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Abstract 

The modified Burgers’ equation of nonlinear propagation of Dust-Ion Acoustic Shock Waves (DIASWs) for 

multicomponent unmagnetized dusty plasma consisting of adiabatic ion fluid, Boltzmann distributed electrons 

and positrons and static negatively charged dust fluid has been derived using the standard reductive perturbation 

method. The solution of modified Burgers’ equation in nonplanar geometry is numerically analyzed and it has 

been found that, the nonplanar geometry effects have a very significant role in the formation of shock waves. 

Further more; it is found that the planar geometry shock structure with higher amplitude is the strongest, 

followed by cylindrical and spherical shock waves amplitudes respectively. It is also observed that; an increase 

in positron concentration decreases the amplitude of the DIASWs. 
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1. INTRODUCTION  

Plasmas, in general, consisting of electrons and positrons of equal masses and ion are usually characterized as 

electron-positron-ion plasma [1, 2]. The presence of ions brings about the existence of several low frequency 

waves which other wise do not propagate in electron-positron plasmas.  There are electron-positron in 

astrophysical plasmas such as in magnetosphere of plasmas, in active galactive nuclei, in early universe and in 

the region of the accretion disks surrounding the central black holes [3-8]. Due to impressive developments in 

plasma, there has been considerable interest in different type of linear and nonlinear wave structure such as 

solitons, double layers, vortices etc, in electron-positron plasmas [9-15] as well as in multi-component electron-

positron-ion plasmas [16-18]. Most of the astrophysical plasmas usually contain highly charged 

(negative/positive) impurities or dust particulates in addition to the electrons, positrons and ions. It is a well 

known fact that, the presence of static charged dust grains modifies the existing plasma wave spectra [19-21]. 

Dust ion acoustic shocks in an unmagnetized dusty plasma many arise when there is a balance between 

the nonlinearity (associated with the harmonic generation) and the kinetic viscosity introduced by the dust ion 

drag. The formation of Dust Ion Acoustic Shock waves (DIASWs) was observed by Nakamura et al [22].  They 

found out that, both monotonic and oscillatory shock waves exist and the dust density has vital role on the shock 

waves and phase velocity of the wave. A number of studies have been made on the propagation of DIASWs in 

dusty plasma by several investigators [23-26]. 

Recently, several theoretical investigations [27-31] on the properties of dust-ion acoustic and dust 

acoustic solitary waves in nonplanar geometry had been carried out. Sahu [32] of recent, have carried out 

theoretical investigation on the effect of nonplanar DIASWs in an Adiabatic Dusty Plasma. Since, the properties 

of wave motions-electron-positron-ion-dust plasma should be different from those in three component electron-

ion-dust plasma.  

In this present work, we have considered an unmagnetized multi-component adiabatic dusty plasma; 

and have studied the basic properties of DIASWs in such a dusty plasma which was not considered in the earlier 

investigation [32]. The paper is organized in the following manner. The basic equations governing the adiabatic 

dusty plasma system under consideration are given in section 2. The nonplanar DIASWs are investigated by the 

reduction perturbation method (RPM) in section 3. In section 4 we present the numerical results and discussion. 

Section 5 is the conclusion. 

 

2. GOVERNING EQUATIONS 

A four-component unmagnetized plasma comprising of static negatively charged dust fluid, Boltzmann 

distributed electrons and positrons, and adiabatic ion fluid. The dynamics of the DIAWs – nonplanar geometry 

for such a dusty plasma, is governed by the following normalized fluid equations: 
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In the above equation, in  is the ion number density normalized by its equilibrium value iio un ,  is the ion fluid 

speed normalized by ( ) φ,2
1

ieBi mTKC =  is the wave potential normalized by ieB peTK , is the ion 

thermal pressure normalized by eiiBio TTTKn =α, . The time and space variable are normalized by reciprocal 

plasma frequency ( ) 2
1

21 4 enmw ioipi
π=−

 and the Debye length ( ) 2
1

2
4 enTK ioeBD πλ =  respectively.  

Where o=ν , for one-dimensional geometry and 2,1=ν  for cylindrical and spherical geometry respectively. 

iη  is the viscosity coefficient of ion fluid normalized by ioeoDpi nnw =µλ ,2
 and iopop nn=δ . We note 

that in equation (4), we have assumed the quasi-neutrality condition. 

 

3. DERIVATION OF NONPLANAR BURGERS’ EQUATION 

We derive the Burgers’ equation (1)-(4) by employing the reductive perturbation method (RMP) and the 

stretched coordinates [33] ( )tVr o−=∈ 2
1

ξ  and ,2
1

t=∈τ  where ε is a smallness parameter measuring the 

weakness of the nonlinearity and 0V  is the phase speed of DIASWs normalized by iC .  Equations (1)-(4) can 

be expressed in terms of ξ  and τ as follows: 

     ( ) ( )
( )

( ) )5(0
1

2
3

2
1

2
3

2

1

=
∈+

∈
+∂+∂∈−∂∈ ii

oo

iiioi un
VV

unnVn
τξτ

ν
ε ξξτ  

  10
2

1
2

1
2

1
2

3

φξξξτ ∂∈−=∂∈+∂∈−∂∈ iiiiiiii nuununVun      

  [ +∂∈∈+∂∈− iii unp 22

0
2

1
2

1

ξξ ηα    

  )6(

11

2

0

22

0

3

0

0

2


















 ∈
+

∈
−∂








 ∈
+

∈
ii u

V
V

u

V
V

τ

ξ
τ

ν

τ

ξ
τ

ν
ξ  

  iiiii ppupVp 32
1

2
1

2
3

0 +∂∈+∂∈−∂∈ ξξτ  

  )7(0

1
0

0

2
3

2
1

=




























 ∈
+

∈
+∂∈ ii u

V
V

u

τ

ξ
τ

ν
ξ  

  







++−−








++ ...

