 y+0(a”) + (bly)(bl y+ bl) +o.+ _bz y+0(a®) - (bzy)(bz y+ bz) +..
1+3a /87 l+alrx

1
(kY kg ky+.n)

SO
[ 3a'l 87z al

T b,"y +0(a®) + (by)(b,"y +b,) +...+m—b2'y— (b,y)(b,'y +b,) +}(+ K,y +k, + k1y+...) =1

Running the mass

3a , dm 1 dm

-m—+m'=0—>— =— : a=constant — 0
4z mdlin@@®p? mdlIn(-p?)

_)ldimz_gﬁ: _)ldimdiaz_%c:o_)idimﬂ(a)_ix:o
mdin(-p°) 4rx mda din(-p°) 4x mda 4

So we cancelled the self energy and made the mass carries the energy, with that, the interacted electrons are
like free particles, but the mass varies.

We need to find Z, and Z,, for the quarks in the interaction with the gluons(strong interaction), in SU(3)
representation, with that, eql.3 becomes, for arbitrary SU(N):

d*e gs(l'a)ik;/ﬂ(—/w—/+m)§k, gs(Tb)lj}’“ o 1

%, (F) :-[(272')4 (p+0)°+m’ C+m’ 1+ Bl
and Z(ra)rékl(rb)ljéab:zo—a)il(ra)lj ZZ(TaTa)ij :C(R)é‘ij 117
Therefor the parameters Z, and Z,, becomes
—1_ gz T s 1- X
Z, =1-C(R)g - !dx1 { dx, IS 1.18
2

2 1 1-x
Z, :l—C(R)%‘[dx1 J' dx f =—xZp?+x,p? +xm? + x,m?
0 0

B ax-x)]
And the factor C(R)=(N*-1)/2N , for the quarks N=3 .

Notice: the logarithm series In(x+1)=x-x%/2+x%/3+...is satisfied for any x:
dx
| D=|— f
n(x+1) jx+1 or any X
And the series
(x+1)(1=x+x* =x* +...) =1is satisfied for any x so S FV I
X+1

XZ 3

Therefore In(x+1) = j% = X—?+X§+... is satisfied for any x .
X+

2. Photon self-energy in spinor electrodynamics interaction

We find the Lagrange parameter Z; and make the result, the coupling constant o as in the usual
Renormalizations. But here we absorb the self energy of the photons to the Lagrange parameters Z3, in the
path integral of the Photons field, the self-energy is given by[2]
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Diagram 2.1
Photon self energy in spinor
/kf\ \%'/l‘ electrodynamics interaction
£
a2 el die o S\ ; 1 y _
i (k?) = —(ie) 7[(2 T THSK + )y “S(L)y 1+ with L:—ZFWF" +eA vy 2.1
1 T

To calculate it with a result without diverges we use the modifying:

spo_Aim 1 2.2
Cpi+m?—ie 1+8p? '

We find: T () e[ 2 T £y L rm)y 23

@27)* [+ BU+K)D) - ((k+ 02+ m?) - ((*+ m?) - (L+ BL*) '
Using 2 2l 2 2, 2 2 :izj‘d':él
@+ B(+K)7)-((k+ 0"+ m*)-(C+ m%) -1+ ) S

4
{(%+ 0+ K2 + (K + 07+ m2)x, + (24 m)x, +(%+ CZ)XJ

1
with J.dF4 = GJ. ax, dX, 0%,0%,5 (X, +X, +%; + X, —1)

0

The self energy becomes

il'pw(kz):—e?i2 L{J 3 ANT . 24
ﬂ (27[) 1 2 2 2 2 2 1 2
(E+((:+k) X +((K+0)+m)x, +(£°+m )x3+(E+(’ )X,
Where 4N is: AN =Tr [(-=K = £ +m)y“ (£ +m)y"]

completing the trace[2], we have: N** = (k+ ()" +(k+0)" ¢ =((k+()(+m*)g*
We set the translation: g ={+ (X, +X,)k

Changing the integral to be over q and making transformation to Euclidean space. And dropping the terms
linear in g(because they integrate to zero)

N“ = 20" = 20X, + %)L X, =% )K“K” =(a7 = (X +X,)(L= X, = X, )k* +m* ) g*" 25

Using the relation :?J'ddqﬂqu h :% uvjddqu g2 Which allow us to replace q"g" in N*" like:

N — —2(%, + %, )(L— % — X, )k“K" +(—%q2 + (X + X ) (L= X, — X, )k? — mzjg““ 2.6
o 1 d%g 4N
It becomes i [T (k%) = —e? = dF, 2.7
Vi J.(27f)4I ‘[¢*+D]
With D =— (X + %) 2K® + (X, + X, )K? + (X, + X )m* + %(1— X, = X;)

d d
de =2\a I'(b-a->)'(at+—>) ooad
Using the relation: f(g”()‘d (q(zq+)D)b - 22 27

@n:rore)

Integrate over q in the Euclidean space, the photon self-energy becomes:
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1% 1% v 2001V [ ]V 2 1 1% =% vy _
i H‘“’(kz) J'dx1 J' I dx, (% +%)A-% —%)(k’g . k"k") _eizi'l.dxl J' dx, J' dx, (1-%—%,) 2[£_mzj 28
o [BT+1-%-%)] a5 % 0 [Bf+1-x-x)]\B

with = — (X +%,)2K? + (X + %, )K? + (X, + X, )m?

We have a problem in 2.3 , when p—0 the integrals diverge like

1-X—Xp 2 v v
(4 + %) —x —%,)(k"g*" —k“k")
d d d
I&'I & I . (L% = %, = %;)?
Therefore we rewrite it like
) 1-x 1-x X% kz v kukv)
i l—va(kZ) dxl dX (X1+X )( X1 X )(
I j j ST
2 1 1-x 1% - Xz ny
So ™ (k?) = _eizj.dxl J’ dx, J' (X1 + %, ) (L= X — X, )k*P* 29
2 o [ﬂf+(l X =X, —x3)]

The photon self-energy can be written like[2] m*(k?)=k2I1(k?) P*"(k) with the perturbed photons

propagator : x,,(k?) ___ P and the projection operator : P**(k)=g" — k I2<
K[L-T1(k*)] -ie k
. . 2 1-x 1-x-%, _ _
Using that, we find: Ti(k )———jdxl I a, [ o (X + %, ) (L= X —%,) i 210
0 [Bf+L—%—%,—X)]

We define the parameter Z; for the quantum electromagnetic Field A" via: z, =1— 11(k?) Therefore the
interacted photon propagator becomes:

P.() 1P,k

A (K?) = =
wr () K*Z,—ie  Z,K:—ie

211

We renormalize the interacted field A, like 1.12: Ay = [z,A* 2 212

1-% 1-%-%,

The parameter Z; is finite: z, _1+—J.dx1 j o, | dx, (% + X)L =% = %,) 2
o [Bf+0-x =% ~x)]

It becomes, ignoring the mass m and m, in f

e? 1-x 1-x -

X X 2
Z=14 jolx1 j de, [ dx, (4 + %)L —% —X,) . i,' (le) cx=a%k? 2 213
0 0 [ﬁf +(1_X1_X2_X3)] 2n*

X

We need to write it in In(x) terms so we expand it near X=X, , then we make x,—0 , we use

of (x)) In(x/ x,)

f(x)=f(x)+x 0 +.. or f(x):gcn(ln(x/xo))" with cn—i[xi) f(x)

X=X X=%

2.13 becomes, setting y= In(x/xo) and using In(x+1)= x-x*/2+x%/3+...

| 1
Z,=c+by+o(y’) with c= 1+2a{1 n(xo+)} —>1+2a{1—1+0(x0)J 1% —0
T v

X X 2x, 3
In(x+1
and b—za a1 ¥ —>2—a - ! +%fi+1+0(xo) ?
x o dx| X X T\ XX +D) X3 2%

X=Xg

We renormalize the interacted Field A, like A =[Z,A
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from the interaction term A yV*“y with V# =eZ y* (eq3.6), we can write

AN “y > zzejlz_g VZANZ oy 2w — Ziz/z—s A o7 Vs = &Py o7V
We make the bare fields like classical fields, so e, is constant. From the relation(which is related to the
Ward identify[2]): (0= P,V (P, p) =¢[ S(P)*~S(F)"
We use it for the interacted field ¥ so we use 1.11 and 3.6 :
(0 - p), 2" =eZ,[ P~ P |=eZ,(p' - )"

7

iln(ao) o—>i|n(a)—i|n(2) 0> ——diyln(c+by+0(y ))=0 withy =Inx =In(a’k?)
[24

=2 therefore

It must be Z,= Z, for gauge invariance[2], we have ¢, = 2
T 3

we write Inc[1+9y+0(y2)j= Inc+|n(1+9y+0(y2)j and In(1+9y+0(y2)j:9y+0(y2)
c c c c
@0 0y)=0
a ¢ ¢

That becomes in y=0: x=x,—0

—C——E+1—0—> —c-b+cZ =0
c ¢ « a

—>—2i i—E+O(XO) _2a —2;+i2—i+1+0(x0) + 1+2—a i—E+O(x0) 2o
7\ 2% 3 7\ %X +D X 2% 7 \2% 3 a

reorder it like

' 2a) 2a' 2a 2a a' 2a 1 1 3 2a'
a(1‘§J - EZX O(XO)J‘,T[ XooeD X 2" <O>J—”[2X+0(XO)J

We can assume

a' 20\ 2a' 2« -1
—|l-—|+———= ~ —0: % —0
a 3r) 3m w KX K KX+

The parameters k; can be determined to satisfy

-1 2a a' 2a 1 1 3 2a'( 1
o) |- S o) |- 2X | -
"""k—le;l'”'ko"'klxo"'---+ (ZXU (XO)j ”[ X5 (% +1)+X§ 2Xq " (XO)] Vs (ZXO +O(X°)] 0

SO

(...+k1x51+k0+k1x0+...)|:2:[2+O( O)Jal—zj[— ! +i—i O(Xo)]—f(;(OJrO(XO)H:

X %+D x5 2%
and
a' 2a da 2a° da da
R NN = = : x=a’p’ and a=constant — 0
a dy dln(x/xo) din(-k?) Ala) P ”

B(a) is the beta function, the solution( the electromagnetic coupling constant)
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a =#:—kz<A

o

With that we removed the photons self energy, so the interacted photons are like free particles, while the
coupling constant o, depends on the energy.

3. The fermion —photon —vertex

Like what we did before we find the Lagrange parameter Z;(p’, p) using the modified propagators and let
a—0.

P
'\.-"‘-,’l"llf’v-”l"‘,ﬂ

& *r’Lﬁ Dizgram 3.1
p—* otf 5 pHd F The fermion-photon vertex
5
:
iV”(p,v p) = Ie’Y# + ivy(p" p)lfloop +O(e5) 31
I N R uT s
with 1V (p', )y oy = €)' | 2l SCP + /WSO + /)y 1A (1)
dic = = o~
=& [~ [ S(P + )" SO + /)y 1An(() 32
(27)
We use the modifying
- g 1 9 . - g g 1
Aw(K?) =2 == 21 Add (A (K?) = “ . 33
w0 = e T T ng amass: A (k) =iz g it T
The vertex becomes:
. d*e N#
Va(p’ e
VP P =€ e py ey (o o ) ) )
_ge L dY N 34

PRCA (gm0 ) () 1)

with — N*=v,(—p =/ +m)y*(— g - £ +m)y"

Using the Feynman formula

1
((C+ P2+ m2) - (P + 0%+ m?)- (£2+ m§>~(%+ )

=[ dF{((H P2+ M), + ((p+ 0+ m2)x, + (¢2+ mf)x3+(%+ czm]

1
with J’dF4 = 6_" dx,dx,dX,0%,8 (X, +X, +X; + X, —1)
0
setting the change q=0+x;1p’+x,p And let the integral over g and making a transformation to the Euclidean
space the vertex becomes:
N/‘
2 4
(a°+D)

N 1..d'q
(\'% (p ’ p)l—loop = e3ﬁ'"‘ (272_)4 J.dF/l
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And D: D=-x2p?+xp? = x2p> +X,p° + (X + X,)M* = 2XX,p - p'+x3m§+(l—x1—x2—x3)%

using q=/+x,p' +x,p toomit{, N"becomes[2]:
N“ =7y, (=g +x " —(1—%,) p+m)y* (—f —(L—x) o’ +%, g +m)y =y, gy gy’ + N* +liner term in g
with N* =y, [x b= (1=%,) g +m]y*[~@-x) o'+ %, p+m]y"

using gamma matrices properties y, g y“g v —q* v* and dropping the linear terms in g because they
integrate to zero, the vertex becomes

ey — i qu 1 TF204 1 NH
V‘ (p i p)l—loop - e3 ﬂ"-(Zﬂ')AJ‘dFA (qz + D)4 (qZ,Y; +N; )

For renormalization the vertex ey we consider only the term g?y*

VA (D', D)y :e3y“£de4 r4-1-2r1+2) 12 g 1_[ 41"(4—1—2)1"(14— 2) [\ (a12)
’ ~loop

B (47)*T(H(2) B (47)’T(AI(2)
1 1
— 3.1 dF = 35
SV @y po
with D= 4f +(1—x —X, —X%;)
We see, the vertex VM (p’, p) is finite, does not diverge.
# ez 1 1’)(1 1*)(1*)(2 1 ‘l
VA(p', = 1+—|d d dX,—————— |= ey¥ :
(p p)lolal e’Y +87Z'2"ll; Xl ! X2 X3ﬂf+(l—X1—X2—X3) Y Z]_ 3.6
Z; is the vertex parameter(renormalization parameter)
Z ez 1 1’X1 1’X17X2 1 2
=1+—|dx, | dx dx p=a"—>0 37
! 87*! { ’ ! PR L% =% —x,)

In our next study we try to make Z, and Z,,, constants by running the length a and search for the condition
a—0 . we can’t make Z3 constant, because we need it to run the coupling constant and have a choice to
make Z, , Z; and Z,, constants.

