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ABSTRACT 

In this paper I solved three first-order ordinary differential equations (ode) both analytically and numerically 

using 4
th

 order Runge-Kutta method (RK4). I selected differential equations which can also be solved 

analytically so as to compare the numerical solutions with the analytical solutions and see the accuracy of the 4
th

 

order RungeKutta method in solving ordinary differential equations of type linear, separable and exact. Both 

solutions were obtained by employing a computer program written in FORTRAN 90/95. The absolute errors 

associated with different step sizes have been calculated and the efficient step size for the three types of odes 

under consideration has been identified. I found out that this numerical method is computationally more efficient 

and very accurate in solving first-order ordinary differential equations of the three types. This is verified from 

the relatively small (negligible) differences between the numerical and analytical values (absolute errors).To 

illustrate the efficiency of the method and for better visualization of its accuracy, the numerical and analytical 

solutions were plotted against the independent variable. For the differential equations under consideration, the 

efficient step size (the one with smallest average absolute error) is h = 0.100. When the step size decreases from 

0.500 to 0.100, both the relative and absolute errors show a slight decline but they show a slight rise when the 

step size decreases further from 0.1 to 0.02. This is due to over accumulation of round off errors. Given step size 

h = 0.100, 4
th

 order Runge-Kutta method is found to be the most efficient for solving the linear ode. The possible 

reason for this is the relatively smallest degree (extent of nonlinearity) of the analytic solution associated with 

the linear ode. Further analysis should be made for detailed reasoning.  

Key words: Numerical solution, analytic solution, Runge-Kutta method, efficient step size. 

1. INTRODUCTION 

An ordinary differential equation (ODE) is an equation involving derivatives of an unknown quantity with 

respect to a single variable. There are many physics problems that involve first order Odes. For example 

resistance, inductances, electrical circuits and radioactive decays. Ordinary differential equations also appear in 

numerous problems in population biology and engineering giving mathematical descriptions of some 

phenomena. The numerical analysis of differential equations describes the mathematical background for 

understanding numerical methods giving information on what to expect when using them.  

 For studying numerical methods as a part of a more general course on differential equations, many of the basic 

ideas of the numerical analysis of differential equations are tied closely to theoretical behavior associated with 

the problem being solved.  

Differential equations can describe nearly all systems undergoing change and are essential parts of many areas of 

mathematics, from fluid dynamics to celestial mechanics. They are used by mathematicians, physicists and 

engineers to help in the designing of everything from bridges to ballistic missiles.  

Ordinary Differential Equations (ODEs) are one of the most important and widely used techniques in 

mathematical modeling. However, not many ODEs have an analytic solution and even if there is one, usually it 

is extremely difficult to obtain and it is not very practical (S. Amen · P et al., 2004). This leads to the need for 

numerical integration of the Initial Value Problem (IVP) for odes.  

Most efforts to increase the order of Runge-Kutta method have been accomplished by increasing the number of 

Taylor’s series terms used and thus the number of function evaluations. Several authors have considered various 

approximations to reduce the number of stages and the storage requirements of high-order Runge–Kutta 

methods. However, not so much has been researched about the relationship between a step size and magnitude of 

absolute error and also the determination of efficient step size corresponding to a given ordinary differential 

equation. 

2. METHODS 

Three ordinary differential equations (one each from first order linear, separable and exact) have been selected 

purposely. The selection was carefully done so that the differential equations can be solved both analytically and 
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numerically so as to compare the solutions and see the accuracy of the 4
th

 order Runge-Kutta method. Moreover, 

the interval of validity for the analytical solutions are carefully planned to include the interval [1, 11] from which 

the value of the independent variable x is allowed to vary while generating the exact and numerical solutions by 

running the FORTRAN 90/95 code. Based on this selection, the IVPs for ordinary differential equations          

x  + 2y = x
2 

– x + 1,   y ( 1) =  0.5 from linear type, from separable type and            

 from exact were selected with the intention indicated above.  

