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Abstract 

In the classical Physics, the particles are described by their masses, charges, spins, number of particles, …., 

which are constants values. But that was not exactly in the quantum Physics, in which, the particles 

properties like masses, charges, spins, number of particles, …, are not constants values, they change in the 

interactions. 

So we need unchanged properties in the interactions, we need that to know how we describe the nature 

according to the quantum principles. For that the quantum fields theory was born, It is a marriage between 

the quantum mechanics and the Symmetries, like the space XYZ points Symmetry. In general the 

Symmetries are described by continuous transformations {U} form groups, to satisfy the Symmetries, the 

interactions must preserve them. Therefore the Lagrange structure L(𝜕μ𝜑,𝜑) is invariant under the 

continuous transformations {U}, L`=L with 𝜑𝑖`=U𝑖
𝑗𝜑𝑗 for both free and interaction situations. With that we 

have a principle to build the Lagrange and describe the associated particles. That is generated to the gauge 

invariance and gauge fields.  

With that we have no problem with the changes on the masses, charges, spins,… , the particles are now 

classified by their symmetries, not by them. The method of calculation the changes on masses, charges, 

spins, … is the renormalization. One easy method is comparing the bare Lagrange L0(𝜕μ𝜑0,𝜑0) and the bare 

fields 𝜑0 with the interaction Lagrange L(𝜕μ𝜑,𝜑) and interacted fields 𝜑 , the both in the same group 

representation, we consider the bare fields 𝜑0 as free and classical fields, so it is unchanged in the 

interactions and the associated bare masses, bare charges, bare spins,… are fixed values.  

But to compare the interaction Lagrange with the bare one, the interaction results, like the self energy, …, 

must be finite(without divergences). For that we modify the propagator like eq2.2 for the photons and eq1.2 

for the fermions, we set a→0 in the final results. But for the quarks we fix Z2 and search for ka→0 so we 

can ignore the modifying and have the usual propagators. When ka>1 we can’t ignore it, we give them a 

physical meaning, like to relate that modifying  to Field dual behavior, free and composition, pairing 

particles-antiparticles appears as a scalar particle, we apply that for the quarks chapter 9 we find the static 

quarks interaction potential, we study the quarks plasma and use our results in Friedmann equations 

solutions.      

The key words: Lagrange parameters, the chiral symmetry satisfying, nuclear potential, quarks static 

potential, fields dual behavior, quarks plasma phase, quarks condensation phase, the Big Bang, neither dark 

energy nor dark Matter. 

 

1. The fermion self-energy in the electromagnetic interaction 

We find the Lagrange parameters Z2 and Zm and make the results like the physical mass, using the modified 

propagators like 1.1 and let a →0 in the final results, as usual in the renormalization[1], [2]. But here we 
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absorb the self energy to the Lagrange parameters Z2 and Zm(eq1.11). We do that for the electrons and 

generate it for the quarks. In the path integral of the electrons field we use the Lagrange 

γ γL i m eA 

          the self energy becomes[2] 
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The electron self-energy 1.1 becomes:  
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and setting the transformation: q=ℓ+x1p

 
 

And changing the integral to be over q and making transformation to Euclidean space the electron self 

energy becomes 
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The linear term in q integrates to zero, using q=1+x1p, N becomes[2]  
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The integral over q in Euclidean space is:  

                  

               
( P (2 2

3 32 2

3 2) 11 (3-2) (2) 1
)                     1.8

(4 ) (3) (2) 16 2

N
e dF N D e dF D
   

   
 

   
 

The self energy becomes 
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Which is a finite result(without diverges). Now we renormalize the fermions propagator to give the real 

states and let a→0 . 

The interacted electrons propagator becomes[2]:   
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The parameters Z2 and Zm are the renormalization parameters, later we try to make them constants like 

eq5.2 , for the interacted field Ψ  we have:  
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By that we removed the self energy of the interacted electron and make the mass varies. 

we get the physical mass of the interacted electron, like usual, then let a→0 . 

for easy we ignore the masses m and mγ in f  so 2 2 2
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We run the mass m in 
0 2

1

mm Z Z m : 
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The constants ki can be determined to satisfy  
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Running the mass 
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So we cancelled the self energy and made the mass carries the energy, with that, the interacted electrons are 

like free particles, but the mass varies. 

We need to find Z2 and Zm for the quarks in the interaction with the gluons(strong interaction), in SU(3) 

representation, with that, eq1.3 becomes, for arbitrary SU(N): 
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And the factor C(R)=(N
2
-1)/2N , for the quarks N=3 . 
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2. Photon self-energy in spinor electrodynamics interaction 

We find the Lagrange parameter Z3 and make the result, the coupling constant α as in the usual 

Renormalizations. But here we absorb the self energy of the photons to the Lagrange parameters Z3 , in the 

path integral of the Photons field, the self-energy is given by[2] 
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k k m m    



       
    

 
 
     

  

1

4 1 2 3 4 1 2 3 4

0

     6 ( + + 1)with dF dx dx dx dx x x x x   
 

The self energy becomes

 

                                   

4
2 2

42 4 4

2 2 2 2 2 2

1 2 3 4

1 4
 ( )              2.4

(2 ) 1 1
( ( ) ) (( ) + ) ( + ) ( )

d N
i k e dF

k x k m x m x x




 

 

 

     


 
 
 



 
 

Where 4N
µν 

is:         
  4 Tr [(N k    )γ (m   )γ ]m   

completing the trace[2], we have:
  

 2( ) ( ) ( ) gN k mk k           

We set the translation:
 1 2( )   q x x k    

Changing the integral to be over q and making transformation to Euclidean space. And dropping the terms 

linear in q(because they integrate to zero) 

                                   
 2 2 2

1 2 1 2 1 2 1 22 2( )(1 ) ( )(1 ) g                2.5N q q x x x x k q x x x x k mk              

                                                                                                  
 

2 2 21
Using the relation :?  ( ) g ( ) d dd q q f q d q f q

d

      
which  allow us to replace q

µ
q

ν
 in N

µν 
like:

 

                                    

2 2 2

1 2 1 2 1 2 1 2

1
2( )(1 ) ( )(1 ) g                    2.6

2
N x x x x k q x xk x x k m    

          





 

It becomes       
4

2 2

4 42 4 2

1 4
 ( )                                        2.7

(2 )

d q N
i k e dF

q D




 


 


 

  

 

With               2 22

1 2 1 2 2 3

2

2 3

1
 ( ( ( (1 ) ) ) )  x k x kD x x x m x xx


        

 

Using the relation: 

 

)
2

2

2
(b

2 b

(b ) ( + )
( )

(2 ) ( )
(4 ) ( )

2
b (

2

)

2
d

a
d a

dd

a
d q q

D
q D

d d
a

d


  
 

 

 


  

Integrate over q in the Euclidean space, the photon self-energy becomes: 
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   

1 1 2 1 1 2   1    1    1    11 12 2 2
2 21 2 1 2 2 3

1 2 3 1 2 3

  

2 22 2

0 0 0 2 3 2 30 0 0

( )(1 )( ) (1 ) 1
 ( )  : 2.8

(1 ) (1 )
  

2 4

x x x x x x
e x x x x k g k k e x x

i k i dx dx dx i dx dx dx m
f fx x x x

  


   

     
 

    


    


     
     

2 2 2 2

1 2 1 2 2 3   ) ) (  )( (with f x x xx k x k x m      

We have a problem in 2.3 , when β→0 the integrals diverge like 

                                            

1 1 2   1    11  

2

1 2 3

2

1 2 1 2
1 2 3

0 0 0

( )(1 )( )

(1 )

x x x
x x x x k g k k

dx
x x

dx
x

dx
    

  

 



  
 

Therefore we rewrite it like 

                                          
 

1 1 2   1    112 2
2 1 2 1 2

 

2

1 2 3

1 2 32

0 0 0

( )(1 )( )
 ( )      

2
      

(1 )

x x x
e x x x x k g k k

i k i dx dx dx
x xf x

  


 

  
  


 


 

 
  

 

 

1 1 2   1    11 22
2 1 2 1 2

1 2 32

0 0

 

0

2

1 2 3

( )(1 )
So                                            ( )                   =

(1
2 9

2 )
.

x x x
x x x x k Pe

k dx dx dx
f x x x




 

  
 







  
    

The photon self-energy can be written like[2]
 

2 2 2( ) ( ) ( )   k k k P k    with the perturbed photons 

propagator :

 

2

2 2

P ( )
( )     

[1 ( )]

k
k

k k i





 

 
and the projection operator : 

2
P ( )  

k k
k g

k

 
  

 

 

Using that, we find:

         
 

1 1 2   1    112
2 1 2 1 2

1

 

2

1 2 3

2 32

0 0 0 (

( )(1 )
 ( )                         2.

1
0

2 )
1

x x x
x x x xe

k dx d
x x

d
x

x x
f 

  


 
 


   

  
 

We define the parameter Z3 for the quantum electromagnetic Field A
µ
 via:

 
2

3 1  ( ) Z k  Therefore the 

interacted photon propagator becomes: 

                                                               

2

2 2

33

P ( ) P ( )1
( )                                           2.11

k k
k

Zk Z i k i

 


 
  

 
 

We renormalize the interacted field Aμ like 1.12:  
0 3A A      ?        ?                       

                        2.12Z   

The parameter Z3 is finite:

 
 

1 1 2   1    112

1 2 1 2
3 1 2 32

0 0

 

2

1 2 30

( )(

(12 )

1 )
1  

x x x
e x x x x

Z d
x x

x dx dx
f x 

  
 

  





     

It becomes, ignoring the mass m and mγ in f 

                 
 

 1 1 2   1     

2

1 2 3

112 2
2 21 2 1 2

3 1 2 32 2 2 3

0 0 0

ln 1( )(1 ) 1
1 =1   :  a          ?    

(1 )
    2.13

2 2

x x x
xe x x x x e

Z dx dx dx x k
x xf x x x 

  
  


 

   
    

 
  

            

 

We need to write it in ln(x) terms so we expand it near x=x0 , then we make x0→0 , we use 

                          

 
0

0

0
0 0

0

( )) ln( / ) 1
 ( ) ( ) ...       ( ) ln( / )   ( )             

1! !

n
n

n n

nx x
x x

f x x x
f x f x x or f x c x x with c x f x

x n x






  
      

  
  

2.13 becomes, setting  y= ln(x/x0) and using ln(x+1)= x-x
2
/2+x

3
/3+…  

                  

 

 

0

02

3 0 02 3

0 0 0

02 3 2 2

0 0 0 0

ln 12 1 2 1 1
( )         1      1+ ( )   :  0

2 3

ln 12 1 2 1 1 3
                                      1 ( )

( 1) 2
x x

x
Z c by o y with c O x x

x x x

xd
and b x O x

dx x x x x x x

 

 

 

 


    
           

   

    
        

   
     ?

       



 

We renormalize the interacted Field Aμ like 
0 3A AZ   

http://www.iiste.org/


Advances in Physics Theories and Applications                                                                                       www.iiste.org 

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) 

Vol.48, 2015         

 

88 

from the interaction term A V 

   with 
1V eZ   (eq3.6), we can write  

                                   

1 1
3 2 2 0 0 0 0 0 0 0

2 3 2 3

   
eZ eZ

eA V Z A Z Z A e A
Z Z Z Z

   

                

We make the bare fields like classical fields, so e0 is constant. From the relation(which is related to the 

Ward identify[2]):                     
 
( ) V ( , ) ( 'p p p p e S P


   1) (S P  1)                

 
 

We use it for the interacted field Ψ  so we use 1.11 and 3.6 :
  

                                                   
1 2( ) 'p p eZ Ze P P

     2  ( )                         e pZ p 

    
 

It must be Z2= Z1 for gauge invariance[2], we have 
2

0
0 0

33

 ,   
4

e e
e

ZZ





    therefore 

 2 2 2

0 3

2 2 2

'
                            ln( ) 0 ln( ) ln( ) 0 ln ( ) 0   ln ln(a )

              ln 1 ( ) ln ln 1 ( )   ln 1 ( ) (

d d d d
Z c by O y with y x k

dy dy dy dy

b b b b
we write c y O y c y O y and y O y y O y

c c c c


 


          

     
              

     

2)

' '
                           ( ) 0

c b
O y

c c




   

 

That becomes in y=0: x=x0→0 

                   
0 0 02 2

0 0 0 0 0 0

' ' '
     0 ' 0

2 ' 1 1 2 1 1 3 2 1 1 '
( ) 1 ( ) 1+ ( ) 0

2 3 ( 1) 2 2 3

c b
c b c

c c

O x O x O x
x x x x x x

 

 

   

   

        

      
                          

 

reorder it like 

                
0 0 02 2

0 0 0 0 0 0

' 2 2 ' 2 2 1 ' 2 1 1 3 2 ' 1
1 + ( ) ( ) ( ) 0

3 3 2 ( 1) 2 2
O x O x O x

x x x x x x

       

       

      
                 

       
 

We can assume 

                                       

01

1 0 0 1 0

' 2 2 ' 2 1
1 0 :  0

3 3 ... ...
x

k x k k x

   

    



 
      

    
 

The parameters ki can be determined to satisfy 

        
0 0 01 2 2

1 0 0 1 0 0 0 0 0 0 0

1 2 1 ' 2 1 1 3 2 ' 1
( ) ( ) ( ) 0

... ... 2 ( 1) 2 2
O x O x O x

k x k k x x x x x x x

   

   



     
              

         
              

so

                               
 1

1 0 0 1 0 0 0 02 2

0 0 0 0 0 0

2 1 ' 2 1 1 3 2 ' 1
... ... ( ) ( ) ( ) 1

2 ( 1) 2 2
k x k k x O x O x O x

x x x x x x

   

   





      
                  

       
 

and          

                  
   

2
2 2

2
0

' 2 2
0 ( ) :  a  and a=constant 0

ln / ln

d d d
x p

dy d x x d k

     
 

  
        


 

β(α) is the beta function, the solution( the electromagnetic coupling constant)  
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2

2
:

ln

e

c
k

k
    

 
  

 

 

With that we removed the photons self energy, so the interacted photons are like free particles, while  the 

coupling constant αe depends on the energy.  