Z, is fixed— the length a depends on the fermion energy p .

Z, is fixed— the length a depends on the photon transferred energy ¢=p’-p .

4. Chiral symmetry

The chiral symmetry is the symmetry of the massless fermions Lagrange. Which is the Symmetry U #Ug
here, we distinguish between the chiral symmetry which associates with the gauge invariance and the chiral
symmetry which associates with the flavor invariance(like the quarks). We assume that they aren't
conserved separately, but together they are. We see that in quarks dual behavior, chapter 9, Feynman
diagrams.

In this chapter we find auﬂﬁ:o for SU(1) Symmetry using the modified fields propagators(particles dual
behavior: singles and pairing particle-antiparticle), with that, the gauge invariance and flavor invariance
together satisfy the chiral symmetry under the quantum fluctuation. That appears in the quarks interaction
diagrams chapter 9 these diagrams satisfy the chiral symmetry for gauge invariance SU(1), also contain 7t-
particles which satisfy the flavor invariance.

In this chapter we verify apl‘ﬁ=0 for SU(1) invariance.
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We assume that the chiral symmetry is not satisfied because of the polarized quantum fluctuation due to the
existence of the separated charges, but if the chiral symmetry is associated with more stationary states,
such U(r),_, is finite, we can believe in it.

from the relation :

eZ

o, =—
HA 1672

Wpo
& FIJ/ Fm7

we find it is trivial to say 6F,J”S¢0 when the Field A in the last equation oscillates( quantum Field), because
the strength F,, also oscillates, so 8u]”5 oscillates and takes the zero value alternately(J*® is alternately
conserved). But if the field A, is fixed (classical Field separates the charges), we can say 6@“3;&0, but there
will be a vacuum polarization.

we remove the vacuum polarization using the modified propagators like eql.2 the conservation 6;.]*6:0 is
never seen at high distances, because as we said the space would be polarized. But it is seen at low
distances Ar—0 where the gauge forces become linear.

Using the amplitude 4.4 for the axial current J**(x) to create two photons, we have:
45 e _apo
0,1 = T FFo

The problem which leads to 0,J**#0 is the divergence in the integral 4.20, but by using the modifying

3 —/[3 1 A 2 g,uv 1
S(p)= , o Aw(k)= —
(P) p-ig 1+a%p? w () k?-ig 1+a%k’?

the integral 4.20 would converge, and we would have hidden chiral symmetry au]“":O .

the massless fermions Lagrange: L, = igZy 4.1

with it the chiral symmetry is classically satisfied a/,y‘ﬁ =0, ="y 4.2

but we don’t have any term in the Lagrange L, includes the Axial current J*, so we do not know its effects
on the quantum processes, or it is not visible, so its effect is hidden .

The amplitude for the axial current J**(x) to create two photons is[2]:
(p.ali**(x)|0) 43
Where p and g are the momentums of the two created photons .

But we have a problem, this is, we can’t insert the axial current J' in the Lagrange as done for the vector
current J*which is included in the Lagrange, such A, J".

We can solve that problem by assuming that for the flavor symmetry, the field dual behavior gives scalar
charged particles like the pions(Feynman diagrams, chapter 9), with them the Axial current interact
indirectly with the electromagnetic field.

The amplitude 4.3 can be wrote like[2]:

i2(2)|0) = —€%,&",C*(p, g, r)e'™ 44

(p.a .
Where ¢,,, €, are polarization vectors of the two produced photons. Using the LSZ formula, C***(p,q,r) is:
(27)'6*(p+q+1)C*(p, q, 1)2 Id“x d*y d*z g l(prrayerz) (O Ti*(x)§" (v) iz (2)]0) 45

Now we want to know where the problem 8@‘5750 comes from ?
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We begin from the relation[2]

(p.q|i2(2)|0) = —€’&,&',C*(p, q, r)eirz

r=—p-q

Using the relation (2z)"5*(p+q+r)C*”(p, g, f)H PR e—i(px+qy+rz)< ROy Oy 20 )

we get :
iV (P, 1) = —2(i9)°C™ (p. 4. 1) +O(g9) 48
with:
iV (p, g, 1) = (71)(i9)3[;1]31 (3”; (ﬂ_p)zN ;Zc+q)2 *
+ (P K g, v) + O(g5)
and N*" N& = %Tr[('fﬂzw ()7 (L-s1)r7i] 0

Using the trace circle property we find:
N =ZTl(£- )y £ (£ + @) 7] 411

Taking derivative the relation:

(p.9|ia(2)|0) = —€’&,e',C* (p, q, r)eirz

r=—p-q
we get[2]
(p.al0,3(2)[0) = —ie®ee’,r,C" (poar)e™| 412
From
V" (p, g, ) =-3(i9) O™ (p.,7) +O(g)
we have

irV*(p, g, r) = f%(igf r.C*(p g, r) + O(g5) 4.13

We find r,C"** using the relation

) st 3 d4f NLW’
W2 (p g, = (= = ) ) 0O(¢°
V(. a.r) = (2)(ig) U j(Zz)“(f—p)zcz(Hq)z " P s ) roE)
We get:
(g =i S PR (2o e (D 4
(27)" (¢-p) *(¢+q)?
From the
N :%Tr[(l -0y Ly (L +7)r"7s]
We get r,N"*:
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N ST p)r £ (L4 )] 0
Using the trace circle property we find:
N =T (£ g)n (£ )y 7] 0

From the four momentum conservation p+g+r =0 we have r =-p-g so we write r,y” like :

L =r=—(g+p) = ~(L+q) + (£-p) 417
To find 4.16 we use
(L) (£-p) = (L+q)[~(/+q) + (£-p))(£-p)= (¢+a)'(£-p) = (¢=p) (£ +4) 418

Therefore we have[2]

N = (P T (£ B)7 76] 3 (C-PY THLAY (44 )yl = —2ie® [(+a) €, (¢-p), — (¢=p) 'L, (£+),]

=42ieM(0+q) £, p,+ (£-p) (,0,] 419

So the r,V*** becomes

L. Py (.0
2 2 + 2
(t-p)y & (t+q)¢

4
rV%(p,qr) = —29°%"" J'(: C)A S (p #o , v) +0(g°) ? ?.20
T

If the integral is convergent we have the results which proportional to €*™p,pgand to ™™ q,gs which
equal zero[2] because of anti-symmetry tensor e*™ therefore:

rv*(p,q,r) =0’ 421
Using the relation
H o 1. vp
iV (p, qr) = —E(lg)3C *(p, g, r) + O(g5)
we have
rC*(p, q,r)=0" 422
so from the relation
(p.al6,j2(2)|0) = —ie*s,e',r,C*(p, q, r)e"z‘r:_p_q
we have
(p.alo,ix(2)|0) =0° 423

Therefore the axial current J* is conserved 8,J*° =0
But the integral 4.20 is not convergent, so we cannot decide if 6@“520 .

The problem is the usual problem, which is, we have infinity degrees of freedom in the path integral, or
infinity degrees of freedom associates with the quantum fluctuation .

If we recognize that the real world and so the real processes are convergent, so we replace the massless
fermions propagator:
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ﬂgpig 424

With the modified propagator :

}J ! 425

We make p=a? —0 constant under the quantum fluctuation.

Using the propagator 4.25 instead of the propagator 4.24 in the integral 4.9, the integral 4.20 becomes

convergent and equals zero, therefore GL,]‘E:O . Which is hidden chiral symmetry.

That current can be written like J*° =3 + 3

free pairing

6‘1\]“5 0, Jus +0,J;, “ =0 4.26

free pairing

with J¥5 =wy*y* which associates with SU(1) invariance for free fermions.

free

And J“_ relates to the fermions field dual behavior. For the quarks we relate that current to the flavor

pairing

symmetry (chapter 9, Feynman diagrams), therefore we can generate these currents (4.26) to include

free

different flavors g; like 3#%* = Qy*»*T/Q; Q= [g- J
j

Therefore we can think that the chiral symmetry is satisfied for both gauge invariance and flavor invariance
together, so it is hidden symmetry, we can think that is related to the vacuum polarization and condensation
under the quantum fluctuation.

5. Z; parameters and Quarks Potential

We search for —a’p?>—0 for timelike and a’p?>—0 for spacelike but with making Z,=constant so we can

a2k2 a2p2
ignore the terms L’k and Tralp? in the propagators
g 5 a’k? }J a’pt
A (K2 1- nd S =—41
() = - [ wraik? ) o 5(P) s e p?

The indexes a and b gluons indexes, i and j color indexes and a is critical length.

To have the usual free quarks propagator, we see if we can make -a’p’—0 with Z,=constant, we begin with

the quarks at high energy they become free particles, so it is good to assume Z,=constant, and make
2.2

a‘p<<l

we have Z,eql.18

zZ, _1+C(R) J'dxl j : p=aand f =—x7p’® +xp? +xm; +x,m> ——x’p* + x, p

° ﬂf+(1 ><1 )]

For easy we ignore mq and m, so

_ _ C(R)as 2,272
1+C(R) j(1 x)In[1+ zpzxjdx_1+4ﬂ(azpz){(a p%) In(

21 zJ—azp2 +(2a%p® +DIn(azp* +1)
p
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To make Z, constant we assume for —a’p?<1, and consider only the real part by using the property In(x)=
ir+In(x) we have

aS
(-a’p?)*

c: constant, we have the diagram

{(—a2 p?)? In[—1+ %2] —a’p’ - (-2a’p’ - 1)In(-(-a’p’)+ 1)} =c 5.2

094
0E
e fc 0.7
06

Fgure 5.1
054 - } Representation the relaion between
0.4 ~ the coupling constant &2 and —&°8° by

the way of fixing Z.
03] £l ngs;

0z4/

01 02 03 04 0:5;06 0F 02 09 10
According to the figure 5.1 to make Z,=constant we have the conditions:

The condition —a’p?<<1 or —a’p?*—0 associates with as—0 for the strong interaction, quarks with gluons,
that is only at high energy, so to satisfy —a’p?<<1, the length a must drop extremely by increasing the
energy —p>. By that we can think that the term a?p® /(1+ a%p®) is removed from high energy quarks and
gluons propagators and have the usual free propagation.

Oppositely in non-strong interaction, like the electrodynamics interaction, the coupling constant a,
decreases by decreasing the energy —p?, so the conditions Z,=constant and -a’p’<<1 are only at low
energies (p<<1/a), here we make the energy a™ equal the energy scale M which appears in a.(— pM?):
p’/M?<—1 therefore always —a’p’<<1 so we can ignore the terms a’p? /(1+ a’p?) and a’k® /(1+ a’k?) in non-
strong interaction, like the electrodynamics interaction.

The problem gets stronger in low energy strong interaction where the coupling constant a; increases with
the energy —p? decreasing, but in this case, according to the diagram 5.1 (Z,= constant) -a’p? must increase
s0 it is possible to have —a?p*>1.

Therefore the terms a’p? /(1+ a?p®) and a’k® /(1+ a’k?) take place in the low energy strong interaction, but
when —a’p*>1 we have r<a in the space. we can relate that to the quarks confinement: at low energy quarks
there is a condition r<a with fixed length a we try to find the conditions for the length a, but we don’t
forget that is only at low energy quarks.

let us try to make the quarks masses independent on the energy —p? we have the relations Mg = Z;'Z,m, and
%:\/Zw if we make Zz,'Z,, =constant S0 the mass m, becomes independent on the energy —p?. It is easier to
assume z,'Z, =2 S0 My;=2mg=constant.