The numerical and analytical solutions were obtained by varying the values of x in the interval [1,11]. This was 

repeatedly done for each step size (h = 0.500, 0.250, 0.200, 0.100, 0.05, 0.025 and 0.020). The comparison 

between the results was done by graphical means and by calculating the difference between analytical and 

numerical values and putting in them tabular form. The results obtained analytically and numerically were 

plotted against the x-values using excel 2010.  

3. RESULTS and DISCUSSIONS 

By employing, 4
th

 order RK method, numerical and analytical solutions have been determined for different step 

sizes and different value of x in the interval [1, 11]. These solutions were then compared with each other for 

different x values in the same interval. The computer algorithms (FORTRAN 90/95 codes) which are shown in 

appendices A, B and C were used to generate the values related to the analytic and numerical (using RK4) 

solutions. As it can be observed from figures 1, 2 and 3 and also from tables 4, 5 and 6 both solutions are 

approximately the same. 

3.1 Graphical analysis of the results obtained by numerical and analytical approaches 

As can be seen in the figures below (figures 1, 2 and 3)  the exact values ( indicated by the dotted lines ) and the 

numerical values( indicated by the solid lines ) for step size h =  0.100  are approximately the same. Figures 1, 2 

and 3 are obtained by plotting the x-values against exact and RK4 values using the excel 2010 spread sheet. We 

can see that the two graphs overlap indicating the very good accuracy of the method. The accuracy of the method 

can also be seen from the tables 4, 5 and 6. Similar situation also applies for other step sizes although not 

indicated here. This shows that 4
th

 order Runge-Kutta methods are very powerful to solve an ode which has 

complicated analytic solution. 

 

Figure 1 
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Figure 2  

 

 

Figure 3 

3.2 Tabular representation of the results obtained by numerical and analytical 

approaches 
Tables 1, 2 and 3 are obtained by applying the computer algorithms indicated in appendices A, B and C. As we 

can see from the tables 1, 2 and 3, the exact values and the numerical values are approximately equal to each 

other. The average relative errors in percent for the step sizes h= 0.5, 0.25, 0.2, 0.1, 0.05, 0.025 and 0.02 are 

respectively  9.2206X10
-3

,
 
5.7334X10

-4
,
 
9.126x10

-5
,
 
5.7631x10

-5
, 1.1692X10

-4
 , 1.8749X10

-4  
and 1.8750X10

-4 
for 

the linear ode; While the average absolute errors for the same step sizes are respectively 1.3314x10
-4

, 8.2345x10
-

6
,  6.5424x10

-6
,
  
5.6823x10

-6
,  1.5706X10

-5
,   1.1320X10

-5  
and 3.5915X10

-5 
. The average relative and absolute 

errors are also relatively small for the separable and exact Odes. This indicates how accurate the 4
th

 order Runge 

Kutta methods are for numerically solving first order ODE of different types.  

Sample tables showing x-values, values obtained from 4
th

 order Runge-Kutta method (RK4), analytical (Exact) 

values, percent relative errors (Er%) and absolute errors (Ea) for step size h= 0.500 are given below. Tables 

corresponding to the remaining step sizes are not indicated here due to limited space. 
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Table 1: Linear ODE: Numerical and analytical values for the step size h = 0.500 