 

3. The fermion –photon –vertex  

Like what we did before we find the Lagrange parameter Z1(p’, p) using the modified propagators and let 

a→0 . 

 

                                  
5

1V ( , ) γ ( , ) ( )                                                     3.1loopi p p ie iV p p O e  


   

 

                          

4
3

1 3 4

1
  ( , ) ( ) [γ (

(2 )
loop

d
with iV p p ie S P

i

 




   )γ (S P

  2

4
3

4

)γ ] ( )

                                 [γ (
(2 )

d
e S P










  )γ (S P

  2)γ ] ( )                             3.2


 

We use the modifying   

  2 2

2 4 2 2 2 4 2 2 2
 3.3

1 1
( )       Adding a mass : ( )            

+ 1+ + 1+

g g g g
k k

k k k k k k k m k

   
 

   
       


                 

The vertex becomes: 

                       

4
3

1 4 2 2 2 2 2 2 2

4
3

4
2 2 2 2 2 2 2

N
( , )

(2 ) (( ) + ) (( ) + ) ( + ) (1 )

1 N
                                     3.4

1(2 )
(( ) + ) (( ) + ) ( + ) ( )

loop

d
iV p p e

p m p m m

d
e

p m p m m










 

 




 

     



     





       γ (with N p

    )γ (m p   )γ   m 
 

Using the Feynman formula 

    

2 2 2 2 2 2 2

4 1 2 3 4
2 2 2 2 2 2 2

1

4 1 2 3 4 1 2 3 4

0

4

1 1
  (( ) + ) (( ) + ) ( + ) ( )

1
(( ) + ) (( ) + ) ( + ) ( )

   6 ( + + 1)

dF p m x p m x m x x

p m p m m

with dF dx dx dx dx x x x x
















     

     

 


 
 





 

setting the change q=ℓ+x1p’+x2p And let the integral over q and making a transformation to the Euclidean 

space the vertex becomes:
 

                                      
 

4
3

1 4 44 2

1 N
 iV ( , )   

(2 )
loop

d q
p p e i dF

q D




 


 


                                                                                         
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And D:  1 2 1 2 1

2 2 2 2 2 2 2

1 12 23

2

2 3)
1

( 2 (1 )x p x x p x x m x m x x xD p p x x p p x 


               

using  
1 2q = + x p  + x p   to omit , N

µ
 becomes[2]: 

  

γ (N q

   1 px  2(1 ) )γ (x p m q   1(1 )x p  
2 )γ = γ γ γ   in  p m q q N liner term qx 

        

1   γwith N px

  2 1(1 ) (1 )γp mx x p      2 γx p m      

using gamma matrices properties 2 γ  γ  γ  γq q q

    and dropping the linear terms in q because they 

integrate to zero, the vertex becomes    
 

                                                      
 

 
4

3 2

1 4 44
2

1 1
V ( , ) γ N  

(2 )
loop

d q
p p e dF q

q D

  

 

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

   

For renormalization the vertex eγ
µ
 we consider only the term q

2
γ

µ
:
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1 4 42

1 ) ( 1 )

2

3

4 2
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                      γ                                                   

3 (4 )

1 1
loopp p e dF D e dF D

e dF
D

  



   

 

     



     
 



  

 








 

                                                     3.5

1 2 3(1 )                                          wit x xh f xD      

We see, the vertex V
µ
 (p’, p) is finite, does not diverge. 

                           

1 1 2 

1 2

   1    112

1 2 32

0 0 30

 3.61(1 )

1
V ( , ) 1                            

8
=γ  γtotal

x x x
e

p p
x x x

dx dx dx
f

e e z  

 

   
  

   


  
  

  

Z1  is the vertex parameter(renormalization parameter) 

                            

 

1 1 2   1    112
2

1 2 32

0 0 1 2 30

 

1

1
1  :  a 0                                       3.7

8 (1 )

x x x

x x

e
d

x
x dx dx

f
Z 

 

  

 
  




    

In our next study we try to make Z2 and Zm constants by running the length a and search for the condition 

a→0 . we can’t make Z3 constant, because we need it to run the coupling constant and have a choice to 

make Z2 , Z1 and Zm constants. 

Z2 is fixed→ the length a depends on the fermion energy p . 

Z1 is fixed→ the length a depends on the photon transferred energy q=p’-p . 

 

4. Chiral symmetry 

The chiral symmetry is the symmetry of the massless fermions Lagrange. Which is the Symmetry UL≠UR 

here, we distinguish between the chiral symmetry which associates with the gauge invariance and the chiral 

symmetry which associates with the flavor invariance(like the quarks). We assume that they aren't 

conserved separately, but together they are. We see that in quarks dual behavior, chapter 9, Feynman 

diagrams. 

In this chapter we find µJµ5=0 for SU(1) Symmetry using the modified fields propagators(particles dual 

behavior: singles and pairing particle-antiparticle), with that, the gauge invariance and flavor invariance 

together satisfy the chiral symmetry under the quantum fluctuation. That appears in the quarks interaction 

diagrams chapter 9 these diagrams satisfy the chiral symmetry for gauge invariance SU(1), also contain π-

particles which satisfy the flavor invariance.    

In this chapter we verify µJµ5=0 for SU(1) invariance. 
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We assume that the chiral symmetry is not satisfied because of the polarized quantum fluctuation due to the 

existence of the separated charges, but if the chiral symmetry is associated with more stationary states, 

such U(r)r→0 is finite, we can believe in it. 

from the relation :  

                                                            

2

2

 
AJ

16

µ µ
µ

e
F F


 


  

 

we find it is trivial to say µJµ5≠0 when the Field Aµ in the last equation oscillates( quantum Field), because 

the strength Fµν also oscillates, so µJµ5 oscillates and takes the zero value alternately(Jµ5 is alternately 

conserved). But if the field Aµ is fixed (classical Field separates the charges), we can say µJµ5≠0, but there 

will be a vacuum polarization.

 

we remove the vacuum polarization using the modified propagators  like eq1.2 the conservation µJµ5=0 is 

never seen at high distances, because as we said the space would be polarized. But it is seen at low 

distances ∆r→0 where the gauge forces become linear. 

Using the amplitude 4.4 for the axial current  Jµ5(x)  to create two photons, we have:
  

                                                                       

2

2

 5
J

16

µ
µ

e
F F


 


  

 

The problem which leads to µJµ5≠0 is the divergence in the integral 4.20, but by using the modifying  

                                             

2

2 2 2 2 2 2

1 1
  ( )       ,     ( )        

- 1 a - 1+a

gp
S p k

p i p k i k




 


  

  

the integral 4.20 would converge, and we would have hidden chiral symmetry  µJµ5=0 .   

the massless fermions Lagrange: 0L                   4.1i  
 

with it the chiral symmetry is classically satisfied 5 5 5J 0  ,  J               4.2档 

     
 

but we don’t have any term in the Lagrange L0 includes the Axial current  Jµ5, so we do not know its effects 

on the quantum processes, or it is not visible, so its effect is hidden . 

The amplitude for the axial current  Jµ5(x)  to create two photons is[2]: 

                                                                 5p,q j 0                                                     4.3µ x
 

Where p and q are the momentums of the two created  photons . 

But we have a problem, this is, we can’t insert the axial current  Jµ5 in the Lagrange as done for the vector 

current Jµ which is included in the Lagrange, such AµJµ . 

We can solve that problem by assuming that for the flavor symmetry, the field dual behavior gives scalar 

charged particles like the pions(Feynman diagrams, chapter 9), with them the Axial current interact 

indirectly with the electromagnetic field. 

The amplitude 4.3 can be wrote like[2]: 

                                                         
   2

p q
p,q j z 0   e ' C p,  q,  r                4.4eµ

A ?
r

irz 

 
 

   

Where εµ , ε’ν are polarization vectors of the two produced photons. Using the LSZ formula, C
µνρ

(p,q,r) is:
 

                  
     

 
     

4 4 4 4 4 i
2 p q r C p,  q,  r ? d x d y d z 0 Tj x j y j z 0            4.5e µ

A

px qy rz   
  

   

 Now we want to know where the problem  ∂µJ
µ5

≠0 comes from ? 
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We begin from the relation[2]     

                                                           
  

   2

p q
p,q j z 0   e ' C p,  q,  r                 4.7eµ

A ?
r

irz 

 
 

   

Using the relation       
 

     
4 4 4 4 4 i

2 p q r C p,  q,  r ? d x d y d z 0 Tj x j y j z 0         e µ

A

px qy rz   
  

     

we get : 

                                                      
     

3µνρ µνρ1
iV p, q, r  = ig C p, q, r  + O(g5)                4.8

2


 

with: 

                                  

    
   

 

3 4
3

2 24 2

1 N
iV p,  q,  r   1 ig                         4.9

(2 ) p q

                                p,    q,    O(g5)

µ
µ d

i

µ








 
   

   

  



 

and N
µνρ

 :                                  5

1
 [ - - - - ]                            4.10
2

档N Tr p q      

                     

Using the trace circle property we find: 

                                             
    5

1
N [ - ]                                   4.11

2

档 Tr p q      

 

Taking derivative the relation: 

                                            
   2

p q
p,q j z 0   e ' C p,  q,  r                        eµ

A ?
r

irz 

 
 

 

 

we get[2]  

                                         
   2

p q
p,q j z 0   e ' C p,  q,  r            4.12eµ

A ?
r

irzi r 

   
 

  

 

From 

                                            
     

3µνρ µνρ 51
iV p, q, r  = - ig C p, q, r  + O(g )        

2  

we have  

                              
     

31
,  ,    ,  ,    ( 5)          4.13

2

档ir V p q r ig r C p q r O g 
   

 

We find rρC
µνρ

 using the relation  

                            

    
   

 
3 4

3 5

2 24 2

1 N
iV p,  q,  r   1 ig   p,    q,    O(g )

(2 ) p q

µ
µ d

µ
i


 



 
     

   
  

We get: 

                           

 
     

 
4

3 5

4 2 22
,  ,    ?   ,   ,    ( )                    4.14

2 - ?  

µ

µ
r Nd

r V p q r ig p ? q O g
p q





 


   




 From the  

                             
    5

1
N [ - ]                                 

2

档 Tr p q        

We get rρN
µνρ

: 

http://www.iiste.org/


Advances in Physics Theories and Applications                                                                                       www.iiste.org 

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) 

Vol.48, 2015         

 

93 

                                                            
    5

1
[ - r ]                              4.15

2

档r N Tr p q  

       

Using the trace circle property we find: 

                                                           
    5

1
[ r - ]                               4.16

2

档r N Tr q p  

     

 

From the four momentum conservation p+q+r =0 we have r =-p-q so we write rρɣ
ρ like : 

                                                  
      r  r  q p   q   p                                     4.17

         
 

To find 4.16 we use  

                   
2 2

r -     - -  q -   p                      4.18q p q q p p p q

             

 

Therefore we have[2] 

               
2 2 2 2

5 5

1 1
q Tr[ - ] p Tr[ ]  2i [ q p  p q ]

2 2

                                                                                                                    

档 档r N p q   

   
                 

    
2 2

2i [ q + p ]                               4.19µ p q

     

So the  rρV
µνρ becomes  

                                

 
     

 
4

3 5

4 2 22 2
,  ,    2 ? ,    ,    ( ) ?           ? .20

2

档 p qd
r V p q r g p 祋 O g

p q

    

  


 
      

   


 If the integral is convergent we have the results which proportional to εανβµpαpβ and to  εανβµ qαqβ   which 

equal zero[2] because of anti-symmetry tensor εανβµ  therefore: 

                                                          
  ?,  ,   0                                                    4.21µr V p q r

 
 

Using the relation  

                                                           
     

31
,  ,    ,  ,    ( 5)                 

2

档iV p q r ig C p q r O g   
 

we have 

                                                         
  ?,  ,  0                                                              4.22µr C p q r

 
 

so from the relation  

                                               
   2

p q
p,q j z 0   e ' C p,  q,  r            eµ

A ?
r

irzi r 

   
 

  
 

we have 

                                                        
  ?p,q j z 0  0                                                         4.23A



   

Therefore the axial current J
µ5

  is conserved ∂µJ
µ5

  =0 

But the integral 4.20 is not convergent, so we cannot decide if ∂µJµ5=0 . 

The problem is the usual  problem, which is, we have infinity degrees of freedom in the path integral, or 

infinity degrees of freedom associates with the quantum fluctuation . 

If we recognize that the real world and so the real processes are convergent, so we replace the massless 

fermions propagator: 
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2

  ( )                                                           4.24
p

S p
p




 

With the modified propagator :
 

                                                         
2 2

1
  ( )                                                        4.25

1

p
S p

p p





 

We make β=a2 →0 constant under the quantum fluctuation. 

Using the propagator 4.25 instead of the propagator 4.24 in the integral 4.9, the integral 4.20 becomes 

convergent and equals zero, therefore ∂µJµ5=0 . Which is

 

hidden chiral symmetry.      

That current can be written like 5 5 5

free pairingJ J J     so 

                                                  
5 5 5 0                                       4.26free pairingJ J J  

       
 

with 5 5µ

freeJ     which associates with SU(1) invariance for free fermions. 

And 5

pairingJ   relates to the fermions field dual behavior. For the quarks we relate that current to the flavor 

symmetry (chapter 9, Feynman diagrams), therefore we can generate these currents (4.26) to include 

different flavors qi like 5 5

2  ;  
i

free

j

q
J Q T Q Q

q

    
 

    
 

       

Therefore we can think that the chiral symmetry is satisfied for both gauge invariance and flavor invariance 

together, so it is hidden symmetry, we can think that is related to the vacuum polarization and condensation 

under the quantum fluctuation. 

 

5. Zi  parameters and Quarks Potential  

We search for –a
2
p

2
→0 for timelike and a

2
p

2
→0 for spacelike but with making Z𝑖 =constant so we can 

ignore the terms  
2 2

2 2

a

1+a

k

k
 and 

2 2

2 2

a

1+a

p

p
 in the propagators 

                                           

2 2 2 2
2

2 2 2 2 2 2

a a
( ) 1     ( ) 1   

1+a 1+a

ab
ab ij

ij

pg k p
k and S p

k i k p i p






 

   
       

    
 

The indexes a and b gluons indexes, i and j color indexes and a is critical length. 
 