The Lagrange parameters Z, and Z,,, for the quarks are like the electrons, the relations 1.13 and 1.14, for the
quarks we have eql1.18:

1-x%

7, —1+C(R)-%: jdx | ax = g 53
: 8”20 ! 0 2[ﬂf+(l—X1—X2)]
gz 1 1-x 2
Z, =1+C(R)-2 [d dx,—— £ 5.4
( )s,f{ % ! BT+ A% —%)]

For the quarks R=3 and C(3)=4/3 , for Z,=2 Z, that becomes
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1-x

1———_[dx1 j' m o p=atand f=—x7p?+xp?+xm’+x,m’

ignoring m, and m, So 4a s %, A 1 _

g g Mg 4 1- Id)qf [ﬂf+(1—x1—x2)]71+327r-([xm(1+ﬂp2xjd>(70

and h 1 _ 1 _ ﬂp2+l 2 1 2y2 />’P2+1
!X'"{“ﬁpZJdX’Z(ﬂpZ){ '"( TS j+ﬂp “”(ﬂpz}“ﬁp)'”{ TS H

Therefore

4 1 ﬂp 2 1 212 ,sz"'l
1—-—25 | | =0 55
327 20Bp°) { ( TR ]wp " n[ﬂp2]+(ﬂp) n( T ﬂ

for fp°= a’p?<<1 spacelike, we approximate 5.5 to 1- 3 & In(1/a2p2) 0

as we found for Z,= constant that condition a?p><<1 is satisfied at high energy os—0 .

For gp°=a’p>>1 spacelike, we approximate 5.5 to lf%af 21 2~

2ra‘p

that condition is satisfied at low limited energy, as is higher so a’p? increases and reaches a?p*>1 when the
quarks energy drops as we found for Z,= constant.

Therefore the terms a’p? /(1+ a’p?) and a’k’ /(1+ a’k?) take place only in the low energy strong interaction
with fixing Z, and m.

With that there is critical point in low limited energy strong interaction, it is -a’p?=1, when a?p’<1 the
quarks are free particles, high energy.

And when a’p?>1 the quarks become confinement p?>1/a? : r<a low limited energy quarks.
For a’p?—0 eq 5.2 becomes, in spacelike, a, In( p’a®)=constant =—c <0

—C

So a’ :#e“& —0 : p?>>A2, and a, — 0 decoupling 5.6
. a’k® a’p? .
So we can ignore the terms —— and ~— in the propagators
1+a‘k 1+ap
g 5* a%k? L atp’
Al\/ k 1 d S _7IJ 1
w(k)= 'g( Tkt ) S,(P) —ig\” 1+a’p?

But when the energy drops a” and a increase, we make ogs and a, the highest values and 3 = o the string
aO

tension, we find it in the low energy potential 5.13 ,

=0 asa strlng tension.
a’

21,2 2,2

. . e a a’p
With that we must give the modifying terms Ltk @ d Tralp?
terms which associate with them, that is in chapter 9, we find there is a field dual behavior, free field
behavior makes possibility for separating the particles and the composition behavior makes possibility for
condensation them.

a physical meaning, we find the Lagrange

The area a’ is a Lattice area in space-time, a’=a.a, and a,=a, =a
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we have from the string tension o: o =a, =

2a,
s (eq 5.13
o (G4 513)
2
o=-3_ 9 _ [670 = constant 5.7
a

With that the behavior of the length a like the behavior of the coupling constant gs for the Quarks and
Gluons strong interaction, the coupling constant g, —0 at high energies, gluons quarks decoupling so a—0

5.1 The quarks static potential at low limited energy

For the strong interaction we modify the quarks and gluons propagators like:

—al 5ab 21,2 R _ —ps. 2.2
A;:(k?)—g‘”_[l a’k j  k? =K? k2 and sij(p)—pf_"{l apj =P 58

K2—ig|” 1+a%k? i\ 1+ap?
The indexes a and b gluons indexes, i and j color indexes and a is critical length.

In the beginning we consider the length a as constant parameter, its unit energy™ we use the energy unit,
[r]=energy™, c=h=1.

And to make the Lagrange parameters Z;and so the quarks masses constants, we need to make p=a’=a, a,
depend on the energy —p? and have -a’p®<<1, that was right for high energy, free quarks and r>a—0 which
is not confinement, it is the quarks and gluons decoupling.

The problem appears at low energy when -a?p>>1 so r<a which is the confinement, we find the potential
and see the case r<a . We make r the distance between the two interacted quarks.

We define that potential in momentum space \7(k) using M matric element for quark-quark(gluons

exchanging) interaction, with w=k,=0(like Born approximation to scattering amplitude in non-relativistic
quantum mechanics[1])

iM ==V (K)3“(p;, p)J,, (P}, P.) 59
with the transferred current J#(p', p) =T (p’)y*u(p) With spinor states u(p) include the helicity states.

We find M matrix element using the Feynman diagrams for quark-quark gluons exchanging using color
representation for one quark like

1
1
u(p)color®spinor =% 1 u(p)spinor
1
For distinguishable quarks we have
: P TaNAY (rray i Aibv(kz)—k N v Thy !
iM =T"(py)igyy“(T*), uj(pz)fu (PDigy"(T7)"u,(py) 5.10

Using Gell-Mann matrices, the matrices T*=A%: A4,..., A g consider them as SU(3) generators, and k=p,'-p,
=p,-p;’ using the modified gluons propagator 5.8 we have

H H =i ’ ay j vé‘ab 2k2 — "nov 4

iM :zlgszu (py)y (T )iluj(pz) gﬂkz [1 a ]uk(p1)7 (Tb)k u,(py) 5.11

ik 1+a%k?

to sum over the color indexes i, j with the color representation like above and over gluon index a we write
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ZU (P () 0u;(p,) =T (py) 7" \/—(1 1 e )J_ i u(p,)
1 1 ! 1
And =1 1 )T 1= (T
NN 2
Therefore the M matrix element becomes
1 2 1 21,2
=30 gZu(py)ru(p,) | 1-——=— [T(p)r,u(p,)
9T\5 k 1+a%k
The Gell-Mann matrices with nonzero sum of the elements are
010 001 000
A=/1004=/00 0|land 2,=[0 0 1
000 100 010
2
0 Z(ZGH)JJ =3-(2) =12 Therefore we have
a ij
M =228 Ly &K e )a (e, u(py) 512
9 K 1+ak P)yu(p,)u (p; 7, U(Py -

So we have the potential V/ (k) in momentum space as we defined

2

ZJU(p{)y,,U(pl)

, 7 , , 1292 1
iM =iV (k)J“(p, p2)J,(pr, pl)—lggszu(Pz)J/“U(Pz)kz[l—M

With the transferred currents J“(p,, p,) =U(p,)y“u(p,) and J“(p}, p,) =T(p)r u(p,)

2 2
So we have V(k) = 49, 10, K
k?+1/a?
Making Fourier transformation to the space XYZ, we have the potential U(x) with ko=0 like

electric potential[1].

2

gl 49 d’k 1 k? ik x 49 ( r ] 2., 2, 2
= £ 1- e = *—| 1-exp(—) | ; r:,/x +y+z
(2 ) I(2;;) e YT 3 amr D) y

Forr<a:
u(r)=- 4o 1-exp(-1) |= Up+a,r+ a,r’+..... 5.13
3-4xr a

. 4 g2 4a g2 2a. 4a, . _ 2

with yy =—=32s = "% g =g=—13s % 5 _ "5 g=0/4n
" 3ama s 7 dom a2 zea O
. _ S 4a 4da e
To fix up= —4ay/3a we write it like uy=——== 3 >a=—2ca with fixing the length a at low energy.
a

That potential appears at low limited energy and prevents the quarks from spreading away, r<a so it holds
the quarks inside the Hadrons. But the starting from the high energies, although the quarks masses are small
but they are created only at high energies where they are free and by dropping the energy the situation r<a
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appears, the constant f=a® would run and becomes higher at low energies, so have —a’k*>1 : r<a which is
the confinement.

We use that potential to study the quarks plasma, condensation,...

The confinement(low energy) means when r—a the two interacted quarks kinetic energy becomes zero
(ignore the quark mass), therefore the highest kinetic energy can the quark get equals sa which relates to
the potential U(r)= up+or+... for r<a(at low limited energy).

We can make U(r) the potential for all quarks in r<a, c—ZXc and consider r as average distance between
the interacted quarks, so the energy oa becomes the highest kinetic energy of all quarks(consider them as
free particles in volume b®), therefore the quarks (massless) energy

g:Zgizzpizzan(Ej {Slj {Elj :o-a:%: c=h=1 5.14

With N=1, 2,.... is frozen quarks energy quantization number . With that we have a? _ N therefore the
o

area a° is quantized: Aa’=1/c this area associates with energy quanta, we try to find it. using a_\/W we
o

have: &= N > &?=No S0 the square total energy ? is quantized, using N=ca’ we have
a

2
& &
& =od’c=0’a’ therefore =0’ —» =0 5.15
a a

So, in the strong interaction the low energy is carried on the space length a .

6. Quarks energy renormalization

We find, the quarks are totally free at high energy but at low limited energy there is a potential U(r) takes
place with the condition r<a

4o,

U(r)=u,+of+.... : r<aand Uy == =-2ac <0 6.1
a

but when r—a : U— -ga<0 so the total energy becomes negative because of the energy u, therefore we
must remove it and have normed states, to do that we make a shift in the distance r between two neighbor
quarks like: r —or+2a setting this in the potential we have:

U(r)— u,+0o(r+2a)+...=—20a+0(5r +2a)+...=—20a+20a+06r +...= 00 +.....>0 6.2

With that the length a has smallest non-zero value a;=2a so we can’t have r—0 (at low limited energy)

If we assumed that the U(0)=0 is the ground states potential of the quarks with the fixed distance between
them ap=2a therefore we expect that the composited quarks energies proportional to say(frozen quarks
inside the hadrons). So the quarks loss the energy ga, .

To do that we begin with the initial states where r<a with non fixed a and make it r<2a=a, fixing the length
a between them.

The quarks are massless, so for each quark ¢; the energy Eq=Pq : c=1, in volume b* the momentum
2zn,
px‘qI = b

X

: n.=1,2,...50 the energy
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2 2 2
n n, n N o
= =S'P=2 1 L 2| =ga=— 5 6.3
s=Ya=3P nz/(bl) {sz {sz =N
With b?=(by)?+(b,)*+(bs)? and N=1, 2,.... is the lattice number and energy quantization number.

The quarks energygzﬁzaa is defined in the situation O<r<a so we translate to the stationary situation
a

r—4&r+ag so we must fix a like a, + sa and N—Nq+3N with this renormalization the quarks square energy:

N N, +oN N oN
g =No=—cga—»—0" ca, > —Loa,+—Lo4q, 6.4
a a, a, a,
The term &aao is constant and can be written like (sa,)*+...where we imposed &=oao+5 so the
a0 a0
2 ON, 2
square energy becomes &* =—Lg-a,+(c-a,)’+:
a0
We can write £? = (5p)*+m?, ...« Where the square total quarks momentum (5p)’ :%Uaﬁ--- and the
a

0

condensed quarks mass M, s = 92,

We make the energy oa, equals the hadron mass, like the proton ga;=938Mev three quarks.

There is always oscillation 5a0( quantum fluctuation around a,) inside the volume(b®), with that, the
quarks of different hadrons can interact and have the nuclear attractive potential ouy=-c6a<0 but the high
pressure controls that, so the potential strength is the same for all nucleuses and independent on the number
of the nucleons.

As we will see in Feynman diagrams there are always two condensed quarks (pairing appears as scalar
particle with mass 1/a,) associate with free quarks, that as we imposed due to the negative energy 6u(<0 .

We can determine o by determining a,. Because of the dual quarks behavior, we find the value 1/a, equals
the pion mass=~0.135Gev but in our calculations(Quarks Condensation phase, hadrons) it is suitable to

make 1/a,=120Mev. Here we expect o—(gao)” 50 if we set o :%(aao)z we have
T

1 o 1 5 2 5 5-0.938
o ( 0) . =

= = oa, =
127 127

= =" (o =0.124Gev
a, oa, o0a,127

But for the quarks we make (the string tension) like gz%ﬂz
T

0

Where y, is free quarks chemical potential and g, is quarks degeneracy number. We fix 1/a;=120Mev with
gq=12, the right values are 135-140 Mev the pions masses, but in our calculations(Quarks Condensation
phase, hadrons) it is more suitable to use 120Mev(T; = 111.4mev with g,=12), we can make 135-140 Mev
but we have to change gq(Confinement phase) so changing T, to have the same results.

7. Nuclear potential

we assume that the potential between the nucleons relates to the quarks potential but without confinement
and the quarks condensation processes is ended when Eq+U(r)>0; E4>0 hadrons energy and U(r)<0
quarks potential, then the hadrons interact by the same U(r) (quarks potential) but that potential U(r)
becomes usual potential(without confinement).
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U(r):—%[l—exp(—g)} 7.1

as and a become constants(no running).