2

1
1...

2

1
1 22 φφδφφµ p  

     ( ) )8(01 =−++ µδ p  

where 0
2

1

ηη =∈  is assumed [34]. We can expand the dependent variables iii pun ,,  and φ  in power series of 

∈  as follows: 
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We obtain the lowest order of the coefficient ∈  as follows by substituting equation (9) into equation (5)-(8): 
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The next higher order in ∈ , is given as the following set of equations,  
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Now, using equations (10)-(17) and eliminating 222 ,, iii pun  and 2φ , we finally obtain a modified Burgers’ 

equation 
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4. NUMERICAL RESULTS AND DISCUSSION  

The modified Burgers’ equation describing the nonlinear propagation of the DIASWs for multicomponent 

unmagnetized dusty plasma consisting of adiabatic ion fluid, Boltzmann distributed electrons and positrons and 

static negatively charged dust fluid is given in Equation (18). The stationary DIASWs of this modified Burgers’ 

equation for planar geometry ( )0=ν  is 
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where V is a constant velocity normalized by iC . For nonplanar geometry, an exact analytical solution of 

equation (18) is not possible, hence it is solved numerically. The results are shown in Figs. 1-5.  The initial 

condition that we have considered for all the numerical results, is the form of the stationary solution of equation 

(21) without the geometry term ( )τν 2  at 10−=τ .  The shock wave structure for different geometries with 

respect to the considered parameters is presented in Fig.1. It is obvious that, the developed shock amplitude in 

the different geometry are different from each other, while the shock steepness is the same for all geometry. The 

planar geometry shock structure, with higher amplitude is the strongest.  The cylindrical shock wave amplitudes 

are bigger than that of the spherical shock wave, but smaller than that of the planar geometry shock wave 
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structure.  
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Fig. 1: Showing how the shock profile  ( ξφ sV1  curves) varies in different geometries for 

3.0,5.0,5.0,5 0 ===−= pδαητ  and 4.0=µ . 

In Figures 2 and 3, we present the variation of cylindrical shock structures and spherical shock structures for 

different values of τ  respectively. It can be observed that as time increases ( )τ , the amplitude of the cylindrical 

shock waves also increases. It can also be observed that, the shock wave profile for the nonplanar (Fig. 2 and 

Fig.3) are similar to what is obtained for the planar geometry of fig. 1 in terms of the amplitude for larger value 

of τ . This result confirms the fact that, large value of the nonplanar geometrical effect ( )τν 2  is no longer 

dominant.  
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Fig. 2: Variation of 1φ  with respect to ξ  at different values of τ for the cylindrical geometry ( )1=v  

and the other parameters being the same as figure 1. 
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Fig. 3: Variation of 1φ  with respect to ξ  at different values of τ for the spherical geometry ( )2=v  

and the other parameters being the same as figure 1. 
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Fig. 4: Variation of 1φ  with respect to ξ  at different values of the positron concentration for the 

cylindrical geometry ( )1=v  and the other parameters being the same as figure 1. 
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Fig. 5: Variation of 1φ  with respect to ξ  at different values of the positron concentration for the 

spherical geometry ( )2=v  and the other parameters being the same as figure 1. 

The effect of positron concentration on the shock wave structures for cylindrical and spherical geometries are 

shown in figures 4 and 5 respectively. From these two figures (Fig.4 and Fig.5), it is found that increase in 

positron concentration decreases the amplitude of the DIASWs for nonplanar geometry. It is obvious that; in 

physical situation, any increase in positron concentration decreases the ion concentration.  Since, we are dealing 

with DIASWs; the amplitude of the shock structure will decrease for increase in positron concentration. 

 

5.  CONCLUSION  

We have derived the nonplanar Burgers’ equation for Dust-ion-acoustic shock waves in a four component 

unmagnetized plasma comprising of static negatively charged dust fluid, Boltzmann distributed electrons and 

positrons, and adiabatic ion fluid by using the standard reductive perturbation method. We have found out that; 

the developed shock amplitude are different in the different geometries. With the planar geometry presently a 

higher amplitude in the shock structure, followed by the cylindrical and spherical shock structure respectively. 

For large negative values of τ , it is observed that the nonplanar geometries approaches the planar geometry. 

Finally, increase in positron concentration decreases the amplitude of the DIASWs. This research findings is 

very important for the understanding of the propagation characteristics of DIASWs in plasma applications as 

well as laboratory Plasma. 
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