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Abstract 

Confirmation of the existence of complex behavior  and synchronization of  non-identical chaotic systems as 

reported in literature attracts much interest in secure communication, but practical implementation is still 

challenging. In this work, the dynamics of coupled non-identical circuits comprising periodically forced  

Duffing  and Van der Pol oscillators is investigated via electronic simulation    using Multism software and 

hardware implementation on electronic circuits board. After complete synchronization is achieved between the 

Duffing (Transmitter) and Van der Pol (receiver) circuits through the variation of  the coupling  

resistor of the controller, its application to secure communication is therefore demonstrated experimentally and 

via multism. The results from the electronic simulation and hardware implementation on bread board using 

analog components are in good agreement with the numerical results in literature. 

Keywords: Electronic simulation, Periodically Forced Duffing oscillator, Periodically Forced
 

Van 

der Pol oscillator, Secure Communication, Synchronization. 

 

1．Introduction 

Chaos synchronization is a phenomenon that may occur when two or more chaotic systems are coupled. The 

coupling of dynamical systems takes two basic forms: Unidirectional (master-slave) coupling in which two 

systems are coupled in such a way that the slave system tracks or mimics the motion of the master system [1-2] 

or  bidirectional (mutual) coupling in which the two systems influence each other's dynamics until their 

dynamics become identical thereby achieving synchronization [3]. This is the case of synchronization of 

networks of systems [4], often happening naturally, for instance, in certain biological systems. Complete 

synchronization of two systems was first achieved by Pecora and Carrol in 1990 using replacement method . 

Thereafter, many researchers have carried out series of chaos control and synchronization  from different 

disciplines, establishing other types of synchronization including generalized, anticipated, sequential, phase, 

measure, lag and projective synchronizations [5-6]. In literature, various numerical schemes have been applied 

for chaos control synchronization such as OGY method [7], active control method [8], adaptive control method 

[9], time-delay feedback method [10], backstepping design method [11], sampled-data feedback synchronization 

method [12], etc. Also, synchronization of chaotic systems has been explored very intensively by many 

researchers using electronic circuits, such as Rössler circuit [13], Duffing circuit [14], Chua circuit [15], Double 

Bell circuit [16] e.t.c. 

Master-Slave synchronization has many applications in physical systems  such as chemical reactor [17-

18], biomedical systems [19-20], solar activity [21-22], cryptography [23], and secured communication [24-26] . 

In secure communication, the master-and slave system serves as the transmitter and receiver respectively, in 

which the message is recovered at the receiver from the channel when the transmitter and receiver systems are 

synchronized [27-28]. In the past, synchronization of  and  chaotic oscillators via numerical simulation  

have been carried out and applied to secure communication. The results of these simulations  showed that  the 

dynamic of   oscillators is more complex than their corresponding   oscillators and hence offer more 

security of masked information during transmission [29-30]. In this work, we carry out computer simulation and  

practical  implementation of coupled non-identical chaotic systems, comprising periodically forced 

Duffing and Van der Pol oscillators using analog components to achieve synchronization and finally 

applied it to secure communication. The electronic simulations via multism and experimental implementation 
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results obtained are comparable with numerical simulation results reported in literature. To the best of our 

knowledge, computer simulation via electronic softwares such as Multisim and experimental implementation 

using hardware on bread board of chaotic oscillators have not been investigated.  

Finally, the effectiveness of the coupling between the two non-identical circuits and its application in 

secure communication system is presented in details.  The rest of the paper is organized as follows. Section 2 

describes the numerical simulation using fortran code and electronic simulation using Multisim for both -

Duffing  oscillator and -Van der Pol  oscillator. Section 3 deals with the circuit design, electronic simulation 

via multisim and hardware implementation  of coupled -Duffing  and -Van der Pol  circuits  while, 

section 4 deals with the application of the synchronization results of both the electronic simulation and hardware 

implementation of the coupled - oscillators in information masking in secure communications. Finally, 

section 5 concludes the paper. 

 

2. Numerical Simulation 

2.1 Periodically Forced -Duffing   and -Van der Pol Circuits  

The periodically forced -Duffing  oscillator (1) and -Van der Pol  oscillator (2)
 
are second order non-

autonomous systems with nonlinear terms  and  respectively, which exhibit 

chaos.  

 

 

where are constant parameters, while and are amplitudes and angular 

frequencies of the forcing respectively. The attractors for system (1) and (2) are given in Fig. (1) and (2) 

respectively for the parameter values specified therein. 