Because of the dual behavior of the quarks filed which means for any two quarks interaction, the quarks
composite and give scalar charged particles like the Pions 7, n°, =" and because of their quantized charges
-1, 0, +1 we expect the hadrons charges also quantized —Q,—Q+1, ..., 0, +1,..., +Q that quantization relates
to the field dual behavior of the quarks in different hadrons.

we assumed that the interaction between the nucleons relates to the quarks interaction, so the nucleons
potential inside the nucleus can be written like:

u(r),,.= —%[1— exp(—g)} 7.2

the value of U(r) in r=0: u(o), =-< 7.3
a

nuc

We need conditions in the case r>a to determine U(0)qyciear - Below we assume the relation:

a= —>—=m*a 7.4
m*a a
Also we have m*a?=0.088amu, so U(0)  =-% =m*qa? = -0.088amu = -82Mev 75
nuc a
The energy -82Mev is smallest nuclear potential.
If we use the potential 7.2 in Schr&dinger equation for one nucleon we have:
2 Vv? o r
—y+U(Ny=———y ——(l—exp(——)jy/ =Ew with z=c=1and m": nucleon effective mass 7.6
2m 2m r a

We solve that equation approximately using the variational method as known in the quantum mechanics
and make a=1/m*a For arbitrary a* we solve the equation

2 *
—V*t//—a—W:El// 77
2m r

Its solution like the hydrogen atom solution

* *2
w(r,0,0,.0%)., . =R(r,a®), Y, . (0,0) with & (a*) = —% ma
. an n
We use that in the eq7.6 and minimum the energy E
Vi oa a . vV oa* a*-a o .,
E=(y(@)|-—=-—+=-e"y(a))=(w(@")|-—-— +—e "y (av)
2m* r r 2m r r r
That becomes
*_
E, (%) = 2,(@?) + (p(a?)| 2 + Le "y (o) 78
r r

Where
<w(a*)\"‘%“ + ey (o) = [ (R, (1., 0,0) (Q + %eJR (@)Y, . (0,0)

That becomes
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R afa*—a o ., .
[dr(R, (r.a) T Ru(ra)
0 ’ r r '
R(r) is real so we have
*_ 2 oa*—
<l//(a*)‘ (04 (24 + 7”3‘1//(&*) :I (r a*) ( (24 ge—r/ajdr
r 0 r
The energy becomes
o %
En/(a*)=gn(a*)+J.(Rn,(r,a*))2(a a+ge’”ajdr
. o r r
.. 0 o
We calculate that for n=1, 2, 3 and minimum the energy: —E, ,(¢*)=0s0 omitting a* . We use the
o

normalized radial wave functions for n=1, 2, 3

Roo(r,a*) = 2(a*) **e "' with a*=1/m'ar*
1 -3/2 r -
Ry o(r,a*)=—=(a* 1-—e
ore) =) (10
1 32 T joar
Rzll(l’,a ):?(a*) ;e 12
2
(ra®) = 2 ( )3/2 1- ﬂ 2r i ot
27 3% 27(a%)
We have
E, = m*azbn,/
1s:E,, =m'a?(-0.25) = -0.25m"a’

2s:E,, =m'a?(-0.088) =—0.088m"c’

2p:E,, =m'a?(-0.109) = -0.109m"e’
3s:E,, =m'a’(-0.044) = —0.044m’"c’?

We fill them like: n=1, £=0: 15?1S? maximum 4 nucleons, two protons and two neutrons.

n=2, £=0,1: 28%25%2P°2P® maximum 16 nucleons, eight protons and eight neutrons.

n=3, £=0: 35%3S? 4 nucleons, two protons and two neutrons.

Therefore the associated binding energy for the nucleus Epinging beCOmMes

Eb = Z(Zn,/ + Nn,/)En,/ = m*aZZ(Zn,( + Nn,/) bn,/ <0
n,/ n, ¢

7.9

To calculate m*a?, we calculate the right binding energy Am=Zm,+Nmy-m where m is the measured
nucleus mass and m, free proton mass, my free neutron mass.

We fit Epinging €quation 7.9 with Am=Zm,+Nmy—m, but we add constant 4>0 to it

For that, we have the figure 7.1

From that figure we have the fitting
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Am(amu) =0.088%"(Z,, + N, ,)(~ b, ,) —0.067
1¥4
Or
—Am(amu) =0.088> (Z,, +N,,) b, , +0.067 <0
n,(
Comparing with
E,=ma’>(Z,,+N,,) b, +A
n,¢
We have m*a®=0.088amu and 4=0.068amu .
For m*=1amu the constant @=0.3, the range a=1/m*a~7-10"°m .
Amiamu )
He 1 ooosp| 1%
Li 1U76 00348 | @pad N
Be 1463 00603 | :
S 14 Figurs 7.1
. IS:" M_ . Fitting the measurad nuclens
C 175 00 | ™ Binding enersy Am with the
H 2012 0058 | g0 Sum Y g,
O 32X 01Tm
s 4
F 2562 01508
He 2672 0067 | 9097 :
Ha 2304 00932 | -
—— e =~Z +N E
10 2 14 16 13 20 2% 24 26 28 Ly P TeEe
We try to solve the eq7.6 using the harmonic oscillation solutions.
In the spherical coordinates we have
1 d ,, 1 6(6+1)}
- r*—)R(r)+|U(r)+ R(r) =ER(r 7.10
2m,flrzohr( dr)() [() Py (r) (r)
Wlth ‘//n,r,m(rﬂ:@) = Rn,/ (r)Y/,m(Hl {0)
making R(r)=u(r)/r we have:
1 d? 1 0(0+2)
- —u(r)+|U(r)+ u(r) =Eu(r
iy [ (N)+5 === [u(r) =Eu(r)
we have
2 2
oo 1*d72+u(r)+ 1*6(611):_ 1*d72_g(1_exp(_£)]+ 1*4(42+1) 211
2m* dr 2m* r 2m*dr® r a 2m* r
We can write:
A 1 d?
H=- —+U(r
Zm* drz ( )eff

with the effective potential(¢£0)and 2am*a>>1:
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ur),, =—5(1—exp(—£)]+ L e+l 7.12
r a 2m* r

For 2am*a>>1 as expected, that potential has behavior like the diagram:

Diagram 7.2

REpresentaion [he DOorent
So for r/a<1 as expected we have harmonic oscillation( is like it)in spherical coordinates:

U (ST z—u0+%m*a}2(5r)2+.... © (%0 7.13

Making r=ax in the potential 7.12 we have

a

U (X)eff = _&(1_64)4_ (([ +1) i

2m'a® x?

We had a/a=m*a?=0.088amu and m*a’=m*(m*a)?=(m*a?)™ so

1, o ((+D)1
UX),, =m*a?| —=(1-e™)+ = 7.14
( )eff o [ X( ) 2 XZ]

Comparing with 7.13 for the orbital (P): (=1 we have u;=0.2m*a’= 0.0176amu =16Mev and
0=0.252m*a*=20.5Mev.
For =2 we have Uy=0.08m*a?=6.55Mev and m= 0.068m*a’= 5.62Mev.

If there is balance situation in r=a so that potential can be modified near r=a like:

a «o 2 a 1 ., 2 . a
Ur)=——+-—=(r—-a)’+... x——+-m'o’(r-a)’ : =
") 2a 4a3( ) 2a 27 (r=2) “ oma
So the Schradinger equation for that potential is harmonic oscillation in spherical coordinates, the solution
(Abramowitz, Stegun 1964):

7.15

U (1) =N, re* L 2(2vr?): v=mw/2 7.16

with &, =-V, + w(2K + (+3/2): v0=% and o=\~

That perturbed interaction energy for one nucleon in the nucleus becomes:
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_m*g? 3 1 3 m'a?
= +w(2k+0+3/2): o= = m'e?) = 7.17
( ): 2m"o¢2a3 \]jZm 2m'a? ( ) NA

For m*a®=0.088amu we have w=58Mev.

8. Quark Magnetic and angular momentum inside the hadrons

Because of the quarks energy renormalization we saw that the ground state distance a, between the quarks
is fixed(at low limited energy), it equivalents to zero quarks energy (frozen quarks inside the hadrons).

If we use the classical definition of the Magnetic moments u:
1
'uzfzeqrixvi 81
2 Gi I

eqi quark charge, r; and v; position and velocity.
We considered the quarks massless, so the velocity equals the light velocity c=A=1 so:

u :%Zeqi <r> 8.2
G

Where <r> is the average distance of the quark from the rotation center.

In the proton there are three quarks with condensation energy ¢a,=0.938 Gev so the energy cay/3 is for each
quark, therefore we expect the distance ay/3 is the average distance for the quark in the baryons, so

a, 1
<r>=—=

: 8.3
3 wu

Where the quark appears with high mass u*, that because of the potential. So the quark magnetic moments

o 16 e e e m
inside the proton or the neutron becomes y, =5 S =%—2 - :% P
7 iz u

e .
and u, =—— is the nuclear
N om
p

magneton.

We can calculate £* using 1/a;=120Mev

o= 3. 3-0.12=0.36Gev?

=N

Experimentally 4~ =0.344Gev which is found by fitting the nucleon magnetic moments with the net sum of
its quarks magnetic moments[3].

We found the quark magnetic moments classically, now we try to find it relatively.

We start with massless Dirac equation with high energy quarks P,>> e,A, with A, is the electromagnetic
field.

The Idea here is the shifting in the quark momentum p—d&p+3/a, (baryons)which associates with the static
potential shifting or—aoay+...

The massless charged field Dirac equation:
iy*(0, +ieA )y =0
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Writing y = [%j SO We can write:
¥,

[ el S )o

(e—ep)y,—c (p eA) =0 and —(e-— e¢)1,//2+cr(p eA) =0

Define z=P—eA so:

G-ny,=(c—ep)y, and & 7y, =(e—ef)y,

From the second we have:

_ o7
vV, = (g _e¢) 4
The first becomes:
CAeD, (o,
So we have:
(6-7)(o-7)
(e—ep)= 7(5 )

Using the relation:

(6767 =7 -7+i6-(Fx7) and 7x7=ieB

So we have:

(6 —ep) =77 +iG-(ieB)

So:
(s —ep)’ =(p-eh) —es-B
for high energy quarks P>>eA we have:
e—eg=((p—eh)?—e5-B)?

SO
&— e¢—‘p eA‘(l—ﬂ)“2
eA)”

. 5-B
—>g—e¢=‘p—eA‘(l—h+....)
o 5.8

—>g:peA+e¢Ze;_eA+

Because of the energy renormalization ar—aag+odr we make P—3/ayg+dP (three quarks) so

e5-B e5-B e5-B
2|p- EN 2(3/a,+0) 2(3/a,)
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g
Setting * =3/a, then: B

HSTe

. € e, m
So the quark magnetic moments p,; e=e,becomes x4, =—-=— fi =
2" e g 2m, e
Which is the same relation we found classically. Using 1/a;=120Mev

g, M
My

H

Ho= 3. 3-0.12=0.36Gev?
a

0

Now we try to find the quarks angular momentum in the Hadrons and the Regge trajectories:

We assume the quark rotates in the ratio r, so the angular momentum for one quark J, is[5]

8.8

If we assume F is the centripetal, therefore F, _FPe

8.9
so the angular momentum J, becomes J, = F,r?

Now if we assume that the potential o7 is between two quarks so F.=¢/2 therefore

o
Jq :Er2
If we put r=a so 3, :%az 85
Using the relation a* _N :ﬁ2 we have J, _oN_1 N 8.10
o K o 2
3 - N 1

=——==N 8.10
20 2
if we renormalize N to be the number of the excited quarks inside the hadrons near the ground states, so

2 2
from e2=No —> N £ therefore 3 :qu =%Z§N =%+ constant
(2 o

We can consider it as Regge trajectories relation[5] J=a's? +«, with the slope o'=-—

9. Quarks Field dual behavior(free, condensed) ), scalar z particles

To remove the divergences in the path integral and make the Lagrange parameters Z;, Z,, Zy,
we suggested the modified propagators like:

... constants,
KD oy g;w‘;ab _ aZkZ

Aw (K )77kz i 1 Tl for gluons 9.1

S (o PO [ @

S = 1- for quarks 9.2

u(ﬂ) pz—ié‘ l+a2p2 q
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We saw that we can ignore the terms a’p? /(1+ a’p®) and a’k? /(1+ a’k®) at high energy chapter 5 but when
the energy drops to limited energy, those terms take place, we can give them a physical meaning for that we
search for the corresponding terms in the Lagrange. To do that we find the role of those terms in the
Feynman diagrams, in self energies, quarks gluons vertex,. ..

We find that the terms a?p® /(1+ a’p?) and a?k? /(1+ a’k?) can be related to pairing quark-antiquark appears
as scalar particles with mass 1/a and charges -1, 0, +1 we can interrupt these particles as pions.

That appears in the particles—antiparticles composition in Feynman diagrams which mean for the fields,
there is dual behavior(free, composition), that field dual behavior lets to possibility for separating the
particles(free) and possibility for composition them, so the dual behavior of the fields is elementary
behavior.

But for the composed particles they must associate with negative potential to survive long.

Like many fermions condensation with spin zero, which are described by Klein Gordon equation because it
is impossible(in that case) to describe them by Dirac equation, so the dual behavior is elementary behavior.