                  x      RK4         Exact       Er (%)        Ea 

1.5 0.60000002 0.59953701  7.72277415E-02 4.63008881E-04 

2 0.85454929 0.85416663   4.47994359E-02   3.82661819E-04 

2.5 1.2427989 1.2424999   2.40625273E-02   2.98976898E-04 

3 1.7594962 1.7592592   1.34709012E-02   2.36988068E-04 

3.5 2.402828 2.4026361   7.98818283E-03   1.91926956E-04 

4 3.1720335 3.171875   4.99856891E-03   1.58548355E-04 

4.5 4.0667486 4.0666151   3.28318262E-03   1.33514404E-04 

5 5.0867805 5.0866666   2.24044733E-03   1.13964081E-04 

5.5 6.2320199 6.2319212   1.58386619E-03   9.87052917E-05 

6 7.5024009 7.5023146   1.15041202E-03   8.63075256E-05 

6.5 8.8978815 8.8978052   8.57446808E-04   7.62939453E-05 

7 10.418435 10.418367   6.49918278E-04   6.77108765E-05 

7.5 12.064042 12.063981   5.05928823E-04   6.10351563E-05 

8 13.83469 13.834636   3.92922782E-04   5.43594360E-05 

8.5 15.73037 15.73032   3.15257814E-04   4.95910645E-05 

9 17.751074 17.751028   2.57880078E-04   4.57763672E-05 

9.5 19.896797 19.896757   2.01310802E-04   4.00543213E-05 

10 22.167538 22.1675   1.72085143E-04   3.81469727E-05 

10.5 24.56329 24.563255   1.39770869E-04   3.43322754E-05 

11 27.084053 27.084023   1.12677422E-04   3.05175781E-05 

 

Table 2: Separable ODE: Numerical and analytical values for the step size h = 0.500 

     
x-value       RK4         Exact                 Er(%)                                       Ea 

1.5 3.9703138 3.968502 4.57E-02 1.81E-03 

2 5.163507 5.1622777 2.38E-02 1.23E-03 

2.5 6.4869819 6.4860897 1.38E-02 8.92E-04 

3 7.9167676 7.91608 8.69E-03 6.88E-04 

3.5 9.4419909 9.4414377 5.86E-03 5.53E-04 

4 11.055843 11.055386 4.14E-03 4.58E-04 

4.5 12.753295 12.752907 3.04E-03 3.88E-04 

5 14.530299 14.529964 2.30E-03 3.35E-04 

5.5 16.383444 16.38315 1.79E-03 2.94E-04 

6 18.309767 18.309507 1.42E-03 2.59E-04 

6.5 20.306652 20.306419 1.15E-03 2.33E-04 

7 22.371758 22.37155 9.29E-04 2.08E-04 

7.5 24.502968 24.502777 7.78E-04 1.91E-04 

8 26.698351 26.698177 6.50E-04 1.74E-04 

8.5 28.956141 28.955982 5.47E-04 1.58E-04 

9 31.274708 31.274563 4.64E-04 1.45E-04 

9.5 33.652542 33.652409 3.97E-04 1 34E-04 

10 36.088245 36.08812 3.49E-04 1.26E-04 

10.5 38.580505 38.580391 2.97E-04 1.14E-04 

11 41.128101 41.127995 2.60E-04 1.07E-04 
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Table 3: Exact ODE: Numerical and analytical values for the step size h = 0.500 

x-values 

0.5 

RK4 

-3.2261953 

Exact 

-3.2260816 

Er(%) 