To have the usual free quarks propagator, we see if we can make -a
2
p

2
→0 with Z𝑖 =constant, we begin with 

the quarks at high energy they become free particles, so it is good to assume Z2=constant, and make 

a
2
p

2
<<1  

we have  Z2 eq1.18 

 

1   1

2 2 2 2 2 2 2 2

1 1 1 2 1 1

1

1

21
1

0 0 2

2 2

1
 1   :   =a                      ( )

( )2 1

x

q
s x

Z dx dx anC R x p x p x m x m x p x pd f
f x x






 



  


     
  

 

 

For easy we ignore mq and mγ so 

1

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

0

1 1
1 (1 )ln 1 1 (a

( )
( ) ) ln 1 a (2a 1)ln(a 1)  :  5.1

2 a 4 (a ) a

s sZ x dx p p p p
p x p p

C R
C R

 

 

    
              

    

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To make Z2 constant we assume for –a
2
p

2
<1, and consider only the real part by using the property ln(x)= 

iπ+ln(x) we have

                                                                                                                            

                              

 2 2 2 2 2 2 2 2 2

2 2 2 2 2

1
( a ) ln 1 a ( 2a 1)ln ( a ) 1                         5.2

( a ) a

s p p p p c
p p

   
            

   
 

c: constant, we have the diagram 

 

According to the figure 5.1 to make Z2=constant we have the conditions:  

The condition –a
2
p

2
<<1 or –a

2
p

2
→0 associates with 𝛼s→0 for the strong interaction, quarks with gluons, 

that is only at high energy, so to satisfy –a
2
p

2
<<1, the length a must drop extremely by increasing the 

energy –p
2
. By that we can think that the term a

2
p

2
 /(1+ a

2
p

2
) is removed from high energy quarks and 

gluons propagators and have the usual free propagation. 

Oppositely in non-strong interaction, like the electrodynamics interaction, the coupling constant 𝛼e 

decreases by decreasing the energy –p
2
, so the conditions Z2=constant and -a

2
p

2
<<1 are only at low 

energies (p<<1/a), here we make the energy a
-1

 equal the energy scale M which appears in 𝛼e(– p
2
/M

2
): 

p
2
/M

2
<–1 therefore always –a

2
p

2
<<1  so we can ignore the terms a

2
p

2
 /(1+ a

2
p

2
) and a

2
k

2
 /(1+ a

2
k

2
) in non-

strong interaction, like the electrodynamics interaction.                                                                                                                                                  

The problem gets stronger in low energy strong interaction where the coupling constant 𝛼s  increases with 

the energy  ̶ p2 decreasing, but in this case, according to the diagram 5.1 (Z2= constant)  ̶a2p2 must increase  

so it is possible to have   ̶ a2p2>1. 

Therefore the terms a2p2 /(1+ a2p2) and a2k2 /(1+ a2k2) take place in the low energy strong interaction, but 

when  ̶ a2p2>1 we have r<a in the space. we can  relate that to the quarks confinement: at low energy quarks 

there is a condition r<a with fixed length a we try to find the conditions for the length a, but we don’t 

forget that is only at low energy quarks. 

let us try to make the quarks masses independent on the energy –p
2
, we have the relations 0 2

1

q m qm Z Z m and 

0 2= Z  if we make 1

2 constantmZ Z  so the mass mq becomes independent on the energy –p
2
. It is easier to 

assume 1

2 2mZ Z   so m0q=2mq=constant.  

The Lagrange parameters Z2 and Zm for the quarks are like the electrons, the relations 1.13 and 1.14, for the 

quarks we have eq1.18 :  

                                           

 

 

1

1

   112
21

2 1 22

0 0

   112

1 22

1 2

0 10 2

1
 1   :   =a                 5.3

8

2
 1                              

( )
(1

  5.4

)

)
)8

(
(1

s

s
m

x

x

g x
Z dx dx

f

g
Z dx d

C R
x x

C R
xf x

x


 

 





 









 

  

 

   

For the quarks R=3 and C(3)=4/3 , for Zm=2

 

Z2 that becomes 
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                               

1  

2 2 2 2 2

1 1 1 2

1

 11

21
1 2

0 20

4
 1 0  :   =a  and           

(1
    

)3 2

x

q
s x

dx dx x p x p x m x m
x x

f
f






 



     
 


 

 

ignoring mq and m𝛾  So  
 

1   11 1

1
1 2

2

2

10 0 0

4 4 1
1 1 l

(1
n 1

3 2)
0

2 3

x

s sx
dx dx x dx

f p xx x

 

   



  

 
     

 
    

and                            
1 2 2

2 2

2

2

2 22 2 2

0

1 1 1 1
(

1
ln 1 )

2( )
l

p p
x dx p p

p x p p p p
n ln ln

 
 

    

     
    
  

    


  
     

                                                                                  

Therefore 

                                

2 2
2 2

2 2 2

2

22

1 1 14
1 ) 0     

1
(

2(
    5.5

3 2 )

s l
p p

p p
p p

n l ln
p p

n
  

 
    

      
        

   


  
  

for βp
2
= a

2
p

2
<<1 spacelike,  we approximate 5.5 to 2 24

1 ln(1/ a ) 0
3 2

s p



   

as we found for Z2= constant that condition a
2
p

2
<<1 is satisfied at high energy αs→0 .  

For  βp
2
= a

2
p

2
>1  spacelike, we approximate 5.5 to 

2 2

4
1 0

3 2 a

1s

p




  

that condition is satisfied at low limited energy, αs is higher so a
2
p

2
  increases and reaches a

2
p

2
>1 when the 

quarks energy drops as we found for Z2= constant. 

Therefore the terms  a
2
p

2
 /(1+ a

2
p

2
) and a

2
k

2
 /(1+ a

2
k

2
) take place only in the low energy strong interaction 

with fixing  Z2 and m. 

With that there is critical point in low limited energy strong interaction, it is -a
2
p

2
=1, when a

2
p

2
<1 the 

quarks are free particles, high energy. 

And when a
2
p

2
>1 the quarks become confinement p

2
>1/ a

2
  :  r<a  low limited energy quarks.  

For

 

a
2
p

2
→0 eq 5.2 becomes, in spacelike,   2 2ln a constant 0s p c      

So                                   2 2 2

2

1
a 0 :    0                                   5.6s

c

QCD se p and decoupling
p

 



      

So we can ignore the terms 
2 2

2 2

a

1+a

k

k
 and 

2 2

2 2

a

1+a

p

p
in the propagators 

                                     
2 2 2 2

2

2 2 2 2 2 2

a a
( ) 1   ( ) 1   

1+a 1+a

ab
ab ij

ij

pg k p
k and S p

k i k p i p






 

   
       

      

But when the energy drops a
2
 and αs increase, we make α0S and a0 the highest values and 0

2

0

2

3a

s
 the string 

tension, we find it in the low energy potential 5.13 , in general we fix
2

2

3a

s    as a string tension. 

With that we must give the modifying terms 
2 2

2 2

a

1+a

k

k
 and 

2 2

2 2

a

1+a

p

p
 a physical meaning, we find the Lagrange 

terms which associate with them, that is in chapter 9, we find there is a field dual behavior, free field 

behavior makes possibility for separating the particles and the composition behavior makes possibility for 

condensation them.    

 
The area a2 is a Lattice area in space-time, a2=aτar and aτ=ar =a 
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we have from the string tension σ: 
1 2

2
a

3a

s   (eq 5.13)  

                                                      
2

2
 6 constant                                           5.7 

6 a a

s sg g
 


   

                                                        

With that the behavior of the length a like the behavior of the coupling constant gs for the Quarks and 

Gluons strong interaction, the coupling constant gs →0 at high energies, gluons quarks decoupling so a→0  

 

5.1 The quarks static potential at low limited energy 

For the strong interaction we modify the quarks and gluons propagators like:   

        

2 2 2 2
2 2 2 2 2 2 2

0 02 2 2 2 2 2

a a
( ) 1   :    ( ) 1  :                            5.8

1+a 1+a

ab
ab ij

ij

pg k p
k k k k and S p p p p

k i k p i p






 

   
           

    
 

The indexes a and b gluons indexes, i and j color indexes and a is critical length. 
 

In the beginning we consider the length a as constant parameter, its unit energy-1 we use the energy unit,  

[r]=energy-1, c=ћ=1. 

And to make the Lagrange parameters Zi and so the quarks masses constants, we need to make β=a
2
=aτ ar 

depend on the energy –p
2
 and have -a

2
p

2
<<1, that was right for high energy, free quarks and r>a→0 which 

is not confinement, it is the quarks and gluons decoupling. 

The problem appears at low energy when -a
2
p

2
>1 so r<a which is the confinement, we find the potential 

and see the case r<a . We make r the distance between the two interacted quarks.  

We define that potential
 

in momentum space ( )V k using M matric element for quark-quark(gluons 

exchanging) interaction,

 

with ω=k0=0(like Born approximation to scattering amplitude in non-relativistic 

quantum mechanics[1]) 

                                                      2 2 1 1( ) ( , ) ( , )                                                 5.9iM iV k J p p J p p


    

with the transferred current ( , ) ( ) ( )J p p u p u p    with spinor states u(p) include the helicity states. 

We find M matrix element using the Feynman diagrams for quark-quark gluons exchanging using color 

representation for one quark like 

                                                       

1
1

( ) 1 ( )
3

1

color spinor spinoru p u p

 
 

  
 
 

 

For distinguishable quarks we have   

                                              
2

2 2 1 1

( )
( ) ( ) ( ) ( ) ( ) ( )             5.10

ab

i a j k b

s i j s k

k
iM u p ig T u p u p ig T u p

i

  


   

Using Gell-Mann matrices, the matrices T
a
=λ

a
 : λ1,…, λ 8 consider them as SU(3) generators, and k=p2'-p2 

=p1-p1' using the modified gluons propagator 5.8 we have 

                                     

2 2
2

2 2 1 12 2 2

a
( ) ( ) ( ) 1 ( ) ( ) ( )       5.11

1+a

ab

i a j k b

s i j k

ijk

g k
iM ig u p T u p u p T u p

k k

 


 
 

   
 

  

to sum over the color indexes i, j with the color representation like above and over gluon index a we write 
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 2 2 2 2

1
1 1

( ) ( ) ( ) ( ) 1   1   1 ( ) 1 ( )
3 3

1

i a j a

i j

ij

u p T u p u p T u p  

 
 

   
 
 

  

And                                        

1
1 1 1

1   1   1 ( ) 1 ( )
33 3

1

a a j

i

ij

T T

 
 

 
 
 

  

Therefore the M matrix element becomes 

                                              

2
2 2

2

2 2 1 12 2 2

1 1 a
( ) ( ) ( ) 1 ( ) ( )   

9 1+a

a j

i s

a ij

k
M T g u p u p u p u p

k k



 
   

     
  

 
                                                                                              

The Gell-Mann matrices with nonzero sum of the elements are 

                                       

1 4 6

0   1   0 0   0   1 0   0   0

1   0   0 ,  0   0   0   0   0   1

0   0   0 1   0   0 0   1   0

and  

     
     

       
     
     

 

So  
2

2
( ) 3 2 12a j

i

a ij

T
 

   
 

    Therefore we have 

                                                 
2 2 2

2 2 1 12 2 2

12 1 a
1 ( ) ( ) ( ) ( )              5.12

9 1+a

sg k
M u p u p u p u p

k k



 
 

   
 

 

So we have the potential ( )V k in momentum space as we defined          

                                 
2 2

2

2 2 1 1 2 2 1 12 2 2

12 1
( ) ( , ) ( , ) ( ) ( ) 1 ( ) ( )

9 1/ a

s
s

g k
iM iV k J p p J p p i g u p u p u p u p

k k

 

  
 

       
 

 

With the transferred currents 
2 2 2 2( , ) ( ) ( )J p p u p u p  

  
and 

1 1 1 1( , ) ( ) ( )J p p u p u p    

So we have                            
2 2

2 2 2

4 1
( ) 1

3 1/ a

sg k
V k

k k

 
   

 
   

Making Fourier transformation to the space XYZ, we have the potential U(x) with k0=0 like  

electric potential[1]. 

  
3 2 3 2 2

2 2 2

3 3 2 2 2

4 1 4
( ) 1  1 exp( )  ;    

(2 ) 3 (2 ) 1/ a 3 4 a

ik x ik xs sd k g d k k g r
U x V k e e r x y z

k k r  

    
             

    
   

For r<a : 

                             

 
2

2

0 1 2

4
1 exp( )  a  a ..                    5.13

3 4 a

sg r
U r u r r

r

 
          

 

with 
2 2

0 1 22 2 3

4 4 2 4
,  a ,  a

3 4 a 3a 3 2 a 3a 3 6a

s s s s sg g
u

  


 
       

 
  : αs=gs

2
/4π  

To fix u0=  ̶ 4𝛼s/3a we write it like 0 2

4 4
a 2 a

3a 3a

s su
 

       with fixing the length a at low energy.   

That potential appears at low limited energy and prevents the quarks from spreading away, r<a so it holds 

the quarks inside the Hadrons. But the starting from the high energies, although the quarks masses are small 

but they are created only at high energies where they are free and by dropping the energy the situation r<a 
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appears, the constant β=a
2
 would run and becomes higher at low energies, so have –a

2
k

2
>1 : r<a which is 

the confinement. 

We use that potential to study the quarks plasma, condensation,… 

The confinement(low energy) means when r→a the two interacted quarks kinetic energy becomes zero 

(ignore the quark mass), therefore the highest kinetic energy can the quark get equals σa which relates to 

the potential U(r)= u0+σr+… for r<a(at low limited energy).  