As we saw before the smallest value for a is a,#0 that is because of the negative potential u, which lets the
quarks located in certain regions, so the perturbation would be broken. That occurs for any interaction
when E+u<0, E>O0 (like Higgs field) in that case some of the free particles would be condensed and fill the
negative potential and the others stay free, so we have dual behavior (free particles and condensed
particles). we will try to see that using above propagators.

The quark self-energy is:

| T p

Diagram 9.1
representsthe quark sef-energy
for the strong interaction

p aSkn(F’ /) A (1)
iz, (P) = [ -2 o )A[IgvT f
_ 2T a y( /F{ /)§kl v g,uv
gT.kTuj(z )4 (p+0) Y] 2
So we have:
H _ n2TaTa /1( /F{_/) v g,uv
Izij(/F()_g TikajJ.(Z )4[ (p+€)2 Y]€2
. d*c P -/)
=g°C(R)o; v
9 ().1(2)[ (M)y]
o _ d‘c (F-/)1
Thesum: %) =200 Gy Gy

where ;v (=P — £)y, =2(-F - /)

Now we use the gluon modified propagator:

5ab 21,2
Ak )W.[l— 2k ]

ie 1+a’k
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So we have addition term in quark self-energy :

iZij(F):ZQZC(R)é}jJ. d*s (_)2{_/)1[1 a’(? J

@r)* (p+0? 27 1+a2?
So we separate it to two parts:

1-Quark—gluon part:

de (F-/N)1

27)* (p+10)?* *

iz, () =29°C(R)3;

2-pairing quarks part:

d‘c (=P - /)5 1{ a2(?

@) (p+0)? (2| 1+ai?

=29°C(R)| d'c (F+ 03, L 9.3
27)° (Cp—0) (-0 +1/a2 '

iz, (F) =2¢°C(R)|

It appears in the pairing part there is a scalar field propagator:

1 1

i?+1/a®
which is scalar particle propagator with mass 1/a , to preserve the charges, spin,... this particle must be
condensed of quark—antiquark so we have addition diagram:

o0
.P;_* Diagram 8.2
- -~
g '_£ oo D Appears the scalar particke T in
o _ gz 0 N @ the quark self-energy dizgram
q; < 9;
P —£{-p p

d'c (F+0)5;, 1
@7)" (—p—0) (-0 +1/a?
d*c S;(-F-4) i

2x)* i (-0)*+1/a*

iz, (P) =2¢°C(R)[

9.4

=2(3ig,)’C(R)|

So we can think that particle is the pion ggq so we must add a new interaction term to the quarks Lagrange:
AL=ig,pQQ where g,=g,\/2C(R) 9.5

To satisfy the flavor symmetry, the scalar field ¢ =z =gq; becomes charged. For two flavors q;, g; we

write the quarks field like Q=(q; qj)T SO
AL =ig,,7°QT;Q where 7T} - 7°,z 7" 9.6

Which satisfies the quarks flavor invariance, so we can think that the field dual behavior associates with the
flavor symmetry.

In general, when a—0 these pairing particles are removed, for non-strong interaction that is removed easily
but for the interactions E+u<0, E>0 (like the massless charged particles) this pairing wouldn’t be removed,
that because of the energy renormalization where the negative energy is removed and have right states with
positive energy and zero energy vacuum. In this case E+u<0 the value 1/a=m would be fixed and we have
pairing particles( become condensed) associated with the free particles so we have dual behavior: particles
and condensed particles in the case E+u<0 .
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For the quarks a—ag#0 smallest value of a with it we have right states, so m=1/a, is the pion mass we set
1/ay =0.12Gev=pion mass.

Same thing we can find in quark—quark—gluon vertex:

£

. m _ Diagram 53
d - quark- quark- gluon vertex

P E+P§ (+p P

so we have addition diagram:

" .-—:?" - & Diagram 9.4
2 L4 \\ Appeas the scalar partice min
Q‘r- the guar k- quark- gluon vertex for

q; ;
p  —f-p ; —£-p P thestrong interaction

There is some think different with three— photon vertex with single Weyl field P y:

P
t-p
Diagramr 35
thres photons vertex with £
sngle Weyl fielkd pHg +.....
f+q
q

In that diagram when we use the propagators for electrons and photons instead of quarks and gluons then
generate the result:

_ g aZkZ
Aw(K?)=—2—|1- 9.7
3 kzig[ 1+a2k2J
-~ -p a?p?
S = 1- 9.8
P p?—ig\ 1+a’p?

With these propagators the axial current is conserved as we saw before so we expect the chiral symmetry is

satisfied:
=y 8.3 °=0 9.9

]

The vertex of the three—photon and single Weyl field, from the diagram we have:

RYAL _ - \3 1 ¥ d4/' NPW
iV (p, g, r) = (-1)(ig) [;J I(z,,y* ((=p) 2 (t+q)
with

N = Tr(~/ + p)y (~£)7 (~/ - g)7"R]

In the integral that becomes:
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N = (L p)y (A)7 (-

So the vertex becomes:

iv¥?(p,q,r) = %(ig)a(

;ﬂ d*c Trl(—£ + p)yH(=£)r (=4 - 2) 7"
i) @) (t-p) 2(t+q)

using the propagators 9.1 and 9.2 we have p,V W —qV ¥ = rv™ =0so we have J*=0 : J*° =y y’y as
we found before.

Rewritten the vertex like:

— _ L1V dt TA(-L - @)y (L p) (AT,
VR ) = 5) [Tj S (C-pyc(eva)

dropping the trace, we have:

;Jaj d*c (=L -g)igy y*(=£ + p)r*(-/)igy” .

i\ e -4
v (p.a ) = zlg(i (@)’ (c+a)'(c-p) (*

Replacing the propagator S(l+q)=(_l_q) with (£=g) [, @ (c+a)
(¢+q)° (t+q) a’(t+q)° +1

So we have new term in the vertex V#ve and then new diagram:

1j3j a'c (/=)= (+a))r (£ + o) (A)r .

RN PR
v (p, Qs ) 2(9) (i 2x)* [az([+q)z+lj|((—p)zfz(("'Q)2

it becomes:
- _ Lo dl (L= g) (@) (L p) ()
V(e a.1)= 3(0) U Jaay [ (e af +1](i— py £ o
1 (1 d (L) (L )y
- 3007 (}) Iy Al ore
(t+q) +a2 (t-p)t
we can write that like:
iV (p, g, 1)= %(ig)S[;lj féﬂ; ~ (/+g)72 (—fuz)y 2(_/)7 +.. 9.11
{(€+q) +¥}(6—p) ?
Where we used the property (/+g)y” =" (£ +g)-2(¢+q)’
So we have:
d*c gy (£ +a)r° (£ + p)y"(-£ )igy” . 012

V¥ (p, q,r)= %(ig)[i}jsf(zz)“ {(Hq)ﬁiz}((f p)’ ¢

Now we can consider the two vertexes igy» and igy” come from the product with fermion—photon-vertex,
S0 we omit them and have:
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iV¥(p, q,r)= %(ig)(%jsf(g;; _(f(jﬂ);s(_fj{)y‘;;/) ....... 9.13
+q +a—2 '—p
therefore we have:
| Lo gt L)AL+ Yigr ()
iV¥(p, g, r)= EI ! | i S~ 9.14

(@)’ [(HQ)”;ﬂ(PD)ZfZ

That can be written like:

VA a e Y9 iy, L AR (),
B R e
a2

That can be represented in the diagram:

Diagram 2.6

Appears the scalar particke 7 in the
three photonsvertex with sngle
Weyl field

So we must add new interaction terms to the Lagrange:
iy and  (0,0)pr"y'y 9.15
Where the field ¢ is scalar field with mass 1/a and propagator:

11

—_ 9.16
i p®+1/a’

A(p?) =
That turned to be for the quarks where the length a takes the constant value a, that particle is the Pion with

the mass 1/ag=mo,, we found before 1/a,=0.12Gev.

Because the strong interaction never distinguish between the flavors so the new interaction terms become
ig,7“QT,Q and g,(0,7°)QT,7*/°Q then we have:

AL, =ig,,7Tq; + gA(aﬂﬂ)qiyyysqj
where 7 =7° 7z, 7" pions, with suitable flavors g, q; 9.17

;i quark with flavor i.

Using the propagators 9.1 and 9.2 we had p, v o —qV ¥ = r V™ =0 (chapter 4), so we can have after some

treatments 0,J7°(x)=0.

That current can be written like J7°=J7% + 7%

free pairing

SO 017.]”5:6 J 4o 35 =0 9.18

p" free p" pairing —

For flavor symmetry we generate the current to J#>* = Qy“y°T Q.

free
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Therefore for gauge invariance, the chiral symmetry isn't satisfied 0,375 = 0but 8 375 +0 325 =0 where

free free pairing

J e associates with the pairing particles-antiparticles behavior gq; , so that behavior associates with the

pairing

flavor symmetry. Therefore the gauge invariance and flavor invariance together satisfy the chiral symmetry.

The particles z°, 7z, 7" relate to the pairing behavior(particle-antiparticle), their interaction terms
izg,q; and (a//r)qiy*‘yf’qj with them the flavor chiral symmetry is satisfied(flavor invariance).

But we expect, the fields dual behavior takes place in negative potential. If there isn’t negative potential the
paired particles would not survive(never condense).

For the quarks, the case O<r<a associates with negative potential u and E+u<0. Because the behavior of
the strong interaction coupling constant at low energy (as high) we expect negative potential at low energy
E+u<0 (E>0, u<0), so the quarks condense.

Because of the dual behavior of the quarks field which means for any two quarks interaction, the quarks
composite and give scalar charged particles like the Pions 7w, °, =* and because of their quantized charges
-1, 0, +1 we expect the hadrons charges also quantized -Q, —-Q+1 ..., 0, +1,..., +Q that quantization
relates to the dual behavior of the quarks field in different hadrons, pairing quarks of different hadrons, so
these condensed quarks; Pions, Kaons,... are shared between the hadrons, so put them together with the
hadrons in groups, like the Pions —1, 0, +1 which can be inserted in SU(2) generators which can represent
the proton—neutron pairing.

So the protons and neutrons Lagrange contains the terms ig_,z“NT;N and gA(aﬂﬂ")NT;;/"ysN with the

nucleon field N :(:]

10. The Quarks Plasma

We tried before to explain how the quarks are confinement at low limited energy we assumed some Ideas
and the result was the condition r<a with that condition we have free quarks at high energies for the strong
interaction where the length a is removed from the propagators, but it appears to be fixed at low limited
energy, in the last section we showed that there is dual behavior for the quarks field, but when the length a
is fixed, the result is scalar particles (pions) with mass 1/a, at low limited energy and the result is the chiral
symmetry separately breaking(last section).

We tried to give the length a physical meaning (quarks field dual behavior) also it appears in the quark-
quark strong interaction (gluons exchanging) potential U(r),<, S0 it indicates to interaction strength. That is
because, the behavior of the length a is like the behavior of the coupling constant as.

That potential appears at low energy and absorbs the quarks energy and freezes them in the Hadrons,
fermions hadrons and scalar hadrons.

We try here to use the statistical Thermodynamics to show how the free quarks disappear at low energies(
low Temperatures) where the length a becomes fixed, so the chiral symmetry breaking and the quarks
condensation.

One of the results is that the condensation phase eq10.8 not necessary associates with chiral symmetry
breaking, that is, the chiral symmetry breaking appears at the end of the cooling process when the
expanding and cooling are ended and the length a becomes fixed, therefore the chiral symmetry breaking
occurs and the pions become massive m= 1/a,.

We start with the massless quarks, their energy in volume V:
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E—C;[d r!dsg(f)gm . g(é‘)—gqﬁg 10.1
where (r) =y, +u(r) with u(r) = _430: (1-e)

Here we inserted the quark-quark strong interaction potential U(r) in the chemical potential (for decreasing
the quarks energies, as we think, the quarks potential absorbs the quarks energies and make them condense,
phase changing) and because r<a we integrate over the volume a r is the distance between the interacted
quarks. We can absorb 4ay/3— o .

The constant c is determined by the comparing with free quarks high energy where the potential U(r) —0
and as—0(decoupling) at high energies, so the length a—0 that is as we said before, the behavior of the
length a is like the behavior of the coupling constant g5 therefore the quarks become free at high energies.

By integrating over the energy(Maple program) we have:

Vot g B v T 2 . (- 1)k A
E_ngfﬂza{d r!dgeﬂ(w(r))+1—cgc| 2”2ﬂ4£d r{ﬁo+4uo(r) +2u,(r) +62

Where uo(r)=pu(r)=pA(uo+u(r)) .
by integrating over r (the distance between the interacted quarks) we have:

2 2 3
] + (i)’ o.08—o.23"‘5+0.25["‘5j —0.12{ % J
atL ath ath ath
k *Kﬂﬂ(x)
+. 02[ j +63 j L
) k=19

{3.78+(ﬂy0) [0 82-1.16% +o41[

va®
E=cg,—
X au,

gq IS the quarks degeneracy number and x=£u, .