3.53E-03 

Ea 

1.14E-04 

1 -4.1632023 -4.1622777 2.22E-02 9.25E-04 

1.5 -5.9586821 -5.9569306 2.94E-02 1.75E-03 

2 -8.5226307 -8.5207977 2.15E-02 1.83E-03 

2.5 -11.751644 -11.75 1.40E-02 1.64E-03 

3 -15.584427 -15.583005 9.12E-03 1.42E-03 

3.5 -19.987198 -19.985973 6.13E-03 1.22E-03 

4 -24.940342 -24.939281 4.25E-03 1.06E-03 

4.5 -30.431623 -30.430696 3.05E-03 9.27E-04 

5 -36.452896 -36.45208 2.24E-03 8.16E-04 

5.5 -42.998444 -42.997715 1.69E-03 7.29E-04 

6 -50.064079 -50.063427 1.30E-03 6.52E-04 

6.5 -57.646629 -57.646046 1.01E-03 5.84E-04 

7 -65.743629 -65.743095 8.12E-04 5.34E-04 

7.5 -74.353111 -74.352623 6.57E-04 4.88E-04 

8 -83.47348 -83.47303 5.39E-04 4.50E-04 

8.5 -93.103424 -93.103012 4.43E-04 4.12E-04 

9 -103.24185 -103.24146 3.77E-04 3.89E-04 

9.5 -113.88783 -113.88747 3.15E-04 3.59E-04 

10 -125.04059 -125.04026 2.62E-04 3.28E-04 

3.3 Representing the accuracy of 4th order Runge-Kutta method in terms of average 

relative and absolute errors. 
As shown below in table 4, 5 and 6 the exact and numerical value agree to a very high extent with the indicated 

average relative and absolute errors. The average relative error in percent and the average absolute errors are 

minimum at the step size h of 0.100 indicating that this step size is the most appropriate one for the problem 

under consideration. The average relative and absolute errors decrease with decreasing step size from h = 0.5 to 

h = 0.1. The average relative and absolute errors increase with decreasing step size from h = 0.1 to h = 0.02. The 

reason for this is over accumulation of round off and truncation errors that in turn led to increased average 

relative and absolute errors.  This shows that decreasing the step size decreases the error of a numerical method 

only up to a certain limit depending on the nature of the differential equation under consideration.  

Moreover, given h = 0.10, we can see from tables 4, 5 and 6 that 4
th

 order Runge-Kutta method is associated 

with relatively smallest absolute error (5.6823x10
-6

) for the linear ode and relatively largest value (2.13x10
-5

) for 

the exact ode. We can see that the value associated with the exact ode is about 3.75 times larger than the value 

for the linear ode. This is due to the nature (the degree of nonlinearity) of the exact solutions related to the 

differential equations under consideration. 
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Table 4: Step size h versus average relative and absolute errors for the linear ode 

Value of step size ( h)  

Average relative error (%) 

 

Average absolute error 

 

0.500 

 

9.2206X10
-3

 

 

 

           1.3314x10
-4

 

  

0.250 

 

5.7334X10
-4

 

 

 

8.2345x10
-6

 

  

0.200 

 

9.126x10
-5

 

 

6.5424x10
-6

 

 

0.100 

 

5.7631x10
-5

 

 

5.6823x10
-6

 

 

0.050 

 

1.1692X10
-4

 

 

1.5706X10
-5

 

 

0.025 

 

1.8749X10
-4

 

 

1.1320X10
-5

 

 

0.020 

 

1.8750X10
-4

 

 

3.5915X10
-5

 

 

Table 5: Step size h versus average relative and absolute errors for the separable ode 

Value of the step   

size ( h) 

 

Average relative error (%) 

 

Average absolute error 

 

0.500 

 

5.81x10
-3

 

 

4.18x10
-4

 

 

0.250 

 

3.46x10
-4

 

 

2.27x10
-5

 

 

0.200 
 

 1.64x10
-4

 

 

1.57x10
-5

 

 

0.100 

 

3.59x10
-5

 

 

7.27x10
-6

 

 

0.050 

 

9.63x10
-5

 

 

2.51x10
-5

 

 

0.025 

 

1.41x10
-4

 

 

3.47x10
-5

 

 

0.020 

 

1.34x10
-4

 

 

4.24x10
-5

 

 

Table 6: Step size h versus average relative and absolute errors for the exact ode 

Value of the step  size ( h) Average relative error (%) Average absolute error 

 

0.500 

 

6.14x10
-3

 

 

8.32x10
-4

 

 

0.250 

 

3.6x10
-4

 

 

4.70x10
-5

 

 

0.200 

 

1.70x10
-4

 

 

3.76x10
-5

 

 

0.100 

 

4.47x10
-5

 

 

2.13x10
-5

 

 

0.050 

 

8.73x10
-5

 

 