We can make U(r) the potential for all quarks in r<a, σ→𝛴σ  and consider r as average distance between 

the interacted quarks, so the energy σa becomes the highest kinetic energy of all quarks(consider them as 

free particles in volume b
3
), therefore the quarks (massless) energy 

                                          

2 2 2

1 1 1

1 2 2

2  a  :    1               5.14
a

i i

i i

n n n N
P c

b b b
   

     
             

     
    

With N=1, 2,….  is frozen quarks energy quantization number . With that we have 2a
N


   therefore the 

area a
2
 is quantized: ∆a

2
=1/σ this area associates with energy quanta, we try to find it. using a

N


  we 

have:

  

2   
a

N
N     so the square total energy 𝜀2

 is quantized, using N=𝜎a
2
 we have    

                                        
2

2 2 2 2 2

2
a a        =                                   5.15

a a
therefore

 
        

  

So, in the strong interaction the low energy is carried on the space length a . 

 

6. Quarks energy renormalization  

We find, the quarks are totally free at high energy but at low limited energy there is a potential U(r) takes 

place with the condition r<a  

                              
  0 0

4
          ..  :   a    2a 0                                                  6.1

3a

sU r u r r and u


           

but when r→a : U→ -𝜎a<0 so the total energy becomes negative because of the energy u0 therefore we 

must remove it and have normed states, to do that we make a shift in the distance r between two neighbor 

quarks like:

 

2a r r 

 

setting this in the potential we have: 

       
  0 ( 2a) 2 a ( 2a) 2 a 2 a .. 0                  6.2U r u r r r r                       

With that the length a has smallest non-zero value a0=2a so we can’t have r→0 (at low limited energy) 

If we assumed that the U(0)=0 is the ground states potential of the quarks with the fixed distance between 

them a0=2a therefore we expect that the composited quarks energies proportional to σa0(frozen quarks 

inside the hadrons). So the quarks loss the energy 𝜎a0 . 

To do that we begin with the initial states where r<a with non fixed a and make it r<2a=a0 fixing the length 

a between them. 

The quarks are massless, so for each quark qi the energy Eqi=Pqi : c=1, in volume b
3
 the momentum 

,

2
 ;  1,2,....

i

i
x q i

x

n
p n

b


  so the energy 
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2 2 2

1 1 1

1 2 2

 2 a          牋                          6.3
a

i i

i i

n n n N
P

b b b
   

     
           

     
                                                                                    

                                                                                            
With b

2
=(b1)

2
+(b2)

2
+(b3)

2
 and N=1, 2,….  is the lattice number and energy quantization number. 

The quarks energy a
a

N
    is defined in the situation 0<r<a so we translate to the stationary situation 

r→𝛿r+a0 so we must fix a like 0a a and N⟶N0+δN with this renormalization the quarks square energy: 

                                           

2 0 0 0
0 0 0

0 0 0

a a a + a                                       6.4     
a a a a

N N N N N
N

 
     


                                                                

The term 0
0

0

a
a

N
  is constant and can be written like 2

0( a ) ...  where we imposed 0
0

0

a
a

N
    so the 

square energy becomes 2 20
0 0

0

a +( a ) +
a

N
       

We can write 2 2 2( ) + condensedp m   where the square total quarks momentum  2 0
0

0

( ) a +
a

N
p


 

 

and the 

condensed quarks mass 0acondensedm   

We make the energy 𝜎a0 equals the hadron mass, like the proton 𝜎a0=938Mev  three quarks.   

There is always oscillation δa≠0( quantum fluctuation around a0) inside the volume(b
3
), with that, the 

quarks of different hadrons can interact and have the nuclear attractive potential δu0=-𝜎𝛿a<0  but the high 

pressure controls that, so the potential strength is the same for all nucleuses and independent on the number 

of the nucleons. 

As we will see in Feynman diagrams there are always two condensed quarks (pairing appears as scalar 

particle with mass 1/a0) associate with free quarks, that as we imposed due to the negative energy δu0<0 .    

 

We can determine 𝜎 by determining a0 . Because of the dual quarks behavior, we find the value 1/a0 equals 

the pion mass≈0.135Gev but in our calculations(Quarks Condensation phase, hadrons) it is suitable to 

make 1/a0=120Mev. Here we expect 𝜎∽(𝜎a0)
2
 so if we set  

2

0

5
a

12
 




 
we have    

                                                    
 

2

0 0

0 0 0

1 1 5 5 5 0.938
a a 0.124

a a a 12 12 12
Gev


 

    


      

But for the quarks we make (the string tension) like 2

0
4

qg
 


  

Where 𝜇0 is free quarks chemical potential and gq is quarks degeneracy number. We fix 1/a0=120Mev with 

gq=12, the right values are 135–140 Mev the pions masses, but in our calculations(Quarks Condensation 

phase, hadrons) it is more suitable to use 120Mev(Tc = 111.4mev with gq=12), we can make 135–140 Mev 

but we have to change gq(Confinement phase) so changing Tc to have the same results.  

 

7. Nuclear potential 

we assume that the potential between the nucleons relates to the quarks potential but without confinement 

and the quarks condensation processes is ended when EH+U(r)>0; EH>0  hadrons energy and U(r)<0 

quarks potential, then the hadrons interact by the same U(r) (quarks potential) but that potential U(r) 

becomes usual potential(without confinement). 
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 U 1 exp( )                                         7.1

a

s r
r

r

  
    

 
 

𝛼s and a become constants(no running). 

Because of the dual behavior of the quarks filed which means for any two quarks interaction, the quarks 

composite and give scalar charged particles like the Pions 𝜋−
, 𝜋0

, 𝜋+
 and because of their quantized charges 

−1, 0, +1 we expect the hadrons charges also quantized –Q,–Q+1, …, 0, +1,…, +Q that quantization relates 

to the field dual behavior of the quarks in different hadrons. 

we assumed that the interaction between the nucleons relates to the quarks interaction, so the nucleons 

potential inside the nucleus can be written like: 

                                                            

 U 1 exp( )                                          7.2
anuc

r
r

r

  
    

 
 

the value of U(r) in r=0:                     U 0                                                                  7.3
anuc


   

We need conditions in the case r>a to determine U(0)nuclear . Below we assume the relation: 

                                                     

21
  a *                                                                    7.4

* a
m

m





    

Also we have m*𝛼2
=0.088amu, so   2U 0 * 0.088 82                7.5

anuc
m amu Mev


        

The energy -82Mev is smallest nuclear potential.  

If we use the potential 7.2 in Schrödinger equation for one nucleon we have:  

2 2

( ) 1 exp( )    1  :              7.6
2 2 a

r
U r E with c and m nucleon effective mass

m m r


     

 

   
          

 
 

We solve that equation approximately using the variational method as known in the quantum mechanics  

and make a=1/m*𝛼  For arbitrary 𝛼* we solve the equation 

                                                     

2 *
                                      7.7

2
E

m r


  




    

Its solution like the hydrogen atom solution  

                                                 

2

, , , , 2

1 *
( , , , *) ( , *) ( , )  ( *)

2
n m n m n

m
r R r Y with

n


        



    

We use that in the eq7.6 and minimum the energy E 

                              

2 2
/a /a* *

( *) ( *) ( *) ( *)
2 2

r rE e e
m r r m r r r

     
        

 

  
          

That becomes 

                             

/a*
( *) ( *) ( *) ( *)                        7.8r

n nE e
r r

  
      

    

Where 

                 
 /a 3 /a

, , , ,

* *
( *) ( *) ( , *) ( , ) ( , *) ( , )r r

n m n me d r R r Y e R r Y
r r r r

     
         


   

   
 

   

That becomes 
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  /a

, ,

0

*
( , *) ( , *)r

n ndr R r e R r
r r

  
 


  

 
 

  

R(r) is real so we have 

                                               
 

2/a /a

,

0

* *
( *) ( *) ( , *)r r

ne R r e dr
r r r r

     
    



   
   

 
  

The energy becomes 

                                                
 

2 /a

, ,

0

*
( *) ( *) ( , *) r

n n nE R r e dr
r r

  
   



 
   

 
  

We calculate that for n=1, 2, 3 and minimum the energy: , ( *) 0
*

nE 



 so omitting 𝛼* .  We use the 

normalized radial wave functions for n=1, 2, 3   

                                          

 

 

 

 
 

3/ 2 /a*

1,0

3/ 2 / 2a*

2,0

3/ 2 / 2a*

2,1

2
3/ 2 /3a*

3,0 2

( , *) 2 a*   a* 1 / *   

1
( , *) a* 1

2a*2

1
( , *) a*

a*24

2 2 2
( , *) a* 1

3a*27 27 a*

r

r

r

r

R r e with m

r
R r e

r
R r e

r r
R r e

 







  

 

 

 

 

 
  

 



 
   
 
 

 

We have 

                    

2

, ,

2 2

1,01 : ( 0.25) 0.25

n nE m b

s E m m



 



 



   
 

                    
2 2

2,02 : ( 0.088) 0.088s E m m       

                     

2 2

2,1

2 2

3,0

2 : ( 0.109) 0.109

3 : ( 0.044) 0.044

p E m m

s E m m

 

 

 

 

   

   
 

We fill them like:  n=1, ℓ=0: 1S
2
1S

2
 maximum 4 nucleons, two protons and two neutrons.  

                               n=2, ℓ=0,1: 2S
2
2S

2
2P

6
2P

6
 maximum 16 nucleons, eight protons and eight neutrons.                                                                           

                               n=3, ℓ=0: 3S
2
3S

2
 4 nucleons, two protons and two neutrons.                                                                                                                                                                                                                                               

Therefore the associated binding energy for the nucleus Ebinding becomes 

                                         

2

, , , , , ,

, ,

( ) ( ) 0                 7.9b n n n n n n

n n

E Z N E m Z N b      

To calculate m*𝛼2
, we calculate the right binding energy Δm=Zmp+NmN–m where m is the measured 

nucleus mass and mp free proton mass, mN free neutron mass. 

We fit Ebinding equation 7.9 with Δm=Zmp+NmN– m, but we add constant 𝛥>0 to it 

                                                                    

2

, , ,

,

( ) b n n n

n

E m Z N b     

For that, we have the figure 7.1 

From that figure we have the fitting  
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, , ,

,

( ) 0.088 ( )(  ) 0.067n n n

n

m amu Z N b      

Or 

                                            
, , ,

,

( ) 0.088 ( ) 0.067 0n n n

n

m amu Z N b     

Comparing with  

                                               

2

, , ,

,

( ) b n n n

n

E m Z N b     

We have m*𝛼2
=0.088amu and 𝛥=0.068amu .    

For m*=1amu the constant 𝛼=0.3, the range a=1/m*𝛼≈7∙10
-16

m .   

 

 

We try to solve the eq7.6 using the harmonic oscillation solutions.  

In the spherical coordinates we have 

 

                                                 

2

2 2

, , , ,

1 1 ( 1)
( ) ( ) ( ) ( ) ( )           7.10

2 2

  ( , , ) ( ) ( , )n m n m

d d
r R r U r R r ER r

m r dr dr m r

with r R r Y    

 

 
    

 



 

making R(r)=u(r)/r  we have:

 
                                                

2

2 2

1 1 ( 1)
( ) ( ) ( ) ( )

2 2

d
u r U r u r Eu r

m dr m r 

 
    

 
 

 

we have   

 

                  

2 2

2 2 2 2

1 1 ( 1) 1 1 ( 1)ˆ ( ) 1 exp( )           7.11
2 2 2 a 2

d d r
H U r

m dr m r m dr r m r


   

  
          

 
 

We can write: 

                                                    

2

2

1ˆ  ( )
2

eff

d
H U r

m dr
    

with the effective potential(ℓ≠0)and 2𝛼m*a>>1: 
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2

1 ( 1)
( ) 1 exp( )                                 7.12

a 2
eff

r
U r

r m r




 
     

 
 

For 2𝛼m*a>>1 as expected, that potential has behavior like the diagram: 

 

So for r/a<1 as expected we have harmonic oscillation( is like it)in spherical coordinates: 

                                                                

2 2

0

1
( ) ( ) +....  :   0                                 7.13

2
effU r u m r       

Making r=ax in the potential 7.12 we have 

 

                                                               
  2 2

( 1) 1
( ) 1 e                                         

a 2 a

x

effU x
x m x

 




     

 

We had 𝛼/a=m*𝛼2
=0.088amu and m*a

2
=m*(m*𝛼)

-2
=(m*𝛼2

)
-1

  so 

 

                                     
 2

2

1 ( 1) 1
( ) * 1 e                                 7.14

2

x

effU x m
x x

   
    

 
 

 

Comparing with 7.13 for the orbital (P): ℓ=1 we have u0=0.2m*𝛼2
= 0.0176amu =16Mev and  

ω=0.252m*𝛼2
=20.5Mev.  

For ℓ=2 we have u0=0.08m*𝛼2
=6.55Mev and ω= 0.068m*𝛼2

= 5.62Mev.  

 

If there is balance situation in r=a so that potential can be modified near r=a like: 

 

                                 

2 2 2 2

3 3

1
( ) ( a) +.....  ( a)   :    =                     7.15  

2a 4a 2a 2 2 a
U r r m r

m

   
 


         

So the Schrödinger equation for that potential is harmonic oscillation in spherical coordinates, the solution 

(Abramowitz, Stegun 1964):  

 

                                          

21 - 1/2 2

,

0 0 3

( ) (2 ) :  / 2                                                            7.16

 (2 3 / 2) :        =  
2a 2 a

r

k k k

k

u r N r e L r m

with V k V and
m

   

 
  

 



 

     
 

 

That perturbed interaction energy for one nucleon in the nucleus becomes: 
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 
32 3 2

3
2

2 3 2 2

* 1 1
 (2 3 / 2) :                          7.17

2 2 2 2 2
k

m m
k m

m a m a m

   
   

  




  

 
         

 
 

 

For m*𝛼2
=0.088amu we have 𝜔=58Mev. 

 

8. Quark Magnetic and angular momentum inside the hadrons 

Because of the quarks energy renormalization we saw that the ground state distance a0 between the quarks 

is fixed(at low limited energy), it equivalents to zero quarks energy (frozen quarks inside the hadrons). 

If we use the classical definition of the Magnetic moments 𝜇: 

                                                             

1

2 i

i

q i i

q

e r v  
                                      

8.1 

eqi quark charge, ri and vi position and velocity. 