Rewriting o /a= 2a0s /2a’= ca/2 . For more easy we write as/aph = oa/21, = Y in the energy relation. So
rewriting the energy E as

E =cg, 2;/ [3 78+ (Su,)* (0.82—-1.16y +0.41y° ) + (Su,)* (0.08— 0.23y +0.25y* — 0.12y° + 0.02y*)

k -k Bu(x)
+62Jx2dx( 1) € } 10.2
k=19

X = fu, =% — 0 at high energy

To find the constant ¢ we compare with quarks high energy where they are free massless particles:

77’
240

hlgh g

When T is high, Xx=(uo/T)—0 and y—0 therefore Bj(x)—0 so we expand e M) pear B(x)=0, we have:

2a’V 2a¥V
Epign = ¢, W[3.78 -1.88+0(x,y)] —>cg, Fl.g

4

A ‘_ 2a%V T It .,
— 7T 19—-c= —
9 TH e 2a°1.9 240"

10.3

The energy becomes:
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1 77° e Y
~1.9240"°% (Bu W)

[3 78+ (fu,)’ (0.82-1.16y +0.41y” ) + (Bu,)* (0.08-0.23y + 0.25y° — 0.12y" + 0.02y*)

( 1)k —kug (X)

+62J

k=19

Now we see the effects of the length a on the energy, at high energy, by fixing x= /T and varying
y=ca/2|p <1:

Enign = 119 ;ZO 9oV 1o x *[L.9+x(1.8-1.27y) + x°(0.82 1.7y +1.24y* - 0.29y°) + x*(0.04 — 0.12y +0.13y* 10.4
| 3 4
0.07y* +0.01y )]x:ﬁwo
we expanded e ™) near B(x)=0 so we have the following diagram:
E'ce%

Jixed volume

Jixed HghT
Diagram 10.1
representation the behavior of high
energy quarks plasmawith respect
to the scalke oa at hgh temperature
in congant volume

0 oy

We fixed the tension ¢ as we assumed before.

It appears from the diagram that the high energy quarks lose an energy when the length a increases
although the temperature is fixed. That means, when the length a increases the number of the excited
quarks decreases.

That is because of the attractive linear potential or+... between the quarks, that potential absorbs an
energy, so the quarks are cooled faster by the expanding.

The fast cooling comes from the increasing the length a as we said before, the behavior of length a is like
the behavior of the coupling constant as so when the energy dropped to lowest energy the length a
increased extremely and that is fast cooling or extremely cooling, this is, when the particles try to spread
away, so the length a increases and the result is induced cooling.

where the length a is the distances between the interacted quarks.

Or, when the quarks expand (increasing the distance a) they fast lose energy (extremely decreasing the
Temperature T).

To determine the end, we search for a balance situation, such zero pressure, confinement condition,...
First we find the high energy pressure including the effects of the potential oa .

Starting from the general pressure relation:

p:—iF where F:—TInZ:—lInZ
ov B
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We use here the relation:

InZ_ch rIdgg(g)In( (e ”(”)Jrl) : g(g):gq%f

So the pressure becomes

10
T30V

so for high energy x = Su, — 0we have the pressure:

10 o 1 72

==——F,_ Hox L9+ x(1.8-1.27y) +x°(0.82 - 1.7y +1.24y” — 0.29y°
high 3 6V hlgh 6V 3 1 9 240 gq [ ( y) ( y y y )

+x*(0.04-0.12y +0.13y* - 0.07y° + 0.01y") ]
Now is the key point, we want to include the potential effect on the pressure so we replace the volume V
with the volume a* ~y® so

1 72
P = T g 1.9+ x(1.8=1.27y) +x3(0.82—1.7y +1.24y* — 0.29y°
high ayy31924oguo [ ( y) +x%( y y y%)

+x4(0.04-0.12y +0.13y* ~0.07y° +0.01y") | 10.5

Which is represented in the diagram(without conditions on y or on the length a)

T «T. constant HighT
E 1<%
I
Dizgram 10.2
representaion the behavior of high
energy quarks plasma pressure with
respect to the scale oa & high temperaiure
in constant volume
_oa N
YT

It is clear(without conditions on y) the pressure decreases, with increasing the length a (decreasing the
quarks energy —p?) until it becomes zero, then negative.

That becomes clear at low energy where there are conditions on y and so on the length a.

Now the low energy quarks, T—0 so Bu(x)—o S0 e M 0. The energy becomes:
177° , 2 4 2 3 4
B =1 g 945 0% 5, (/3 5 [3 78+ (fiuy)?(0.82 -1.16y +0.41y* ) + (Buy)* (0.08 - 0.23y +0.25y* ~ 0.12y* + .02y )]
10.6
Making x=T/b
1 72° _ _
= :EZTOyggqu“[ [3.78+ x2(0.82-1.16y +0.41y?)+x*(0.08 - 0.23y + 0.25y* — 0.12y" +0.02y4)]

Now the key point, we want to show the effect of the potential sa on the energy so we see the behavior of
the energy in the volume a® with respect to y=caly, the diagram is:
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T/uy—=0  representation the behavior of the
quarks plasma energy density in the
limit T 0wikhrepecttothescalesa

05 _ga 1.'N L5

That is extremely behavior after y=0.6 where the energy (E/V)a® decreases when the volume a* increases,

the end in y=1 where the free quarks disappear when y>1

Now we can distinguish between the confinement and the chiral symmetry breaking, when y>0.6 there is

confinement: extremely cooling, negative pressure.

but when reach y=1 there is chiral symmetry breaking where the length a becomes fixed, and from the
quarks field dual behavior there are scalar charged particles with mass 1/a appear when the length a is

fixed to have certain non-zero value ag .

Here the evidence for fixing the length a is the lowest limited quarks energy, that is as we said before, the
behavior of the length a is like the behavior of the coupling constant a5 so when the quarks energy dropped
(extremely cooling) the length a increases extremely to reach the highest value when y=1 which equivalents

to smallest energy E=0 (the cooling end).

Another evidence for fixing the length a (chiral symmetry breaking) is the low energy pressure:

3

10 10 E,
ow — & Icw_)i 3 y
30V 30y° V

To include the potential effect we study the pressure using the volume a*~y? therefore

10 172 , 5. - 2 4 2 3 4\].
Pon = 3 397 L9 220 “4 90 [378+x2(0.82-1.16y +0.41y* ) + x* (0.08-0.23y + 0.25y ~ 0.12y° + 0.02y" ) |: 10.7

2
P'°;v N 9—19% 9, [3.3.78x“ +3x?(0.82-1.16y +0.41y* )+0.08 - 0.23y + 0.25y* - 0.12y* +0.02y"
H 1.

0

+yx? (~1.16+0.82y) + y(~0.23+ 0.5y — 0.36y* + 0.08y3)]

so the low energy pressure becomes like the following diagram:
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Disgram 104

regreseniation the behavier of the
quer kS plECa prescuns in the imit
T —{with respect 1o the scale oo

o5

Y, F=0

02 04 0 WM

it is clear from that diagram when y>0.6 the quarks pressure becomes negative.

we expect the condensed quarks phase (confinement quarks) has positive pressure, so the preferred phase is
the condensed quarks phase.

So when y>0.6 the quarks condense until y=1: a—ay=1/(120Mev)* the quarks disappear, the scalar
charged particles(Pions) appear instead of them, that is because of the quarks dual behavior(free-condensed
quarks), but at low limited energy the condensed phase has a big chance instead the free Phase.

* the right values are 135-140 Mev the pions masses, but in our calculations(Quarks Condensation phase,
hadrons) it is more suitable to use 120Mev(g,=12), we can make 135-140 Mev but we have to change
gq(Confinement phase) so changing T, to have same results(Quarks Condensation phase, hadrons).

10.1 Confinement phase

The confinement occurs(for any Temperature) when the attractive potential is higher than the quarks
energy, so the quarks can't spread freely, they located in the space in certain distances between them in the .

They still have free particles behavior due to the fluctuations, but because of the fast cooling (extremely
increasing the length a) they lose their energy and the Hadrons appear instead. Where the highest distance
between the quarks is the length ag which is determined from the Hadrons.

for the protons and neutrons we found the energy ¢a,=0.938Gev and we fixed 1/a,=0.12 Gev = myion (pion
mass). We expect the length a=a, is the same for all condensed quarks(Hadrons) so we think that it relates
to the pion mass.

in general, we find the confinement phase condition:
Ew_sa<o0
\Y

Lo E, oa
Dividing by |b So —ow g3 —= <0
2uN 24,

And that condition becomes at low Temperature:

ia3—y<0 10.8
2uN

So we have
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11 77°

[T}
21.9 240

HSTe

ueg x‘a’ [3.78+ x?(0.82-1.16y +0.41y* ) + x*(0.08-0.23y +0.25y* - 0.12y° + o.ozy“)] -y=<0

with x = L -0
it becomes

Ho
1172 ,

== sig.a
21.0 24009

3[3.7& X" +x°(0.82-1.16y +0.41y*) +(0.08- 0.23y +0.25y* —0.12y° + o.ozy“)] —y=<0: x>0

so the critical x.y. curve which separates the two phases:
1172°

34 a3 4 2 2 2 3 4 _
576 240 0942 [3.78- X! +x?(0.82-1.16y, +0.41y? )+(0.08 - 0.23y, +0.25y; —0.12y? +0.02y; )] ~y, =0
Rewriting that like:

3.78x’ +x?(0.82-1.16y, +0.41y?) +0.08 - 0.23y, +0.25y? —0.12y; +0.02y —

240192y, _,
777'-2 gq (,uoa)3
2 2
From the tension relation o= 9ath _, a2 =gq(4ﬂ we have
T
87 oa 8r 8
HA=——=—y—>—1y—>l
9, 2/”0 94 q
S0
0.00083g?
3.78x{ +x7(0.82-1.16y, +0.41y? ) +0.08- 0.23y, +0.25y7 —0.12y? +0.02 ;‘—729“

Cc

for quarks and anti-quarks the degeneracy gq= 2chargeX2spinX3color=12 SO

2-3.78x; =—(0.82-1.16y, +0.41y; ) + [(0.8271.16y0 + 0.41yf)2 ~4.3.78(0.08-0.23y, +0.25y? —0.12y +0.02y;

~0.11977)]"
With the curve

x;y, cuve

14 N\ Freequarks phase
condensation “~—__
phase

T T

0 005 _oa 0.10
s -:_‘1:

showsthetwo quarks Phases under the

Diagram 10.5

extremely cooling T — 0 when the expanding
0 — a occurs
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For a point with y<1 in that curve there will be fast cooling to reach y=1: a—a,~1/(120Mev), so for g,=12

pa=FoR 87y a8
g2, g 0 12
The length a; must be the same for all hadrons, it must be related to the pions mass 1/ag~pion mass, if we
make 1/a;=130mev, we have :1% :130%[ =272.27Tmev
a

from xc2y. relation, for y.=1 we find x.=0.41 so from X=T/uy we have T.= uoX.= 272.27x0.41 =111.4mev
where the chiral symmetry breaking.

At that Temperature all the quarks are cooled and condensed in massive Hadrons.

10.2 Quarks Condensation phase, hadrons

We found that the quarks below the curve x.%y. become confinement where the quarks energy becomes
smaller than the interaction potential and the end is at y.=1, x.<0.41 where scalar charged particles with
mass 1/ay, appear, we think those particles are the pions as we saw in the last section(quarks field dual
behavior) they appear in the quarks diagrams, these diagrams prove that the pions consist of quark and
antiquark.

From quarks field dual behavior, the quarks in different Hadrons can interact and form the pions and the
result is the interaction between the hadrons by pions exchanging. And because the pions are charged -1, 0,
+1 so the hadrons charges also must be quantized by -1, 0, 1 So the pions are inserted in SU(2) generators
for hadrons pairing.

Here we assume that the confined quarks condense and give spinl/2 hadrons and pions, that occurs at
X:<0.41 , y. =1 point when the free quarks energy gets zero, so at that point all the quarks become
condensed in hadrons with spin1/2 and O .

Because of the fast cooling, the quantum structure at low energy becomes same structure of the high
energy, same spins, charges ratios, interactions,....

We assume, the condensation starts at high Temperature x.>>0.41 with y.—0 (condensation phase figure
10.5) the results are massless high energy Hadrons.

Then the cooling y.—1, x.—0.41 which is extremely cooling, at that point y.=1 the pions become massive
with m=1/a, (as we saw from the quarks dual behavior).

Due to the quarks field dual behavior, all hadrons (bosons or fermions) are interact by the pions exchanging
(pairing and condensation quarks of different hadrons). Therefore when the pions become massive at y.=1
all other Hadrons also become massive.