6.05x10
-5

 

 

0.025 

 

1.32x10
-4

 

 

7.80x10
-5

 

 

0.020 

 

1.02x10
-4

 

 

9.23x10
-5

 

 

4. CONCLUSIONS 

From the results of this project we can conclude that 4
th

 order Runge Kutta methods have a very good accuracy 

in numerically solving first order ordinary differential equations. If we have a first order ordinary differential 
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equation that is too complicated to be solved analytically, we can apply the 4
th

 order Runge Kutta methods to 

solve the ode numerically with a relatively small absolute and numerical errors. Therefore, numerical solutions 

to first order ordinary differential equations by using Runge Kutta 4
th 

order method plays a very important role 

for solving a function which is complicated for analytic solution. From this study (as depicted in tables 4, 5 and 

6), one understands that the average relative and absolute errors can increase or decrease whenever the step size 

h decreases. This increment in errors while step size is decreasing is occurring due to the round of errors. 

Moreover, the most efficient step size (corresponding to the smallest absolute error) for the three selected 

differential equations is h= 0.100. Furthermore, the 4
th

 order Runge-Kutta method has the smallest absolute error 

associated with it for the linear ode with this step size. This is due to the relatively smallest degree (extent of 

nonlinearity) of the analytic solution associated with the linear ode as compared to the other two odes. Further 

analysis should be made for detailed reasoning.    
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APPENDICES 

Appendix A:- The computer algorithm that calculates the exact and numerical values of the linear 

ode(IVP):   x

lg

 , y(1)=0.5 for different step sizes h = 0.5, 0.25, 0.2, 0.1, 

0.05, 0.025 and 0.02. 

program rk4_linear 

 implicit none   

integer:: xi=1,xf=11, iter, I     ! Variable Declaration and Initialization 

real: :h,x,y,exact,er,ea,k1,k2,k3,k4,slope  !Variable Declaration and  Initialization 

print*, 'enter the value of step size h'   ! Display or Output statement 

read*,h   !Input variables 

             x=1.0    ! Independent variable initialization 

             y=0.5    ! dependent variable initialization 

iter=(xf-xi)/h    !  calculation of number of iteration 

print*,'x','       ','rk4','    ','exact','      ','er(%)','     ','ea' ! Display or Output statement 

do i=1,iter   ! looping  

! calculations of slopes at different points in the interval 

             k1=x+ (1.0/x)-2*y*(1.0/x)-1.0 

             k2=(x+0.5*h) + (1.0)/(x+0.5*h)-2*(y+0.5*k1*h)*(1.0)/(x+0.5*h)-1.0 

             k3=(x+0.5*h) + (1.0)/(x+0.5*h)-2*(y+0.5*k2*h)*(1.0)/(x+0.5*h)-1.0 

             k4=(x+h) + (1.0)/(x+h)-2*(y+k3*h)*(1.0)/(x+h)-1.0 

             slope= (k1+2.0*k2+2.0*k3+k4)/6.0      ! average slope 

             x=x+h              ! numerical value of independent variable 

             y=y+slope*h  ! numerical value of dependent variable 

   exact=(1.0/4.0)*x**2-(1.0/3.0)*x+(1.0)/(12.0*x**2)+0.5 ! exact /analytic/ value of the dependent variable 

er=abs(((y-exact)/exact)*100.0) 

ea=abs(y-exact) 

print*, x, y, exact,er,ea 

end do ! end of looping 

end program rk4_linear  ! end of the main program 
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Appendix B :- The computer algorithm that calculates the exact and numerical values for the separable 

ode(IVP): 

mp lg

 , y(1)=3 for different step sizes h = 0.5, 0.25, 0.2, 0.1, 0.05, 0.025 and 

0.02. 