We considered the quarks massless, so the velocity equals the light velocity c=ℏ=1 so: 

                                                             

1

2 i

i

q c

q

e r   
                                    

8.2 

Where <rc> is the average distance of the quark from the rotation center. 

In the proton there are three quarks with condensation energy σa0=0.938 Gev so the energy σa0/3 is for each 

quark, therefore we expect the distance a0/3 is the average distance for the quark in the baryons, so  

                                                              

0a 1

3
cr


  

                                      

8.3 

Where the quark appears with high mass 𝜇*, that because of the potential. So the quark magnetic moments 

inside the proton or the neutron becomes
 

1

2 2

i i i

i

q q q p

q N

e e e me

e e
 

    
  

 
and 

2
N

p

e

m
  is the nuclear 

magneton. 

We can calculate 𝜇* using 1/a0=120Mev 

                                                            0

3
3 0.12 0.36 ?                         8.4

a
Gev    

 

Experimentally 𝜇* =0.344Gev which is found by fitting the nucleon magnetic moments with the net sum of 

its quarks magnetic moments[3]. 

 

 

We found the quark magnetic moments classically, now we try to find it relatively. 

We start with massless Dirac equation with high energy quarks P𝜇>> eqA𝜇 with A𝜇 is the electromagnetic 

field.  

 

The Idea here is the shifting in the quark momentum p→𝛿p+3/a0 (baryons)which associates with the static 

potential shifting σr→σa0 +… 

 

The massless charged field Dirac equation: 

                                                                         
( ) 0i ieA

      
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Writing
1

2






 
  
 

so we can write: 

                                                  

   1 1

2 2

   0    
0

        0

I
e p eA

I

 
 

  

      
          

      
 so: 

                                        
       1 2 2 10     0e p eA and e p eA                   

 
Define π=P−eA so: 

 

                                              
   2 1 1 2     e and e                

From the second we have: 

                                                
 

2 1
e

 
 

 





 

The first becomes: 

                                              
 

 1 1

( )( )
e

e

   
   

 

 
 


 

So we have: 

                                               

 
 

( )( )
e

e

   
 

 

 
 


 

Using the relation: 

                                               
( )( ) ( )    i and ieB                    

  

So we have: 

                                                       
 

2
( )e i ieB          

              

So: 

                                                       
 

2 2( )e p eA e B        

for high energy quarks P>>eA we have: 

                                                         

2 1/2

1/2

2

(( ) )

(1 )
( )

e p eA e B

so

e B
e p eA

p eA

  


 

    


   



 

                      
                               

2
(1 ....)

2( )

....
2

e B
e p eA

p eA

e B
p eA e

p eA


 


 


     




     



 

Because of the energy renormalization 𝜎r→𝜎a0+𝜎𝛿r we make P→3/a0+δP (three quarks) so 

 

                                               

   0 0

......?            8.6
2 3 / a 2 3 / a2

e B e B e B

p eA

  



  
  


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Setting  * =3/a0 then:          

 

2 ?                      ?      8.7

2 2 2 2

e B e e
B g S B

 

    


     

So the quark magnetic moments 𝜇q; e=eq becomes 
2 2

q q p q p

q N

p

e e m e me

e m e
 

    
    

Which is the same relation we found classically. Using 1/a0=120Mev 

 

                                               
0

3
3 0.12 0.36 ?                         

a
Gev    

 

 

Now we try to find the quarks angular momentum in the Hadrons and the Regge trajectories:                       

We assume the quark rotates in the ratio r, so the angular momentum for one quark Jq is[5] 

                                                                       

2                                       8.8q

p
J pr r

r
   

If we assume Fc is the centripetal, therefore
 

  :  c 1                              8.9c

Pc
F

r
 

                                                        
 

so the angular momentum Jq becomes
 

2

q cJ F r
                                                                

 

Now if we assume that the potential σr is between two quarks so Fc=σ/2 therefore 

                                                                     

2                                                                  
2

qJ r




 

If we put r=a so                                           
 

2a                                                   8.5
2

qJ



                                                               

2

2

1
Using the relation   a   we have                                         8.10

2 2
q

N N N
J N

K



 
   

 

                                                            

1
                                                  8.10

2 2
q

N
J N




 

 

if we renormalize N to be the number of the excited quarks inside the hadrons near the ground states, so 

                           

2
2  from N N


 


   therefore  

21
+ constant 

2 2
qJ J N





                                    

 

We can consider it as Regge trajectories relation[5] 2

0= 'J     with the slope

 

1
'

2



  . 

 

9. Quarks Field dual behavior(free, condensed) ), scalar π particles  

To remove the divergences in the path integral and make the Lagrange parameters Z1, Z2, Zm,… constants, 

we suggested the modified propagators like: 

                                          

2 2
2

2 2 2

a
( ) 1                                                      9.1

1+a

ab
ab g k

k for gluons
k i k








 
   

  
 

                                          

2 2

2 2 2

a
( ) 1                                               9.2

1+a

ij

ij

p p
S p for quarks

p i p





  
  

  
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We saw that we can ignore the terms a
2
p

2
 /(1+ a

2
p

2
) and a

2
k

2
 /(1+ a

2
k

2
) at high energy chapter 5 but when 

the energy drops to limited energy, those terms take place, we can give them a physical meaning for that we 

search for the corresponding terms in the Lagrange. To do that we find the role of those terms in the 

Feynman diagrams, in self energies, quarks gluons vertex,…  

We find that the terms a
2
p

2
 /(1+ a

2
p

2
) and a

2
k

2
 /(1+ a

2
k

2
) can be related to pairing quark-antiquark appears 

as scalar particles with mass 1/a and charges -1, 0, +1 we can interrupt  these particles as pions. 

That appears in the particles−antiparticles composition in Feynman diagrams which mean for the fields, 

there is dual behavior(free, composition), that field dual behavior lets to possibility for separating the 

particles(free) and possibility for composition them, so the dual behavior of the fields is elementary 

behavior.                   

But for the composed particles they must associate with negative potential to survive long. 

Like many fermions condensation with spin zero, which are described by Klein Gordon equation because it 

is impossible(in that case) to describe them by Dirac equation, so the dual behavior is elementary behavior.  

As we saw before the smallest value for a is a0≠0 that is because of the negative potential u0 which lets the 

quarks located in certain regions, so the perturbation would be broken. That occurs for any interaction 

when E+u<0, E>0 (like Higgs field) in that case some of the free particles would be condensed and fill the 

negative potential and the others stay free, so we have dual behavior (free particles and condensed 

particles). we will try to see that using above propagators. 

The quark self-energy is: 

 

                                                     

(iji P
4

4

(
) [ γ

(2 )

kla

ik

d S P
ig T


 


2

4
2

4

( ))
γ ]                             

(
             [γ

(2 )

ab

b

lj

a b

ik lj

ig T
i i

d P
g T T










 


2 2

)
γ ]

( )

ab

kl
g

p






 

So we have: 

                                             

(iji P
4

2

4

(
) [γ

(2 )

a a

ik kj

d P
g T T 




 


2 2

)
γ ]

( )

g

p





 

                                                         

4
2

4

(
( ) [γ

(2 )
ij

d P
g C R 




 


2 2

) 1
γ ]

( )p



 

                          

 :      (ijThe sum i P
4

2

4

(
) 2 ( )

(2 )
ij

d P
g C R 




 


2 2

) 1

( )

                   : γ (

p

where P



  )γ 2( P    )

 

Now we use the gluon modified propagator: 

                                                              

2 2
2

2 2 2

a
( ) 1                                        

1+a

ab
ab g k

k
k i k








 
   

  
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So we have addition term in quark self-energy : 

                                                   

(iji P
4

2

4

(
) 2 ( )

(2 )
ij

d P
g C R 




 

 2 2

2 2 2 2

) 1 a
1

( ) 1+ap

 
 

  
 

So we separate it to two parts: 

1-Quark−gluon part: 

                                                            

(iji P
4

2

4

(
) 2 ( )

(2 )
ij

d P
g C R 




 


2 2

) 1

( )p 
 

2-pairing quarks part: 

(iji P
4

2

4

(
) 2 ( )

(2 )

Pd
g C R




 

 2 2 4
2

2 2 2 2 4

) (1 a
2 ( )

( ) 1+a (2 )

ij Pd
g C R

p





 
  

  



2 2 2

) 1
                             9.3

( ) ( ) 1 / a

ij

p



   
 

It appears in the pairing part there is a scalar field propagator: 

                                                                              
2 2

1 1

1/ ai 
 

which is scalar particle propagator with mass 1/a , to preserve the charges, spin,… this particle must be 

condensed of quark−antiquark so we have addition diagram: 

 

                                                  

(iji P
4

2

4

(
) 2 ( )

(2 )

Pd
g C R


 


2 2 2

4
2

4

) 1

( ) ( ) 1 / a

(
             2( ) ( )

(2 )

ij

ij

s

p

S Pd
ig C R





   


 


2 2

)
                     9.4

( ) 1 / a

i

i



 

 

So we can think that particle is the pion qq
 
so we must add a new interaction term to the quarks Lagrange: 

                                                    
      2 ( )                                                9.5sL ig QQ where g g C R     

To satisfy the flavor symmetry, the scalar field i jq q  
 
becomes charged. For two flavors qi , qj  we 

write the quarks field like Q=(qi  qj)
T
 so 

                                                      
0

2 2     , ,                                   9.6a a a a

qL ig QT Q where T          

Which satisfies the quarks flavor invariance, so we can think that the field dual behavior associates with the 

flavor symmetry. 

In general, when a→0 these pairing particles are removed, for non-strong interaction that is removed easily 

but for the interactions E+u<0, E>0 (like the massless charged particles) this pairing wouldn’t be removed, 

that because of the energy renormalization where the negative energy is removed and have right states with 

positive energy and zero energy vacuum. In this case E+u<0  the value 1/a=m would be fixed and we have 

pairing particles( become condensed) associated with the free particles so we have dual behavior: particles 

and condensed particles in the case E+u<0 .  
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For the quarks a→a0≠0 smallest value of a with it we have right states, so m=1/a0 is the pion mass we set 

1/a0 =0.12Gev≈pion mass. 

Same thing we can find in quark−quark−gluon vertex: 

 

so we have  addition diagram: 

 

There is some think different with three− photon vertex with single Weyl field PL𝜓: 

 

In that diagram when we use the propagators for electrons and photons instead of quarks and gluons then 

generate the result: 

                                           

2 2
2

2 2 2

a
( ) 1                                                  9.7

1+a

g k
k

k i k






 
   

  
 

                                           

2 2

2 2 2

a
( ) 1                                              9.8

1+a

p p
S p

p i p

  
  

  
 

With these propagators the axial current is conserved as we saw before so we expect the chiral symmetry is 

satisfied: 

                                            
5 5 5   ,   0                                                 9.9档J J

      

The vertex of the three−photon and single Weyl field, from the diagram we have: 

                                             

    
   

3 4
3

2 24 2

1
,  ,    1   +......                     

(2 )

µ
µ d N

iV p q r ig
i p q






 
   

   
  

 with 

                                              
      [ ]                                   档

LN Tr p q P           

In the integral that becomes: 
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      51

[ ]                                   
2

档N Tr p q             

So the vertex becomes: 

                                        

   
     

   

3 54
3

2 24 2

[ ] 1 1
,  ,      +......                     

2 (2 )

µ

µ
Tr p qd

iV p q r ig
i p q

 


   



     
  

   
  

using the propagators 9.1 and 9.2 we have 0档 ?p V q V r V  

     so we have 5 5 50  :   J J  

      as 

we found before. 

Rewritten the vertex like: 

                                             

   
     

   

3 54
3

2 24 2

[ ] 1 1
,  ,      +......                     

2 (2 )

µ

µ
Tr q pd

iV p q r ig
i p q

 


   



     
  

   


dropping the trace, we have:

 

                                         

 
     

   

3 54

2 24 2

 1 1
,  ,      +......                     

2 (2 )

µ

µ
q ig p igd

iV p q r ig
i q p

 


   



     
  

   


 
Replacing the propagator   

 
2

 
( )

q
S q

q

 
 



    

with     
 

 

 

22

2 22

 a
1

a 1

q q

q q

   
 
    

 

So we have new term in the vertex V𝜇𝜈𝜌 and then new diagram: 

                          

   
        

     

22 53 4
3

4 2 2 22 2

a  1 1
,  ,   +                              9.10   

2 (2 ) a 1

µ

µ
q q pd

iV p q r ig
i q p q

 


   



       
  

      
 



 

 it becomes: 

                          

   
      

   

 
     

   

2 53 4
3

4 2 22 2

3 54
3

4
2 2 2

2

a  1 1
,  ,     +....       

2 (2 ) a 1

 1 1
                            +...... 

12 (2 )

a

µ

µ

µ

q pd
iV p q r ig

i q p

q pd
ig

i
q p

 



 

   



   



      
  

     
 

    
  

      
 





 

we can write that like:

 

                          

   
     

   

3 54
3

4
2 2 2

2

 1 1
,  ,     +...                                   9.11

12 (2 )

a

µ

µ
q pd

iV p q r ig
i

q p

 


   



     
  

      
 



 

Where we used the property      2q q q
         

So we have:        

                            
     

   

3 54

4
2 2 2

2

 1 1
,  ,     +...                                 9.12

12 (2 )

a

µ

µ
ig q p igd

iV p q r ig
i

q p

 


   



     
  

      
 


 

Now we can consider the two vertexes ig𝛾𝜌 and ig𝛾𝜈 come from the product with fermion–photon–vertex, 

so we omit them and have: 
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   
     

   

3 54

4
2 2 2

2

 1 1
,  ,     +.......       9.13

12 (2 )

a

µ

µ
q pd

iV p q r ig
i

q p

 



     
  

      
 


 

therefore we have: 

                                  

 
     

   

5
4

4
2 2 2

2

1 1 1
 

1
,  ,     +.......        9.14

12 (2 )

a

µ

µ

i q i p ig
d i i iiV p q r

q p

 



   


 

   
 


 

That can be written like: 

                                   
 

 
 

 4
5

24 2
2

2

1 1
,  ,      +....... 