 

2.2 Multisim Simulation and Experimental Implementation of Duffing and -Van der Pol Circuits 

The -Duffing and -Van der Pol circuits each contains a variable resistor , which serves as a control 

parameter used in varying the value of  to enable the systems exhibit  chaotic dynamics. The relation between 

the variable resistors and is  

 

The circuit is implemented with operational amplifiers  multipliers as 

analog components, resistors ,capacitors  as additional and subtraction components with the 

power source of . Figs. 2(a-b) show the analog circuits for -Duffing and -Van der Pol oscillators and 

their corresponding phase portrait of the attractors are displayed in Figs. 3 (a-b) for the electronic software 

simulation using multisim and Figs. 4 (a-b) for the experimental implementation on electronic breadboard 

respectively. 
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3. Unidirectional Coupling of the Non-Identical and Periodically Forced Duffing and Van der Pol 

Circuits.    
In this section, we couple the drive (master) and response (slave) systems unidirectionally such that the master 

system influences the dynamics of the slave system until synchrony takes place. We used multipliers (AD 

633AN) and operational amplifiers (UA 741 CD) for the simulation / implementation. The computer simulation 

of the unidirectional coupling is shown in Fig. 5, with a coupling strength 
 
of the two non-identical 

systems. In Fig. 6 (c), synchronization occur at , while it does not occur when  as shown 

in Fig. 6 (a) and (b) for  and respectively. The physical implementation of the coupled circuits 

and the result showing complete synchronization is displaying in Fig. 7. 

 

4.Application to Secure Communication Network 

In power electronics especially in chaos-based secure communication network, synchronization is the critical 

issue due to the necessity for both transmitter (drive) and receiver (response) to be synchronized. The sinusoidal 

information signal  of amplitude 1V and frequency  is added to the generated chaotic signal 

  from the transmitter (drive system) to give the chaotic masking transmitted signal   

which is fed into the receiver. Figs. 8 (a) and (b) show the electronic simulation via multism and physical 

realization of the coupled periodically forced Duffing and   Van der Pol circuits with receiver, while 

Figs. 9 (a) and (b) show the simulation results. 

 

5. Conclusion 

In this paper, the dynamics of coupled non-identical and periodically forced Duffing and Van der Pol 

circuits have been investigated via electronic simulation and hardware implementation on electronic board. 

Complete synchronization was archieved for coupling strength . With the drive Duffing 

oscillator as the transmitter and the response Van der Pol oscillator as the receiver, the synchronized 

systems was applied in information masking in secure communication. Chaos synchronization and chaos 

masking were realized using electronic software (Multism) and experimental implementation on electronic 

circuits board. The results showed that the chaotic masking transmitted signal for a sinusoidal information signal 

of  and frequency    was masked and retreived successfully, thereby confirming the numerical 

results in literature.  
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Fig.1:  Phase portraits 2x  against 1x  of the chaotic attractor for (a) -Duffing system with parameter values: 

for the double-well potential and, (b) -Van der 

Pol system with parameter values:  µ=0.4, α=0.46, ω=0.86, f=4.5, β=1.0, =0.1, for the double-well potential.   
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Fig.2: Analog circuit of (a)  -Duffing oscillator, and (b) -van der Pol oscillator. 
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Fig.3: Double-well Phase portrait  of attractors   from MultiSIM for (a)  Duffing oscillator  

With  and ,(b)  Van der Pol oscillator with  

 

 

Fig.4: Double-well Attractors  for the Experimental implementation of (a)      Duffing 

oscillator with ,and (b)   Van der Pol oscillator  

with  . 
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Fig. 5: Analog circuit Implementation of coupled non-identical and Periodically Forced Duffing and 

 Van der Pol oscillators. 
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Fig. 6: Synchronization Phase portrait of x2 vs x1, for (a) Incomplete synchronization at , (b) near 

complete synchronization at  and (c) Complete synchronization occur when  with 

Multisim 12.0.  

 

Fig. 7: Complete synchronization of coupled Non-Identical and Periodically Forced  Duffing and  

Van der Pol circuits for  .  
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Fig. 8:  Non-Identical and Periodically Forced Duffing and   Van der Pol Circuit for masking 

information in secure communication: (a) Electronic design via multism (b) Hardware implementation. 
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                 a(i)                                                           b (i) 

 

       
                 a(ii)                                                          b (ii) 

 

       
                 a(iii)                                                          b (iii) 

Fig. 9: A display of (i) sinusoidal information signal of amplitude 1V  and frequency 20kHz, (ii) chaotic masking 

transmitted signal, and (iii) retreived information signal: (a) multism results and (b) hardware implementation 

results. 

 