program rk4_separable 

 implicit none   

integer:: xi=1,xf=11, iter, I     ! Variable Declaration and Initialization 

real::h,x,y,exact,er,ea,k1,k2,k3,k4,slope  !Variable Declaration and  Initialization 

print*, 'enter the value of step size h'   ! Display or Output statement 

read*,h   !Input variables 

             x=1.0    ! Independent variable initialization 

             y=3.0    ! dependent variable initialization 

iter=(xf-xi)/h    !  calculation of iteration 

print*,'x','       ','rk4','    ','exact','      ','er(%)','     ','ea' ! Display or Output statement 

do i=1,iter   ! looping  

! calculations of slopes 

             k1=(3.0*x*x + 4.0*x - 4.0) /(2.0*y-4.0) 

             k2=(3.0*(x+0.5*h)*(x+0.5*h) + 4.0*(x+0.5*h) - 4.0) /(2.0*(y+k1*0.5*h)-4.0) 

             k3=(3.0*(x+0.5*h)*(x+0.5*h) + 4.0*(x+0.5*h) - 4.0) /(2.0*(y+k2*0.5*h)-4.0) 

             k4=(3.0*(x+h)*(x+h) + 4.0*(x+h) - 4.0) /(2.0*(y+k3*h)-4.0) 

             slope= (k1+2.0*k2+2.0*k3+k4)/6.0      ! average slope 

             x=x+h              ! numerical value of independent variable 

             y=y+slope*h  ! numerical value of dependent variable 

   exact=2+sqrt(x*x*x+2.0*x*x-4.0*x+2.0) 

er=abs(((y-exact)/exact)*100.0) 

ea=abs(y-exact) 

print*, x, y, exact, er, ea 

end do ! end of looping 

end program rk4_separable  ! end of the main program 
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Appendix C:- The computer algorithm that calculates the exact and numerical values for the exact 

ode(IVP): 

mp lg

 , y(0)= -3 for different step sizes h = 0.5, 0.25, 

0.2, 0.1, 0.05, 0.025 and 0.02. 

program rk4_exact 

 implicit none   

integer:: xi=1,xf=11, iter, I     ! Variable Declaration and Initialization 

real::h,x,y,exact,er,ea,k1,k2,k3,k4,slope  !Variable Declaration and  Initialization 

print*, 'enter the value of step size h'   ! Display or Output statement 

read*,h   !Input variables 

             x=0.0    ! Independent variable initialization 

             y=-3.0    ! dependent variable initialization 

iter=(xf-xi)/h    !  calculation of iteration 

print*,'x','       ','rk4','    ','exact','      ','er(%)','     ','ea' ! Display or Output statement 

do i=1,iter   ! looping  

! calculations of slopes 

             k1=(9.0*x*x-2.0*x*y)/(2.0*y+x*x+1.0) 

             k2=(9.0*(x+0.5*h)*(x+0.5*h)-

2.0*(x+0.5*h)*(y+k1*0.5*h))/(2.0*(y+k1*0.5*h)+(x+0.5*h)*(x+0.5*h)+1.0) 

             k3=(9.0*(x+0.5*h)*(x+0.5*h)-

2.0*(x+0.5*h)*(y+k2*0.5*h))/(2.0*(y+k2*0.5*h)+(x+0.5*h)*(x+0.5*h)+1.0) 

             k4=(9.0*(x+h)*(x+h)-2.0*(x+h)*(y+k3*h))/(2.0*(y+k3*h)+(x+h)*(x+h)+1.0) 

             slope= (k1+2.0*k2+2.0*k3+k4)/6.0      ! average slope 

             x=x+h              ! numerical value of independent variable 

             y=y+slope*h  ! numerical value of dependent variable 

   exact=(-(x*x+1.0)-sqrt(x**4+12.0*x**3+2.0*x**2+25.00))/(2.0) 

er=abs(((y-exact)/exact)*100.0) 

ea=abs(y-exact) 

print*, x, y, exact,er,ea 

end do ! end of looping 

end program rk4_exact  ! end of the main program 

 

 

 