12 (2 )

a

档
pd

iV p q r i q i ig
ii pi q

 


  
 

    
 


 

That can be represented in the diagram: 

 

So we must add new interaction terms to the Lagrange: 

                                                 
  5                                                 9.15i and 

      

Where the field φ is scalar field with mass 1/a and propagator: 

                                              

2

2 2

1 1
( )                                                        9.16

1/ a
p

i p
 


 

That turned to be for the quarks where the length a takes the constant value a0 that particle is the Pion with 

the mass 1/a0≈mpion, we found before 1/a0=0.12Gev. 

Because the strong interaction never distinguish between the flavors so the new interaction terms become          

  5

2 2Q    Qq Aig QT and g QT    

    
 
then we have:  

                                     

  5

0

 +   

 , , ,     ,                         9.17

q q i j A i j

i j

L ig q q g q q

where pions with suitable flavors q q



     

    

  


 

qi quark with flavor i. 

Using the propagators 9.1 and 9.2 we had 0档 ?p V q V r V  

     (chapter 4), so we can have after some 

treatments 5( ) 0J x

  . 

That current can be written like  5 5 5

free pairingJ J J     so   5 5 5 0                       9.18free pairingJ J J  

         

For flavor symmetry we generate the current to 5 5

2 QfreeJ Q T     . 
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Therefore for gauge invariance, the chiral symmetry isn't satisfied 5 0freeJ  

  but 5 5 0free pairingJ J   

      where

5

pairingJ   associates with the pairing particles-antiparticles behavior i jq q , so that behavior associates with the 

flavor symmetry. Therefore the gauge invariance and flavor invariance together satisfy the chiral symmetry.  

The particles 0, ,    relate to the pairing behavior(particle-antiparticle), their interaction terms 

   5  i j i ji q q and q q

     with them the flavor chiral symmetry is satisfied(flavor invariance).       

But we expect, the fields dual behavior takes place in negative potential. If there isn’t negative potential the 

paired particles would not survive(never condense). 

For the quarks, the case 0<r<a associates with negative potential u and E+u<0. Because the behavior of 

the strong interaction coupling constant at low energy (𝛼s high) we expect negative potential at low energy 

E+u<0 (E>0, u<0), so the quarks condense. 

Because of the dual behavior of the quarks field which means for any two quarks interaction, the quarks 

composite and give scalar charged particles like the Pions 𝜋−
, 𝜋0

, 𝜋+
 and because of  their quantized charges 

−1, 0, +1 we expect the hadrons charges also quantized –Q, –Q+1 ,…, 0, +1,…, +Q  that quantization 

relates to the dual behavior of the quarks field in different hadrons, pairing quarks of different hadrons, so 

these condensed quarks; Pions, Kaons,… are shared between the hadrons, so put them together with the 

hadrons in groups, like the Pions −1, 0, +1 which can be inserted in SU(2) generators which can represent 

the proton−neutron pairing.                       

So the protons and neutrons Lagrange contains the terms 2Nig NT N 

  and   5

2Ag NT N  

  
 
with the 

nucleon field
p

N
n

 
  
 

. 

 

10. The Quarks Plasma 

We tried before to explain how the quarks are confinement at low limited energy we assumed some Ideas 

and the result was the condition r<a with that condition we have free quarks at high energies for the strong 

interaction where the length a is removed from the propagators, but it appears to be fixed at low limited 

energy, in the last section we showed that there is dual behavior for the quarks field, but when the length a 

is fixed, the result is scalar particles (pions) with mass 1/a0 at low limited energy and the result is the chiral 

symmetry separately breaking(last section).  

We tried to give the length a physical meaning (quarks field dual behavior) also it appears in the quark-

quark strong interaction (gluons exchanging) potential U(r)r<a so it indicates to interaction strength. That is 

because, the behavior of the length a is like the behavior of the coupling constant αs .  

That potential appears at low energy and absorbs the quarks energy and freezes them in the Hadrons, 

fermions hadrons and scalar hadrons. 

We try here to use the statistical Thermodynamics to show how the free quarks disappear at low energies( 

low Temperatures) where the length a becomes fixed, so the chiral symmetry breaking and the quarks 

condensation. 

One of the results is that the condensation phase eq10.8 not necessary associates with chiral symmetry 

breaking, that is, the chiral symmetry breaking appears at the end of the cooling process when the 

expanding and cooling are ended and the length a becomes fixed, therefore the chiral symmetry breaking 

occurs and the pions become massive m= 1/a0. 

We start with the massless quarks, their energy in volume V: 
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 

 

3

3 2

2( )

0

/

0

1
( )   :  ( )                          10.1

21

4
 ( ) ( )    ( ) 1

3

qr

a

r as

V
E c d r d g g g

e

where r u r with u r e
r

  
    




 







 


    

 
 

Here we inserted the quark-quark strong interaction potential U(r) in the chemical potential (for decreasing 

the quarks energies, as we think, the quarks potential absorbs the quarks energies and make them condense, 

phase changing) and because r<a we integrate over the volume a
3
: r is the distance between the interacted 

quarks. We can absorb 4αs/3→ αs .                                                                                                                    

The constant c is determined by the comparing with free quarks high energy where the potential U(r) →0 

and αs→0(decoupling) at high energies, so the length a→0 that is as we said before, the behavior of the 

length a is like the behavior of the coupling constant gs  therefore the quarks become free at high energies. 

By integrating over the energy(Maple program) we have: 
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Where u0(r)=β𝜇(r)=β(𝜇0+u(r)) . 

by integrating over r (the distance between the interacted quarks) we have: 
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gq is the quarks degeneracy number and x=β𝜇0 .  

 

Rewriting αs /a= 2aαs /2a
2
= σa/2 . For more easy we write αs /aµ0 = σa/2µ0 = y in the energy relation. So 

rewriting the energy E as 
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To find the constant c we compare with quarks high energy where they are free massless particles: 

  

                                                                        

2
47

240
high qE g V T


  

When T is high, x=(μ0 /T)→0  and y→0 therefore βµ(x)→0 so we expand 
( )k xe 

 near βµ(x)=0 , we have: 
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The energy becomes: 
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Now we see the effects of the length a on the energy, at high energy, by fixing x= µ0/T and varying 

y=σa/2µ0 <1: 
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we expanded 
( )k xe 

 near βµ(x)=0  so we have the following diagram: 

 

We fixed the tension σ as we assumed before. 

It appears from the diagram that the high energy quarks lose an energy when the length a increases 

although the temperature is fixed. That means, when the length a increases the number of the excited 

quarks decreases. 

That is because of the attractive linear potential  σr+…  between the quarks, that potential absorbs an 

energy, so the quarks are cooled faster by the expanding. 

The fast cooling comes from the increasing the length a as we said before, the behavior of length a is like 

the behavior of the coupling constant αs so when the energy dropped to lowest energy the length a 

increased extremely and that is fast cooling or extremely cooling, this is, when the particles try to spread 

away, so the length a increases and the result is induced cooling.  

where the length a is the distances between the interacted quarks.  

Or, when the quarks expand (increasing the distance a) they fast lose energy (extremely decreasing the 

Temperature T ). 

To determine the end, we search for a balance situation, such zero pressure, confinement condition,...  

First we find the high energy pressure including the effects of the potential σa .  

Starting from the general pressure relation: 

                                             

1
   ln lnp F where F T Z Z

V 


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We use here the relation: 
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So the pressure becomes 
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so for high energy 0 0x   we have the pressure:  
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Now is the key point, we want to include the potential effect on the pressure so we replace the volume V 

with the volume a
3
 ∼y

3
 so 
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Which is represented in the diagram(without conditions on y or on the length a) 

 

It is clear(without conditions on y) the pressure decreases, with increasing the length a (decreasing the 

quarks energy –p
2
)  until it becomes zero, then negative. 

That becomes clear at low energy where there are conditions on y and so on the length a. 

Now the low energy quarks, T→0 so βµ(x)→∞  so 
( )k xe 

→0. The energy becomes: 
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Making x=T/µ0    
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Now the key point, we want to show the effect of the potential σa on the energy so we see the behavior of 

the energy in the volume a
3
 with respect to y=σa/μ0 the diagram is:   
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That is extremely behavior after y=0.6 where the energy (E/V)a
3
 decreases when the volume a

3
 increases, 

the end in y=1 where the free quarks disappear when y>1 

Now we can distinguish between the confinement and the chiral symmetry breaking, when y>0.6 there is 

confinement: extremely cooling, negative pressure.                                                             

but when reach y=1 there is chiral symmetry breaking where the length a becomes fixed, and from the 

quarks  field dual behavior  there are scalar charged particles with mass 1/a appear when the length a is 

fixed to have certain non-zero value a0 . 

Here the evidence for fixing the length a is the lowest limited quarks energy, that is as we said before, the 

behavior of the length a is like the behavior of the coupling constant αs so when the quarks energy dropped 

(extremely cooling) the length a increases extremely to reach the highest value when y=1 which equivalents 

to smallest energy E=0 (the cooling end).  

Another evidence for fixing the length a (chiral symmetry breaking) is the low energy pressure: 
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To include the potential effect we study the pressure using the volume a
3∼y

3
 therefore 
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so the low energy pressure becomes like the following diagram: 
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it is clear from that diagram when y>0.6 the quarks pressure becomes negative. 

we expect the condensed quarks phase (confinement quarks) has positive pressure, so the preferred phase is 

the condensed quarks phase. 

So when y>0.6 the quarks condense until y=1: a⟶a0≈1/(120Mev)* the quarks disappear, the scalar 

charged particles(Pions) appear instead of them, that is because of the quarks dual behavior(free-condensed 

quarks), but at low limited energy the condensed phase has a big chance instead the free Phase. 

* the right values are 135–140 Mev the pions masses, but in our calculations(Quarks Condensation phase, 

hadrons) it is more suitable to use 120Mev(gq=12), we can make 135–140 Mev but we have to change 

gq(Confinement phase) so changing Tc to have same results(Quarks Condensation phase, hadrons).  

 

10.1 Confinement phase                                                                                                                     

The confinement occurs(for any Temperature) when the attractive potential is higher than the quarks 

energy, so the quarks can't spread freely, they located in the space in certain distances between them in the . 

They still have free particles behavior due to the fluctuations, but because of the fast cooling (extremely 

increasing the length a) they lose their energy and the Hadrons appear instead. Where the highest distance 

between the quarks is the length a0 which is determined from the Hadrons.  

for the protons and neutrons we found the energy σa0=0.938Gev and we fixed 1/a0=0.12 Gev ≈ mpion (pion 

mass). We expect the length a=a0 is the same for all condensed quarks(Hadrons) so we think that it relates 

to the pion mass.     

in general, we find the confinement phase condition: 
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And that condition becomes at low Temperature: 
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So we have 
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 it becomes 
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so the critical xcyc curve which separates the two phases:
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Rewriting that like: 
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  for quarks and anti-quarks the degeneracy gq= 2chargex2spinx3color=12 so 
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With the curve 
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For a point with y<1 in that curve there will be fast cooling to reach y=1: a⟶a0≈1/(120Mev), so for gq=12 
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2 12q q
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
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The length a0 must be the same for all hadrons, it must be related to the pions mass 1/a0≈pion mass, if we 

make 1/a0=130mev, we have  
0

1 8 8
130 272.27

a 12 12
mev

 
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 from xc
2
,yc  relation, for yc=1 we find xc=0.41 so from x=T/μ0 we have Tc= μ0xc= 272.27x0.41 =111.4mev 

where the chiral symmetry breaking.   

At that Temperature all the quarks are cooled and condensed in massive Hadrons.      

 

10.2 Quarks Condensation phase, hadrons  

We found that the quarks below the curve xc
2
yc become confinement where the quarks energy becomes 

smaller than the interaction potential and the end is at yc=1, xc<0.41 where scalar charged particles with 

mass 1/a0 appear, we think those particles are the pions as we saw in the last section(quarks field dual 

behavior) they appear in the quarks diagrams, these diagrams prove that the pions consist of quark and 

antiquark.  

From quarks field dual behavior, the quarks in different Hadrons can interact and form the pions and the 

result is the interaction between the hadrons by pions exchanging. And because the pions are charged -1, 0, 

+1 so the hadrons charges also must be quantized by -1, 0, 1 So the pions are inserted in SU(2) generators 

for hadrons pairing. 

Here we assume that the confined quarks condense and give spin1/2 hadrons and pions, that occurs at 

xc<0.41 , yc =1 point when the free quarks energy gets zero, so at that point all the quarks become 

condensed in hadrons with spin1/2 and 0 . 

Because of the fast cooling, the quantum structure at low energy becomes same structure of the high 

energy, same spins, charges ratios, interactions,…. 

We assume, the condensation starts at high Temperature xc>>0.41  with yc→0 (condensation phase figure 

10.5) the results are massless high energy Hadrons.  

Then the cooling yc→1, xc→0.41 which is extremely cooling, at that point yc=1 the pions become massive 

with m=1/a0 (as we saw from the quarks dual behavior). 

Due to the quarks field dual behavior, all hadrons (bosons or fermions) are interact by the pions exchanging 

(pairing and condensation quarks of different hadrons). Therefore when the pions become massive at yc=1 

all other Hadrons also become massive. 

The condensation condition is 3a a 0
E

V
 so the critical energy density is 

3

a

a


 below it the quarks 

condense and then extremely cooled to yc=1.  So we expect that energy density is transferred to the 

produced hadrons and photons like 
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Or writing the densities ,   
f phb

f b ph

E EE
and

V V V
       for spin 1/2 hadrons(fermions), spin 0 hadrons 

(bosons) and photons densities. So 
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Now the key point, because the cooling is extremely cooling, like to take all the particles (quarks) from 

high Temperature and put them at low Temperature, so the same structure at high energy will be at low 

energies, like the charges distribution, particles densities ratios, energy distribution, spins… 

The high Temperature fermions(condensed quarks) density (massless yc≈0 and ignoring the chemical 

potential): 
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And the high Temperature bosons(condensed quarks) density(massless yc≈0): 
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Therefore the ratio nf /nb at high energy is: 
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b b

n g
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We assume the density nb is the density of the pions.                                                          

So because of the dual behavior of the quarks field, the pion will interact with the spin 1/2 hadrons, the spin 

and charges are conserved, so the ratio nf /nb remains the same when the hadrons(condensed quarks) are 

extremely cooled to yc=1. 