The condensation condition is VEa3—aa<oso the critical energy density is i? below it the quarks
a

condense and then extremely cooled to y.=1. So we expect that energy density is transferred to the
produced hadrons and photons like

oa E +E
225 hadrons photons belOW X y curve
vV cJtc

. . E E . . .
Or writing the densities &, :Vf' & =% and &, :7"“ for spin 1/2 hadrons(fermions), spin 0 hadrons

(bosons) and photons densities. So

120


http://www.iiste.org/

Advances in Physics Theories and Applications Www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) iy

Vol48, 2015 :

oa

? —> &t &+ Eoh
Now the key point, because the cooling is extremely cooling, like to take all the particles (quarks) from
high Temperature and put them at low Temperature, so the same structure at high energy will be at low
energies, like the charges distribution, particles densities ratios, energy distribution, spins...

The high Temperature fermions(condensed quarks) density (massless y~0 and ignoring the chemical
potential):
N, 32Q)

AVAR P

T3

And the high Temperature bosons(condensed quarks) density(massless y.~0):

N 16
nb zvb = gb 72'2 T3
Therefore the ratio n¢/n, at high energy is:
N _39¢
n, 40,

We assume the density ny is the density of the pions.

So because of the dual behavior of the quarks field, the pion will interact with the spin 1/2 hadrons, the spin
and charges are conserved, so the ratio ns/n, remains the same when the hadrons(condensed quarks) are
extremely cooled to y.=1.

At x.<0.41, y.=1 the pions(scalar hadrons) become massive particles with m=1/a; ~120mev (we need that
value for our calculations below, the right value is 135 Mev), as we found before, so their energy will
appear in their masses so we can write

[
72 ‘a

& =NMm, =g,

Where we assumed the bosons hadrons here are the pions

We found the critical point x.=0.41 with y.=1 so the temperature T.=111.4mev if we consider the bosons
(here pions) with three charges -1, 0, 1 so g,=3 therefore the density n, becomes(near T, =111.4mev)

4(?) T :3~¥(111.4)3Mev3 massless yc<1 ,and T—Tc =111.4mev
T T

n, =g,

When y.=1 and T.=111.4mev the pions become massive m=1/a, so their energy density becomes

£ =nm, =0, {S’)Tj% =3-%f(111.4)3 -120Mev* : T —T, =111.4Mev

at that point the fermions density becomes

n, 3
from —=———>n, =

E-§nb = §-§-3-¥(111.4)3 ~7.5638-10° Mev®
n, 49, 4 3 43 =&

The photons energy density

Aty.=1, T,;=111.4mev it equals
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7’ 4 4
£ =205 (1114) Mev

Now, below y.=1, T,=111.4mev the critical quarks energy density & is totally transferred to &; + &, + Eon

o)
oa
&, :?:gf +& + &
2
Therefore o%a =g +3 %(111.4)3 120+2-Z-(111.4)*
a T 30
2
We can write G—sa = %
a a
2
We had the relation  &a? :%” SO @ = 8%(120)“mev“
a

2
Therefore we have %’T(lzoy‘mev4 =g +3 %(111.4)3 -120+ 2-%(111.4)4
T

2
So £ = %”(120)4 -3 %(111.4)3 1202 .’3’—0(111.4)4 ~7.0675-10° Mev*
T

We can find the energy average for these fermions:

8 4
E, _ & _T.0675 105Mev3 ~934Mev
n, 7.5638-10°Mev

Which is very closed to proton and neutron masses, so we can think that these fermions are the baryons p ™,
p*, n where that energy appeared in the masses because of the suddenly fast cooling, extremely quarks
cooling, the total quarks momentum is zero, therefore the condensed quarks have small Kinetic energy.
Also because the quarks confinement occurs only when the closed quarks try to spread away, so the
confinement quarks have opposite momentums. Therefore the produced Hadrons are with small kinetic
energies. So the energy 934 Mev appears in the masses.

we try to calculate the ratio No/N;, using condensation phase relation like
N0, + Nyou, =0

Ny the total quarks number(quarks and anti-quarks) which totally condense in the hadrons, Ny the total
hadrons (fermions and bosons), 1 the quarks chemical potential and x, the hadrons chemical potential.

We assumed before the relation for the quarks chemical potential
u(r) = g, +u(r) with u(r) :—%(1—e*”a)
. —-rla
S = =_Ts(1—
S0 84, (r) = u(r) : (1-e)

The effect of that changing appeared in y=ay/2au =cal2u, in the results.

now for the hadrons we have

Sy = Nqé = Nqu(r)
o = N, Hy = N,
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So we have for the hadrons the same relations for the quarks, that if we consider the hadrons are massless,
that is right for x.>0.41 and y.<1( in the condensation phase) so we have the chemical potential for the
hadrons

£y (F) = gy —U(r) with u(r)=—22(1-e"")
r

therefore we replace y——(Nguoq/ Nion)y in the quarks energy to get the hadrons energy. So the energy for
the hadrons

N
B =27 i gk 3784 XZ[O 82411652400 o.41[““°qj y? +x4(0 08+ 0.23 Nathe |
1.9 240 Ni 2o Ny 2o Np g1

2 4
N N
+o.25[q”°q) y2+0.12(q"°qJ y +002[ “”‘)qj vt 10.9
N} op N Hon N on

When x.—0.41, y.—1 we have

4 N N 2
Evitow ~ Hon| 3.78- ©AD" 041715 o5 1 16 Nathe +o.41[q”UQJ
nHon nHon

0.08 0.08
(1,028 Nyt 0. 25[ oblog jz . 0.12{ N, tioq T N o.oz[ N, o, ]“
0.08 Npson  0.08( Ny s, 0.08\ N, 1, 0.08{ Ny 44,

N, N, Y N, Y N, Y
ow ~ Ay| 40245312 +3.98) % | +15) 1| +0.25 %
Nh Nh Nh Nh

So we expect the hadrons chemical potential

4 4 Nq Nq ’ Nq ’ Nq ‘
=il 4.02+5.31—2+398| —L | +15/ —%| +0.25|
Nh Nh Nh Nh

We can calculate uy, from the Fermi energy E; from the average fermions energy, we had before

Assuming zton=oq SO

E

E, = £t < 934Mev

nf
So for massless hadrons(fermions, T>T,), the relation between the average fermions energy and the Fermi
energy

_ 3 4

_ 4
fermion — Z Efermi —> My = E E —-934Mev

fermi — = fermion —
3 3

So for ue=272.27mev

‘ N NY N Y N
(5.934j = (272.27)"| 402 +5.31—2 +3.98| —* | +1.5| —% | +0.25|
3 N, N, N, N,

Not all quarks condense in fermions hadrons N,_,, part of them condense in the bosons hadrons N,_,, and
part annihilate to photons N,_,,, therefore we write

N, —>Ng ¢ +Ng, +N

g—>ph
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So & N N‘Hf + Nqﬂb + Nq%ph

Nh Nh
Because fposons<< Htermions SO from Nz, + N, du4, =0 10.10
We get NgJty + Ny St + NSy, + Ny Sty =0
It becomes NS, + Ny St =0 or Nydu, +N S, =0

¢ +Ngp,+N
Nh

. . N
We take only N in the denominator —= il

Nyt + Ny, +N
Nf

Therefore it becomes a-ph

We had the relation N _39¢
n, 4g,

. N N
So for bosons(pions here, two quarks) —- _3.8_3 ang N,_,=2N, and for the photons —- _38.9 and
N, 43 2 m 42 4
Ng—s=2Ny, therefore we have
Nqﬁf + Nq%b + Nq~>ph _ Nqaf Nqab Nqaph _ Nqaf +%+ 2Nph
N, N, N, N, N, N, N,
SO Nqaf+Nqab+Nqaph:Nqaf +2.E+2.ﬂ:Nqaf +20
N, N, 379 N, 9
N N
Therefore we have Do B (20
N, N, 9
. ‘ N N, Y N, Y’ N, Y’
In the equation (5934] =(272.27)4 4.02+5.31—2+3.98 —% | +1.5| -2 | +0.25| —*
3 N, N, N, N,
its solution is N¢/N=4.86 so
N N N
Do Faot 20 4g5 Nt o
N, N, 9 N,

Because the fermions here must consist of odd number of quarks, the value 2.64 in N,_,/N; =2.64 is closed

to be three quarks condensation( baryons N,_,/N;=3).

10.3 The nuclear compression
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we saw that the cooled hadrons have high density, so there is high pressure, that pressure makes influence
da so &y near y=1 or it makes y=1+48y, so the cooled quarks inside the hadrons fluctuate and give pions,
that depends on the energy, if the energy is high then they give heavy hadrons, that processes lets the
interacted hadrons lose an kinetic energy and form the pions. These pions rise the hadrons chemical
potential .

Because the number of quarks increases although the hadrons are fixed, therefore the hadrons energy
decreases and they can’t spread away. We can see how the chemical potential of the interacted hadrons
changes under the fluctuation dy-d&a( due to the quarks interaction) from the condensation relation

NgOug+ NnSun =0 we have Sun = —Ny0pg/Nn
with the quarks chemical potential

Hy = 15, (4.02-5.31y +3.98y* ~1.5y° +0.25y*) : T —T, =111.4Mev
for the fluctuation 8y we have

Mo %y

Su. =
Hn N, oy

. . .0 )
from quarks chemical potential we find % <0 so —% >0 therefore we have

N 0 N . .
Sty =—2 e S5y <0when sy <0 which is the quarks compressing, when the hadrons collide together
TNy

that lets to §y<0 so the hadrons loss energy and pions are created.

And when they try to extend(spread away) 8y>0 so §u,>0 they gain an energy, but because of the losing
energy for the pions creating, there will be a negative potential, so that potential holds the hadrons in the
nucleus at low energies.

For the interacted hadrons pressure we have the phase changing relation V,6P, +V,6R, =0: V volume, we
have

Vo Ry

__ Sy
Vi TV, oy

because 0P/dy<0 — —0P,/dy>0 therefore &P, = —x—q%éy <0when 5y <0

h

when the hadrons collide together §y<0 so their pressure decreases although their density increases and to
satisfy the Pauli principle that lets to increasing their pressure not decreasing, so to solve that problem there
must be negative potential.
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VA -
Sy=|-——2]| 6B, aty=1
V, oy

So the hadrons chemical potential becomes

N ( & V. oP !
5yh=q[—'qu[—qq] 6P, 1y=1

N, LU oy UV, oy
NV, (o, (P, "
We have Sty =—2 “[/qu(q] SR, 1y=1
thq ay ay
oP 0
And Ta - 10°Mev* , Za — —44.01Mev
ay x=0.41, y=1 x=041, y=1
NV, . N
So we have S, (Mev) = (-44.01)(-10"°) 5P, =44.01-10° 5P,
n

h¥q h
by that we can find constant nuclear potential. Like to write
S, (Mev) = -V,
V is the potential for each hadron, therefore v, = —44.01-10‘8&&3h : Vo with unit Mev and 8P, with Mev* .
I’]h

So when the hadron(fermions, like protons or neutrons) collide or join, their density increases 6uy>0 so
their pressure rises §P,>0, therefore there is a negative potential V, . At low energies that potential
prevents them from spreading away.

11. The Big Bang

We assume that the universe was created from the vacuum with zero energy E=0 in each point in the space
and dropped in each point to constant negative energy -2ca=u,<0 (transference to more stable deeper
vacuum) with the vacuum potential:

U(r)= u,+or : r<a 11.0

This potential is similar to the quarks potential, so the universe is confined in the space, for right vacuum
u(n=0.

. N . L. .
We assumed before, the total quarks low energy is E =;=aa > 0 but with the renormalization, removing

the quarks negative interaction potential by the shifting a—ag+da where a, is fixed (eqgs 6.2, 6.3) the quarks
energy becomes contained in the masses(m=aga, universal cooling and condensation), so the most universal
energy is contained in the masses, that is evidence to believe that the universal positive energy is associates
with universal negative energy.

Now the key point, as for the quarks, we write ug in 11.0 like:

L«
=-a—

U = (04
°a a

a is like as we fix the value a/a” and relate it to a string tension like the quarks
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2a oa
o =— =constant > U, =———=-0a, >0:a—>0
a 2

the limit a—0 must associate with r—0 where there were just points in the space and the time stop.

The starting is the zero point energy ue=0 : a=0 so the universe was created from the vacuum E=0 and a=0
then a increased to take fixed nonzero value a, which is the end of the massless particles phase as for the
quarks plasma.

We have positive point energy Epoin: Ep+uo=U(r)=0 so E,=—up>0 in each point in the space. So the
explosion occurred in each point in the space with constant energy E, but we have infinity energy density

E . -
r—;“ :r, =0, and due to the large pressure, the expand occurred, so the energy density becomes finite.
p

Because of r,~0 we have or,<<E, , where o}, is the energy of the created fields, the tension ¢ is constant.

So there is surplus energy E,—or, : 1, started from r,=0 and increased to reach r, =a with E,—¢a=0 is the
end of that process.