At xc<0.41, yc=1 the pions(scalar hadrons) become massive particles with m=1/a0 ≈120mev (we need that 

value for our calculations below, the right value is 135 Mev), as we found before, so their energy will 

appear in their masses  so we can write 
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Where we assumed the bosons hadrons here are the pions  

We found the critical point xc=0.41 with yc=1 so the temperature Tc=111.4mev if we consider the bosons 

(here pions) with three charges -1, 0, 1 so gb=3 therefore the density nb becomes(near Tc =111.4mev) 
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When yc=1 and Tc=111.4mev the pions become massive m=1/a0 so their energy density becomes 
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b b b b c cn m g T Mev T T Mev




 
        

at that point the fermions density becomes 

                                 

3

2

533 3 6 3 6 1.2
 3 (111.4)

4 4 3 4 3
7.5638 10

f f

f b

b b

n g
from n n Mev

n g 
           

The photons energy density 

                                                   

2
4

30

ph

ph ph

E
g T

V


    

At yc=1, Tc=111.4mev it equals  
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2
4 42 (111.4)

30
ph Mev


    

Now, below yc=1, Tc=111.4mev the critical quarks energy density 𝜀c is totally transferred to f b ph     

so 

                                                
3

a

a
c f b ph


        

 Therefore                   
2

3 4

3 2

a 1.2
3 (111.4) 120 2 (111.4)

a 30
f

 



       

We can write 
2

3 4

a a

a a

 
  

We had the relation    2 8
a

6


   so   

2
4 4

4

a 8
(120)

a 6
mev

 


                                                              

 

Therefore we have     
2

4 4 3 4

2

8 1.2
(120) 3 (111.4) 120 2 (111.4)

6 30
fmev

 



     

                                            

 

So                               
2

4 3 4

2

8 48 1.2
(120) 3 (111.4) 120 2 (111.4 7.0675 10)

6 30
f Mev

 



        

                                            

 

We can find the energy average for these fermions: 

                                                  

48

35

7.0675 10

7.563
93

10
4

8

f

f

f

Mev
E Mev

n Mev

 



   

Which is very closed to proton and neutron masses, so we can think that these fermions are the baryons p
 –
, 

p
+
, n where that energy appeared in the masses because of the suddenly fast cooling, extremely quarks 

cooling, the total quarks momentum is zero, therefore the condensed quarks have small kinetic energy. 

Also because the quarks confinement occurs only when the closed quarks try to spread away, so the 

confinement quarks have opposite momentums. Therefore the produced Hadrons are with small kinetic 

energies. So the energy 934 Mev appears in the masses. 

we try to calculate the ratio Nq/Nh using condensation phase relation like 

                                                      
0q q h hN N    

Nq  the total quarks number(quarks and anti-quarks) which totally condense in the hadrons, Nh the total 

hadrons (fermions and bosons), μq the quarks chemical potential and μh the hadrons chemical potential. 

We assumed before the relation for the quarks chemical potential 

                                                
 /

0 ( ) ( )    ( ) 1 r asr u r with u r e
r


        

                                             /  ( ) ( ) 1 r as
qso r u r e

r


      

The effect of that changing  appeared in y=αs/2aμ0 =σa/2μ0 in the results. 

now for the hadrons we have 

                                                 ( )
q q

h q

h h

N N
u r

N N
      
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So we have for the hadrons the same relations for the quarks, that if we consider the hadrons are massless, 

that is right for xc>0.41 and yc<1( in the condensation phase) so we have the chemical potential for the 

hadrons  

                                                   
 /

0 ( ) ( )    ( ) 1 r as
h hr u r with u r e

r


        

therefore we replace y→‒(Nqμ0q / Nhμ0h)y in the quarks energy to get the hadrons energy. So the energy for 

the hadrons 

2
2

0 0 04 4 2 2 4

, 0

0 0 0

0

1 7
3.78 0.82 1.16 0.41 0.08 0.23

1.9 240

                                                                           0.25

q q q q q q

H low h h

h h h h h h

q

N N N
E g Vx x y y x y

N N N

N

  


  



 
    
         
     



2 3 4

0 02 3 4

0 0 0

0.12 0.02           10.9

   

q q q q q

h h h h h h

N N
y y y

N N N

 

  

     
      
      

 

When xc→0.41, yc→1 we have  

2
4 2

0 04

, 0

0 0

0 0

0

(0.41) (0.41)
3.78 0.82 1.16 0.41

0.08 0.08

0.23 0.25
                                                                       1

0.08 0.08

q q q q

H low h

h h h h

q q q q

h h h

N N
E

N N

N N

N N

 


 

 



   
        

    

  

2 3 4

0 0

0 0 0

0.12 0.02

0.08 0.08

q q q q

h h h h h

N N

N N

 

  

      
       

       

 

Assuming μ0h=μ0q so 

                                          

2

, 0

4

4

3

4.02 5.31 3.98 1.5 0.25
q q q q

H low q

h h h h

N N N N
E

N N N N


      
       
      





   

So we expect the hadrons chemical potential 

                                        

4

4

4

2 3

0 4.02 5.31 3.98 1.5 0.25
q q q q

h q

h h h h

N N N N

N N N N
 

      
       
     

 






 

We can calculate μh from the Fermi energy Ef  from the average fermions energy, we had before 

                                                                 

934
f

f

f

E Mev
n


  

So for massless hadrons(fermions, T>Tc), the relation between the average fermions energy and the Fermi 

energy 

                                                           

3 4 4
934

4 3 3
fermion fermi h fermi fermionE E E E Mev       

So for μ0q=272.27mev 

                                

 
2 34

4

4

4.02 5.31 3.98 1.5 0.25
4

934 272.27
3

q q q q

h h h h

N N N N

N N N N

                          





   

Not all quarks condense in fermions hadrons Nq→f  part of them condense in the bosons hadrons Nq→b  and 

part annihilate to photons Nq→ph  therefore we write 

                                                
q q f q b q phN N N N      
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So                                           q q f q b q ph

h h

N N N N

N N

   
  

Because μbosons<< μfermions so from   0                           10.10q q h hN N  
                                                        

 

We get                      0q q hf hf hb hb hph hphN N N N      
                                                       

 

It becomes                 0     0q q hf hf q q f fN N or N N        

                                           
 

We take only Nf in the denominator  q f q b q ph

h

N N N

N

   
  

Therefore it becomes        
q f q b q ph

f

N N N

N

   
 

We had the relation         
3

4

f f

b b

n g

n g
  

                                                           

 

So for bosons(pions here, two quarks) 
3 6 3

4 3 2

f

b

N

N
    and Nq→b=2Nb and for the photons 

3 6 9

4 2 4

f

ph

N

N
    and 

Nq→b=2Nb  therefore we have 

                                           

22q f q b q ph q f q b q ph q f phb

f f f f f f f

N N N N N N N NN

N N N N N N N

       
       

So                                     
2 4 20

2 2
3 9 9

q f q b q ph q f q f

f f f

N N N N N

N N N

     
        

Therefore we have          
20

9

q q f

h f

N N

N N


   

                                                       

 

In the equation               
2 34

4

4

4.02 5.31 3.98 1.5 0.25
4

934 272.27
3

q q q q

h h h h

N N N N

N N N N

                          





 

                                           

 

its solution is Nq/Nh=4.86 so 

                                            

20
4.86 2.64

9

q q f q f

h f f

N N N

N N N

 
    

 

Because the fermions here must consist of odd number of quarks, the value 2.64 in Nq→f/Nf =2.64 is closed 

to be three quarks condensation( baryons Nq→f/Nf =3). 

10.3 The nuclear compression                                                                                                             
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we saw that the cooled hadrons have high density, so there is high pressure, that pressure makes influence 

𝛿a so 𝛿y near y=1 or it makes y=1+𝛿y, so the cooled quarks inside the hadrons fluctuate and give pions, 

that depends on the energy, if the energy is high then they give heavy hadrons, that processes lets the 

interacted hadrons lose an kinetic energy and form the pions. These pions rise the hadrons chemical 

potential .                                                                                                 

Because the number of quarks increases although the hadrons are fixed, therefore the hadrons energy 

decreases and they can’t spread away. We can see how the chemical potential of the interacted hadrons 

changes under the fluctuation 𝛿y∽𝛿a( due to the quarks interaction) from the condensation relation   

Nq𝛿μq+ Nh𝛿μh =0  we have  𝛿μh = ‒Nq𝛿μq/Nh 

with the quarks chemical potential                                                                                             

                                                  
 4 44 2 3

0 4.02 5.31 3.98 1.  :  5 111.. 40 25q q cy y y y T T Mev      
    

for the fluctuation 𝛿y we have    

                                                   
q q

h

h

N
y

N y


 


 

                                                                                                                                                                              

from quarks chemical potential we find 0
q

y




 so 0

q

y





  therefore we have 

 0  0
q q

h

h

N
y when y

N y


  

 
  

 
 which is the quarks compressing, when the hadrons collide together 

that lets to 𝛿y<0 so the hadrons loss energy and pions are created.                                                                                                                                                        

And when they try to extend(spread away) 𝛿y>0 so 𝛿μh>0 they gain an energy, but because of the losing 

energy for the pions creating, there will be a negative potential, so that potential holds the hadrons in the 

nucleus at low energies.  

For the interacted hadrons pressure we have the phase changing relation 0q q h hV P V P   : V  volume, we 

have 

                                                    

q q q

h q

h h

V V P
P P y

V V y
  


   


                                                                                              

because 𝜕Pq/𝜕y<0 → ‒𝜕Pq/𝜕y>0  therefore  0  0
q q

h

h

V P
P y when y

V y
  


   


 

when the hadrons collide together 𝛿y<0 so their pressure decreases although their density increases and to 

satisfy the Pauli principle that lets to increasing their pressure not decreasing, so to solve that problem there 

must be negative potential. 
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1

   1
q q

h

h

V P
y P at y

V y
 


 

   
 

 

 So the hadrons chemical potential becomes 

                                                      

1

  :  1
q q q q

h h

h h

N V P
P y

N y V y


 


   

     
   

   

We have                                        

1

  :  1
q h q q

h h

h q

N V P
P y

N V y y


 


   

   
   

 

                                                       

 

And                           4

0.41, 1 0.41, 

8

1

    ,   44.01  10
q q

x y x y

P
Mev Mev

y y



   

 
  

 
  

So we have                8 81( ) 44.01 44.010 10
q h q

h h h

h q h

N V n
Mev P P

N V n
       

by that we can find constant nuclear potential. Like to write 

                                                               0( )h Mev V      

V0 is the potential for each hadron, therefore 8

0 144.01 0
q

h

h

n
V P

n
   ; V0 with unit Mev and 𝛿Ph with Mev

4
 . 

So when the hadron(fermions, like protons or neutrons) collide or join, their density increases 𝛿𝜇h>0 so 

their pressure rises 𝛿Ph>0, therefore  there is a negative potential V0 . At low energies that potential 

prevents them from spreading away. 

 

11. The Big Bang  

We assume that the universe was created from the vacuum with zero energy E=0 in each point in the space 

and dropped in each point to constant negative energy -2σa=u0<0 (transference to more stable deeper 

vacuum) with the vacuum potential: 

                                          
  0          U    :   a                                                   11.0r u r r  

 

This potential is similar to the quarks potential, so the universe is confined in the space, for right vacuum 

U(r)=0 . 

We assumed before, the total quarks low energy is

 

a 0
a

N
E   but with the renormalization, removing 

the quarks negative interaction potential by the shifting a→a0+δa where a0 is fixed (eqs 6.2, 6.3) the quarks 

energy becomes contained in the masses(m=𝜎a0 universal cooling and condensation), so the most universal 

energy is contained in the masses, that is evidence to believe that the universal positive energy is associates 

with universal negative energy. 

Now the key point, as for the quarks, we write u0 in 11.0 like: 

                                                                 
0 2

a                           
a a

u
 

     

𝛼 is like αs we fix the value α/a
2
 and relate it to a string tension like the quarks  
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0 02

2 a
constant a 0 : a 0                            

a 2
u

 
           

the limit a→0 must associate with r→0 where there were just points in the space and the time stop. 

The starting is the zero point energy u0=0 : a=0 so the universe was created from the vacuum E=0 and a=0  

then a increased to take fixed nonzero value a0 which is the end of the massless particles phase as for the 

quarks plasma. 

We have positive point energy Epoint: Ep+u0=U(r)=0 so Ep=−u0>0 in each point in the space. So the 

explosion occurred in each point in the space with constant energy Ep but we have infinity energy density 

3
: 0

p

p

p

E
r

r
 , and due to the large pressure, the expand occurred, so the energy density becomes finite. 

Because of rp≈0 we have σrp<<Ep , where σrp is the energy of the created fields, the tension σ is constant. 

So there is surplus energy Ep−σrp :  rp started from rp=0 and increased to reach rp =a with Ep−σa=0 is the 

end of that process. 

We assume that the negative point energy is hidden, it is not associated with any process, but maybe it 

induces the hadrons condensation, that can be seen if there is losing pressure associates with hadrons 

nuclear condensation as we will see. 

To calculate the time for the spontaneous explosion and expand from the rp=0 to rp=a0=1/120(mev
-1

) the 

end of the massless particles phase, we assume that the expand occurs with the light speed c 

                                                      

1 13

0

13

1
a 0.008 0.008 1.973 10

120

                                   0.016 10

Mev m

m

 



    

 

 

The time for the explosion and expanding to a0: 

                                                                

13
240

8

a 0.016 10
5.3 10 sec

3 10
T

c




   


 

 

11.1 The universal explosion and expanding 

Now we try to explain how the universe exploded and expanded, we start from our assumptions we made 

before and find the Hubble parameter and try to find the dark energy and matter. 

we found that the quarks expand to the length a0≈(120Mev)
-1

 then the hadrons appear instead. 

we assume that the universe is created in every point in two dimensions space XY then the explosion in Z 

direction. That is by the quarks, in each point in XY flat the quarks were created and then they expand in 

each point XY to the length a0 then the explosion in Z direction, the result is the universe in the space XYZ. 

there wasn't universal explosion in the XY flat, the universal explosion was only in Z direction, in the flat 

XY there was extend due to the quarks expanding from r =0 to r = a0≈ (120Mev)
-1

 the flat XY was infinity 

before the quarks expanding and it is infinity after that expanding, what happened is increasing in the 

number of the XY points, then the explosion in Z direction. 

We assume both expanding( XY and Z) occurred with the light speed c . 

To find the lost matter, dark matter and dark energy, we use the relation we found before: 

                                                  

8 4

0 044.01 :   ,  1  0  
q

h

h

n
V P V with Mev P with Mev

n
     
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So                                            40 08 8

4
10 10

4 44

qh h
h

q q h

Vn V N V
P Mev

n N V
      

That changing in the pressure δP(independent on time) is related to the hadrons condensation phase to form 

the nucleuses, where the global pressure δP= δPh extremely dropped due to the nuclear attractive potential 

(make it the nuclear binding energy) V0= ̶8 Mev[3]. This pressure δPh is remained contained in the 

nucleuses, but globally isn't visible. 

So there is hidden global pressure δPh and we have to include that problem in the Friedman equations 

solutions, we notice that the nuclear attractive potential lets to increasing in the cooled hadrons densities. 

Therefore the decreasing in the hadrons pressure associated with the increasing of their densities (inside the 

nucleuses). 

The result is excess in the local energy density, that effects appear in the laws, that is, the matter density 

appears to be larger than the right energy density. So there is neither dark matter nor dark energy, it is just 

global and local densities.  

We start from the defining the scale parameter R(t) for the universe expanding we write[6]  

                                                   

2
2 2 2 2 2

2
( )                                    11.1

1

dr
ds dt R t r d

kr

 
     

 
 

We make k=0 flat Universe. 

The  Friedman equations can be written like[6] 

                                                         

2

2 2

( )
3 4 ( 3 )                                           (1)

( )

( ) ( )
  2 2 4 ( )               (2)

( ) ( ) ( )

( )
  3( )                                                

( )

N

N

R t
G p

R t

R t R t k
G p

R t R t R t

R t
p

R t

 

 

 

    

     

           (3)

 

If we sum (1) and (2) we have  

                                                     

2

2 2

( ) ( )
2 4 ( )                  (2 )

( ) ( ) ( )
N

R t R t k
G p

R t R t R t
        

setting k=0 it becomes  

                                                     

2

2

( ) ( )
4 ( )                                 (2 )

( ) ( )
N

R t R t
G p

R t R t
       

Now we try to find the Hubble parameter 
1 ( ) ( )

( )
( ) ( )

dR t R t
H t

R t dt R t
    

There are two different times t<a0 free quarks phase and t>a0 hadrons phase which is the expanding in Z 

direction.  

That means there are two different spacetime Geometric, t<a0 and t>a0. 

We start with t<a0 : 

the velocity 1 ( )
dR

R t r
dt

 equals to the light speed c=ћ=1 here, so 

                                               01 ( )             a aR t r t    

Therefore 
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0

1
( )             a aR t t

r
    

So we can write 

                                              
0( )             a a

t
R t t

r
    

So the Hubble parameter becomes 

                                               

0

( ) 1 / 1
( )             a a                                  11.2

( ) /

R t r
H t t

R t t r t
      

Now we want to find the Hubble parameter in the phase t>a0                         

actually when the quarks expand from r =0 to r =a0 there will be infinity points expanding, so infinity 

expanding distance in XY space, but the expanding cannot excess the light speed c=1 therefore an 

explosion occurs in Z direction, so the universal explosion. 

So the time t =τ: 0→a0 for  the free quarks phase will associate with t: 0→∞ for the universal expanding, so 

we make the transformation  

                                              

0
0

0

  :    a                                                    11.3
a

c
t 




 


 

Where c0 constant, we can relate that relation to a spacetime Geometry. That means if the quarks space 

r<a0=(120Mev)
-1

 is flat, so the hadrons space isn't, it is curved space, where we live. 

It is convenient to consider the quarks space( r<a0 large energy density) is curved not our space(low energy 

density). 

Now we can find the Hubble parameter for the universe t: 0→∞   

For τ: 0→a0 we had              
1 1

( )
dR

H
R d


 

   

So we can write                    
1 1

( )  
dR dt dR

H
R d R d dt


 

   

From 0

0

 
a

c
t







we have

2

0

 
dt t

d c
  so 

                                                         

2

0 0 0

1 1
 

a

t dR t

c R dt t c
 


    

That becomes                                  0

0 0

1
 

(a )

dR c

R dt t t c



 

Therefore the Hubble parameter becomes 

                                       

 
0

0 0 00

0

1 1 1
( )  

(a ) 1a
1

dR c
H t

R dt t t c t c t
t t

c

   
  

 
 

 

The new constant c0'=a0/c0   

Now we use our assumptions for the pressure effects on the energy density 

When the hadrons are formed the nuclear interaction begin, one of the results is the increasing in the energy 

density, where the hadrons are cooled and condensed. 
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From the relation  40 08 8

4
10 10

4 44

qh h
h

q q h

Vn V N V
P Mev

n N V
      

                                                     

 

for V0<0 We find δPh>0(independent on the time), that means for the Fermions, the energy density 

increased (Pauli principle). 

So that density increasing plays a role in the equations, with it the calculated energy density is larger than 

the right energy density. 

In Friedmann equations we have p  energy density plus pressure. To include the pressure effects on the 

energy density we write 

                                                     
  p p         

We assume the pressure P=δPh(independent on the time) effects on the energy density like 

                                                
0p   so   p p             

Then we write ( )   t     

With                                     ( )  :   0                                 11.4h

d d d
t P

dt dt dt
           

We assume the ρ= ρmatter is the right energy density of the visible matter, and the ρ(t) is the local energy 

density which includes the nuclear interaction effects(the pressure effects, because that pressure is 

independent on the time so we can consider its effects on the energy density, increasing that density). 

We make that in the Friedmann equations(2') and (3'), k=0 

                                                    

2

2

( ) ( )
4 ( ) 4 ( )               (2 )

( ) ( )
N N

R t R t
G p G t

R t R t
          

                                                     

( ) ( )
3( ) 3 ( ) ( )                    (3')

( ) ( )

R t R t
p t t

R t R t
          

using (2') and (3') we find the energy density using the Hubble parameter 

                                                     
 

0

0

1 1
( )                 a

1

dR
H t t

R dt t c t
  

 
 

From (3') we have 
1 ( )

( ) ( )
3 ( )

R t
t t

R t
 


  so (2') becomes 

                                                    

2

2

( ) ( ) 4 ( )
( )

( ) ( ) 3 ( )

NR t R t G R t
t

R t R t R t





    

That equation becomes                
2

2

( ) ( ) ( ) 4
( )  

( ) ( ) ( ) 3

NR t R t R t G
t

R t R t R t




  
   
 

 

Or                                                 2( ) 4
( ) ( ) ( )                 (2 )

( ) 3

NR t G
H t H t t

R t




  
   

 
 

Using

                                            

2

2

( ) ( ) ( )

( ) ( ) ( )

d R t R t R t

dt R t R t R t
   so 2( )

( ) ( )
( )

d R t
H t H t

dt R t
   

Using 
 0

1
( )

1
H t

t c t


 
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We have                                          
   

11

0 2 22
00

( ) 1 2
1

( ) 11

R t d
t c t

R t dt t c tt c t

 
   

  
 

The equation becomes 

         
2 2 32 2 3 3

0 0 0 0 0

1 2 1 4 2 1 4
( )    ( )      

1 1 3 31 1 1

N NG G
t t

t c t t c t t c t t c t t c t

 
 

   
     
         

 

The solution is                  
 

2 2

0 0
022

0 0

1 4
( ( ) ) 

1 2 32 1

Nc c c G
t

c t t t c t


 

  
     

   
 

For finite results we put ρ0=0 so 

                                          
 

2 2

0 0
022

0 0

1 4
( )                a

1 2 32 1

Nc c c G
t t

c t t t c t




  
     

   
 

Now we calculate the contributions of the vacuum energy to the total energy using the cosmological 

constant Ʌ like 

                                             

2

2 2 2

3 8 ( ) 4
1 2 ( )

3 3 3

N N

c

H G t G
t

H H H

   







 
       

Where the critical energy density
23

8
c

N

H

G



    

Using the density ρ(t) :    
 

2 2

0 0

22

0 0

1 4
( )

1 2 32 1

Nc c c G
t

c t t t c t




  
    

   
 

We find   

 
 

 
 

2 2
2 22 20 0

0 02 22 2
0 0 0

1 1/ 2
1 2 1 1 2 1 1 1 0                           11.5

1 2 2 1 1

c c c
t c t t c t

c t t t c t t c t


   
               

      

 

So the vacuum energy density is canceled, and the total energy is the matter energy 1matter  so
( )

1
c

t


    

Here ρ(t) is                         ( ) mattert     

With                                   
 

2 2

0 0
022

0 0

4 1
( )                 a

3 1 2 2 1

NG c c c
t t

c t t t c t




  
     

   
 

And the constant δρ is         40 810
44

qh
h

q h

VN V
P Mev

N V
     

To calculate δρ(independent on the time) we assume the potential V0 equals the nuclear potential -8Mev and 

assume Nq /Nh≈gq /gh≈6 

Now we try to find Vq /Vh  the quarks volume Vq=Sdq and the hadrons volume Vh=Sdh as the figure 
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Where the universal explosion in the z=d direction. 

If we assume the explosion speed is the same for both hadrons and quarks, light speed c=1, so for the 

quarks 

                                        

( ) 1 1
( )                                  11.6

( ) ( )
q

q

R t
H t a

R t R t d
    

For the hadrons              
( ) 1 1

( )                                    11.6
( ) ( )

h

h

R t
H t b

R t R t d
    

So                                                                            11.6
q q q h

h h h q

V Sd d H
c

V Sd d H
                                                     

We assume the Hh is the universal Hubble parameter which is 

                           
18 1 18 22 4171 / / 2.3 10 2.3 10 6.58 10 151.34 10H km s mpc s Mev Mev            

                                                                                     

 

The quarks Hubble parameter Hq=1/τ =1/a0=120Mev   

So we have                   
41

41151.34 10
1.26 10

120

h

q

H Mev

H Mev




    

Therefore                     411.26 10
q h

h q

V H

V H

    

The constant density changing δρ:    0 8 4                                    11.7
4

1
4

0
qh

h

q h

VN V
P Mev

N V
     

Becomes (with V0 equals the nuclear potential -8Mev, nucleon binding energy) 

                                                

41 374 481 8
1.26 10 381.8

6 44
10 10hP Mev Mev   

          

So the energy density ρ(t) = ρmatter +δρ becomes 

                                              
37 4( ) 381.8 10mattert Mev      

we found ΩɅ=0 so ρ(t)/ρc=1→ ρ(t)=ρc  

experimentally, the critical density is
  

                                     
27 3 27 9 4 37 49.47 10 / 9.47 10 4.29 10 406 10c kg m Mev Mev             

therefore
                    

3 37 4 47( ) 406 10 381 10.8c mattert Mev Mev        
 

So we find the matter density  37 3737 4 4 4406 10 381.8 10 24.2 10matter Mev Mev Mev         

The right baryonic matter energy density(BBM and CMB calculations) is 

                                                  31 3 37 44.19 10 / 17.97 10b g cm Mev       

There is no big difference between ρmatter=24.2*10
-37

Mev
4
 which we found theoretically and   

 ρb=17.97*10
-37

Mev
4
 which is the right. 

The difference is 6.23*10
-37

Mev
4
 may be related to the bosons matter like photons, mesons, …., but we can 

control this difference by changing the potential V0 . like to replace V0⟶ V0+𝛿V0=−8−0.1305Mev, with 

that, the difference is removed, we can relate the energy 0.13Mev( at least 0.13Mev) to the negative point 

energy(deeper vacuum), that if we assume that energy induces the hadrons condensation, or there is 

negative energy-positive energy potential −0.13Mev.           
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By that there is losing pressure eq11.7(equivalents to 𝛿V0=−0.13Mev at least) associates with hadrons 

nuclear condensation(global cooling).  

Therefore we can think that there is neither dark energy nor dark matter, it is just local and global matter 

densities. And all the matter is the visible matter. 

Notice: the changing p p            is not to reform the Friedman equations(2')and(3'), it is 

just to know how the pressure effects on the energy density, instead of that, maybe we use the equivalent 

between the energy density and the pressure δρ=3δP, but with that the ratios Nh /Nq and Vq /Vh would be 

changed to get the same result.  

For more clear, we used the Friedman equations k=0 with the form

     

                                                              

2

2

( )
3 8                                    (1')

( )
N

R t
G

R t
     

                                                       

2

2

( ) ( )
4 ( )                            (2 )                                     11.8

( ) ( )
N

R t R t
G p

R t R t
       

                                                               

( )
3( )                                        (3')

( )

R t
p

R t
     

We wanted to include the effects of the increased energy density of the cooled hadrons(hidden pressure) on 

the solution of that equations, for that we can make 

                                                      

2

2

( )
3 8 ( ) 8   

( )
N N

R t
G p G p

R t
          

                                                    

2

2

( ) ( )
4 ( )                                            11.9

( ) ( )
N

R t R t
G P p P

R t R t
          

                                                     

( )
( ) 3( )    

( )

d R t
p p p p

dt R t
           

Where δp=δph>0 is independent on the time. 

So we have(for same Hubble parameter we had before) 

                                                          

'

'

' 8 0

h

h

N h

p

p p p

G p

  



 

 

 

    

 

We can say ρ', p' and Ʌ' =0 are for the located matter, when the hadrons are cooled, they condense and 

locate in small volumes with high matter density, because of the strong nuclear attractive interaction, so 

their pressure extremely decreases. That pressure is contained(hidden) in the nucleus. 

And ρ, p and Ʌ are the global measurements of the matter, the global measurements includes the large 

distances between the stars and planets. So we make them the right matter(visible matter).       

Notice: Not all of these Ideas are contained in the References. 
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