We assume that the negative point energy is hidden, it is not associated with any process, but maybe it
induces the hadrons condensation, that can be seen if there is losing pressure associates with hadrons
nuclear condensation as we will see.

To calculate the time for the spontaneous explosion and expand from the r,=0 to rp:a0:1/120(mev'l) the
end of the massless particles phase, we assume that the expand occurs with the light speed ¢

a, = 1 =0.008Mev* = 0.008-1.973-10*m
120
=0.016-10"m
The time for the explosion and expanding to ao:
-13
722 0016407 _gq0ge
c 3-10

11.1 The universal explosion and expanding

Now we try to explain how the universe exploded and expanded, we start from our assumptions we made
before and find the Hubble parameter and try to find the dark energy and matter.

we found that the quarks expand to the length a;~(120Mev) ™ then the hadrons appear instead.

we assume that the universe is created in every point in two dimensions space XY then the explosion in Z
direction. That is by the quarks, in each point in XY flat the quarks were created and then they expand in
each point XY to the length a, then the explosion in Z direction, the result is the universe in the space XYZ.

there wasn't universal explosion in the XY flat, the universal explosion was only in Z direction, in the flat
XY there was extend due to the quarks expanding from r=0 to r = a;~ (120Mev)™ the flat XY was infinity
before the quarks expanding and it is infinity after that expanding, what happened is increasing in the
number of the XY points, then the explosion in Z direction.

We assume both expanding( XY and Z) occurred with the light speed c .

To find the lost matter, dark matter and dark energy, we use the relation we found before:

n
V, =—44.01-10° 5P, : V,with Mev, 5P with Mev*
r‘lh
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M Vogge_ NoVaVoygepgeye

So SP =——
n, 44 N, V, 44

That changing in the pressure dP(independent on time) is related to the hadrons condensation phase to form
the nucleuses, where the global pressure 6P= 0P}, extremely dropped due to the nuclear attractive potential
(make it the nuclear binding energy) V,=-8 Mev[3]. This pressure 6P, is remained contained in the
nucleuses, but globally isn't visible.

So there is hidden global pressure dP, and we have to include that problem in the Friedman equations
solutions, we notice that the nuclear attractive potential lets to increasing in the cooled hadrons densities.
Therefore the decreasing in the hadrons pressure associated with the increasing of their densities (inside the
nucleuses).

The result is excess in the local energy density, that effects appear in the laws, that is, the matter density
appears to be larger than the right energy density. So there is neither dark matter nor dark energy, it is just
global and local densities.

We start from the defining the scale parameter R(t) for the universe expanding we write[6]

dr?
ds? = —dt® + Rz(t)( ~+ rdezj 11.1
1—kr
We make k=0 flat Universe.
The Friedman equations can be written like[6]
3RO _ _
R - 7O (P3P -A @
RO, R0, , k .
R() +2R2(t) +2R2(t) =4zG,(p—-p)+A (2)
. R(t
p=-3(p+ p)% ©)
If we sum (1) and (2) we have
R(t) R2(t) k ,
- =4 2
setting k=0 it becomes
.. .
RO RO G, o+ p) @)

R(t) R(t)

Now we try to find the Hubble parameter Ht) __1 4RO _RO
R(t) dt  R(t)

There are two different times t<a, free quarks phase and t>a, hadrons phase which is the expanding in Z
direction.

That means there are two different spacetime Geometric, t<a, and t>a,.

We start with t<a, :

the velocity C:TF:l = R(t)r equals to the light speed c=h=1 here, so
1=R()r t<a=a,

Therefore
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F'e(t):% t<a =a,

So we can write

R(t):% t<a=a,

So the Hubble parameter becomes

H(t):w:ﬂ:} t<a=a, 11.2
R(t) t/r t
Now we want to find the Hubble parameter in the phase t>a,

actually when the quarks expand from r =0 to r =a, there will be infinity points expanding, so infinity
expanding distance in XY space, but the expanding cannot excess the light speed c=1 therefore an
explosion occurs in Z direction, so the universal explosion.

So the time t =z: 0—a, for the free quarks phase will associate with t: 0—-oo for the universal expanding, so
we make the transformation

_CO

t= :
-3,

r<a, 11.3

Where ¢, constant, we can relate that relation to a spacetime Geometry. That means if the quarks space
r<a,=(120Mev)™ is flat, so the hadrons space isn't, it is curved space, where we live.

It is convenient to consider the quarks space( r<aq large energy density) is curved not our space(low energy
density).

Now we can find the Hubble parameter for the universe t: 0—o

For z: 0—ag we had H(T)zldjzl
Rdr ¢
So we can write H(r)=LdR _1dtdrR
Rdzr Rdr dt
— 2
From t=——"0we have E:t— S0
-4, dr ¢,

t?1dR_1 't

Rdt 7 at-c,

1dR ¢

That becomes =0
Rdt t(a,t—c,)

Therefore the Hubble parameter becomes

H(t)—id—R— C 1 1
Rdt t(at—c,) t[%t_lj t(cit-1)

Co

The new constant cq'=ay/cy
Now we use our assumptions for the pressure effects on the energy density

When the hadrons are formed the nuclear interaction begin, one of the results is the increasing in the energy
density, where the hadrons are cooled and condensed.
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From the relation &P, _—fﬁlo8 ~_NoVeVo 10° Mev*
, 44 N, V, 44

for Vo<0 We find JP,>0(independent on the time), that means for the Fermions, the energy density
increased (Pauli principle).

So that density increasing plays a role in the equations, with it the calculated energy density is larger than
the right energy density.

In Friedmann equations we have p+ penergy density plus pressure. To include the pressure effects on the
energy density we write

pP+P=p+dp—3p+p
We assume the pressure P=0Py(independent on the time) effects on the energy density like
—-0p+p=0S0 p+p=p+dp—p+p=p+p
Then we write p(t) = p+dp

. d d d
With t —& —p=—0P, =0 11.4
p)= Pt P= P it
We assume the p= pmater i the right energy density of the visible matter, and the p(z) is the local energy
density which includes the nuclear interaction effects(the pressure effects, because that pressure is

independent on the time so we can consider its effects on the energy density, increasing that density).
We make that in the Friedmann equations(2") and (3"), k=0

R(t)  R*(t) _ ,
R TR® = 472Gy (p+ p) = 472G p(t) (2)

R(t) RE) . :
=-3(p+ D)R(t) ()R(t) o) (3)

using (2" and (3") we find the energy density using the Hubble parameter
1dR 1

HO=g = t(cit-1) t> 4
From (3") we have —%p(t) p(t) so (2") becomes
_R(t)  R*(t) —47G, R(t) . )

R(t) R(tt) 3 R()

That equation becomes

R(t) ( R(t) . Rz(t)] _ 476, 5(0)

RO\ R R(t) 3
R(t)
Or H(t){ R() +H (t)j A 2)
Using 4RO _RM R O ()_@_Hz(t)
aRO RO RO D dt R(t)
Using H(t):ﬁ
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We have w = Etil(cty)t _1)71 + . 2" 2 _’2
R(t) dt 2 (ct-1)° t*(ct-1)

The equation becomes

1 2 1 —47G,, . 2 1 —A4rG, .

! 2 ! +2 ’ 2 = Np(t)—) 3 ’ 2+3 ’ 3: Np(t)
t(ct-1){ t*(ct-1) t*(cit-1) 3 t(ct-1) t(cit-1) 3

i X 1”2 l ’ 1”2 4
The solution is S +—2+C—°+C72= 7y (p(t) - p,)
gt-1 2t t  2(cit-1) 3
For finite results we put po=0 so
12 ’ 12
Co 1 ¢ c _ 4G, (0) t>a,

Cot-1 28t 2(cr-1f 3

Now we calculate the contributions of the vacuum energy to the total energy using the cosmological
constant A like

2 p—
Q, _Pa_ A2 _ 3H 872'(23Np(t) :1_247ZGZN (0)
o, 3H 3H 3H

. . 3H?

Where the critical energy density p, =
872G,
. . c? c c”? 47G
Using the density p(z) : ——"—+—+22+————=—""N ot
9 yp®) G120 a3 )
We find
12 ! 12
O, =1-2(cr-1p| S L Gy g (o1 2 10 115
Gt-1 2t t  2(cit-1) t?(cot—1)
So the vacuum energy density is canceled, and the total energy is the matter energy Q... =150 0 =1
P
Here p(t) is P) = Prer +P
12 ’ 12
With ﬁp(t):— S +i2+c—°+ci2 t>a,
3 cGt-1 208t 2(ct-1)
. V,
And the constant dp is Sp=06P, = Ny Yo Vo 1o gyt
N, V, 44

To calculate dp(independent on the time) we assume the potential V, equals the nuclear potential -8Mev and
assume Ng /Ny=g,/gn=6

Now we try to find V4/V,, the quarks volume V,=Sd, and the hadrons volume V,=Sdj as the figure
Diagram 11.1

representsthe quarks creating and
expanding in two dimension S=XY

then the universal explosion in the
third dimension Z in two opposie
directions
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Where the universal explosion in the z=d direction.

If we assume the explosion speed is the same for both hadrons and quarks, light speed c=1, so for the

quarks
H (t):@:i:i 11.6a
g R(t) R@) d,

For the hadrons H, () _RO_1 1 11.6b

R(t) R() d,

V, Sd, d

So Yo 0 G _Hy 11.6¢
V, sd, d, H,

We assume the Hy, is the universal Hubble parameter which is

H=71km/s/mpc=23-10"%s"=2.3.10"-6.58-10 *Mev =151.34-10 **Mev

The quarks Hubble parameter H,=1/r =1/a;=120Mev
H, 151.34-10"" Mev

So we have —h T T -1.26-10"
H, 120Mev

\Y/
Therefore Yo _Hy_ 1.26-10™"

V, H,

H H . Nh Vq VO 8 4
The constant density changing dp:  dp =6P, =——2—1-210°Mev
N, V, 44

Becomes (with V, equals the nuclear potential -8Mev, nucleon binding energy)

8

3p=0P, = 112610478 10°Mev* = 381.8-10 Mev®
"6 44

So the energy density p(?) = pmater Top becomes

P) = 0oy +381.8-10 Mev*
we found Q,=0 S0 p(1)/pc.=1— p(t)=p;
experimentally, the critical density is

11.7

0, =9.47-10%kg / m* =9.47-107 - 4.29-10°Mev* ~ 406-10"* Mev*

therefore p(t) = p, =406-10% Mev* = o, .. +381.8-10°% Mev*

So we find the matter density ..., =406-10% Mev* —381.8-10"% Mev* = 24.2-10"% Mev*

The right baryonic matter energy density(BBM and CMB calculations) is
0, =4.19-10%g/cm® ~17.97-10% Mev*

There is no big difference between ppaier=24.2*10"Mev* which we found theoretically and

pp=17.97*10*"Mev* which is the right.

The difference is 6.23*10*’Mev* may be related to the bosons matter like photons, mesons, ..., but we can
control this difference by changing the potential V, . like to replace Vo— Vo+8V,=—8-0.1305Mev, with
that, the difference is removed, we can relate the energy 0.13Mev( at least 0.13Mev) to the negative point
energy(deeper vacuum), that if we assume that energy induces the hadrons condensation, or there is

negative energy-positive energy potential —0.13Mev.
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By that there is losing pressure eqll.7(equivalents to 6V,=—0.13Mev at least) associates with hadrons
nuclear condensation(global cooling).

Therefore we can think that there is neither dark energy nor dark matter, it is just local and global matter
densities. And all the matter is the visible matter.

Notice: the changing p+ p=p+3dp—3dp+ p=p+Jdpis not to reform the Friedman equations(2)and(3"), it is
just to know how the pressure effects on the energy density, instead of that, maybe we use the equivalent

between the energy density and the pressure dp=3JP, but with that the ratios N, /Ng and V,/V, would be
changed to get the same result.

For more clear, we used the Friedman equations k=0 with the form

RE(t) _ .
3R2(t)—8ﬂGNp+A @)
R(t) , R*(t) _
b=+ 3)

We wanted to include the effects of the increased energy density of the cooled hadrons(hidden pressure) on
the solution of that equations, for that we can make

R%(t)
R*(t)

3 =87G, (p+35p)+A—87G,Sp

RLON0

=4rG +6P+p-06P 11.9

d R(t)
—(p+6p)=-3(p+65 -6p)—
o (p+6p)=—-3(p+5p+p—-5p) RO
Where dp=dpy>0 is independent on the time.
So we have(for same Hubble parameter we had before)
p'=p+op,
p'=p- 5ph
A'=A-87G,6p, =0

We can say p’, p* and A' =0 are for the located matter, when the hadrons are cooled, they condense and
locate in small volumes with high matter density, because of the strong nuclear attractive interaction, so
their pressure extremely decreases. That pressure is contained(hidden) in the nucleus.

And p, p and A are the global measurements of the matter, the global measurements includes the large
distances between the stars and planets. So we make them the right matter(visible matter).

Notice: Not all of these ldeas are contained in the References.
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