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 Abstract: 

Influence of the initial stresses on the frequency equation and the natural frequencies for radial vibrations of axially 

polarized piezoelectric circular cylinder have been taken into account.  

The mechanical boundary conditions correspond to those of stress free lateral surfaces while the electrical boundary 

conditions correspond to those of open and short circuit are considered. The satisfaction of the boundary conditions 

lead to the frequency equation, in the form of determinant involving Bessel functions, have been taken into 

consideration. The roots of the frequency equations give the values of the characteristic circular frequency 

parameters of the first three modes for various geometries. These roots are numerically computed and programmed 

for numerical evaluation by ''Bisection Method Iterations Technique (BMIT)'' and presented graphically for various 

thickness of the circular cylinder and for different values of the initial stress. The effect of the initial stress on the 

natural frequencies are illustrated graphically for a transversely isotropic piezoelectric martial PZT−4 circular 

cylinder.  

It is found that both the thickness of the circular cylinder and the initial stress have a substantial effect on the 

dispersion behavior. 

The results obtained in this paper may be applied to the vibrations of annular accelerometers operating in the radial 

shear mode. Also, they have theoretical basis application and have meaningful design for piezoelectric probes and 

electro-acoustic devices in the nondestructive evaluation. 

Keywords: Piezoelectricity, frequency equation, Transverse surface waves, Initial stress, Hexagonal crystals. 

 

1. Introduction 

Engineering materials called "smart materials" or "intelligent materials" recently have become a major focus of 

attention. In particular, piezoelastic (piezoelectric) materials have great promise for use in smart structural systems.  

The use of smart materials have become ever more important since the implementation of sophisticated functions in 

transducers is called for in today's technology. In a common definition, smart materials differ from ordinary materials 

in which they can perform two or several functions sometimes with a useful correlation or feedback mechanism 

between them. In the case of piezoelectric materials, they can be used for both sensor and actuator functions. When 

an external force acts on a piezoelastic materials, the stresses produce an electric potential within the material. 

Conversely, when an electric field is applied to a piezoelastic material, stresses are induced. The possibility exists, 
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therefore, of determining the stresses in a piezoelastic material by measuring the electric potential, and then 

controlling the stresses by the action of an appropriate applied electric field [12], [20] and [26]. 

The piezoelectric materials, particularly piezoelectric ceramics, have been found to have wide applications in smart 

systems of aerospace, automotive, medical, and electronic fields due to the intrinsic coupling characteristics between 

their electric and mechanical fields [10, 20,24]. As the piezoelectric materials are being extensively used as actuators 

or transducers in technologies of smart and adaptive systems, the mechanical reliability and durability of these 

materials become increasing importance [14]. Since the investigation of mode vibrations in [3, 4, 14], the 

piezoelectric effect in hollow cylinders have been effectively employed in the fabrication of annular accelerometers, 

and other applications may arise wherever thickness shear elements such as delay line transducers of frequency 

control filters, are adapted to a cylindrical shape [23] and [25]. For the more historical development of piezoelectric 

problems and their applications in electromechanical devices (see Refs. [2], [14], [26]). 

In the conventional surface wave devices, the acoustic wave propagates on a flat surface and the desired time delay is 

usually limited by the length of the crystal. It is conceivable that, if the surface wave is guided around a cylindrical 

body, one will be able to achieve a much longer time delay. In the design of signal filtering, the dispersive behavior 

of the surface waves becomes very important. The desirable dispersion can be obtained by changing the geometry of 

the substrate or adding metallic conducting films on top of the piezoelectric substrate [18]. 

Many electro-acoustic devices make use of surface waves propagating azimuthally in cylindric surface of a 

piezoelectric material. The study of such waves was initiated in [6, 24]. Effects of piezoelectricity on the properties 

of radial and transverse surface waves supported by a cylindrical surface of crystals are studied by many authors [2, 

19, 21]. Subsequently, Wang et al [23] investigated the longitudinal wave propagation in piezoelectric coupled rods 

and Qian et al [18] have investigated scattering of elastic waves by cylinders in 1-3 piezocomposited. Dispersion 

phenomena in transversely isotropic piezo-electric plated with either short or open circuit boundary conditions has 

been treated by Guo et al [9]. Piezoelectric tubes and tubular composites for actuator and sensor applications are 

considered by Zhang et al [16]. Recently, Dong et al [5] studied wave propagation characteristics in piezoelectric 

cylindrical laminated shells under large deformation.  

Free vibration resonant frequencies and mode shapes are fundamental information needed in device design. They 

have been obtained for a circular cylinder by many authors [15, 23]. Initial stresses are inseparable with surface 

acoustic wave (SAW) resonators for many reasons, including material processing stages and fabrication with thermal 

treatments inducing incompatible deformations and residual stresses and utilizing resonators as force and pressure 

sensors in many applications. Because of the importance of the  initial stresses in applications, studies on the analysis 

of such effects have been done out with different objectives and approaches [1, 5, 6, 7, 11, 16, 17]. 

This paper deals with the radial vibrations of axially polarized piezoelectric circular cylinder and influence of the 

initial stresses on the frequency equation and its natural frequencies. The differential equations of piezoelectric radial 

motion were derived in terms of radial displacement and electric potential. The characteristic equation of radial 

vibration was obtained by applying mechanical and electric boundary conditions. The piezoelectric natural frequency 

of the fundamental mode was shown to increase as the radius of curvature decreased. It is found that both the 

thickness of the circular cylinder and the initial stress have a substantial effect on the dispersion behavior. Also, this 

study can offer theoretical basis and meaningful suggestion for the design of piezoelectric cylindrical transducers. A 
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transducer polarized in the axial direction undergoes axial motion under the electric drive in the radial thickness 

direction, and is used as an aligner or a translator, as for example in a scanning tunnelling microscope [4]. A 

transducer polarized in the circumferential direction undergoes radial vibrations resulting from circumferential 

expansion and compression [13]. 

 

1. Basic Equations 

The system of equations governing the vibrations of piezoelectric media with initial stresses (see, e.g., [16], [17]) is 

formulated in this section for transducers possessing cylindrical geometry. 

The stress equations of motion, which includes the presence of initial stresses, are: 

ijkjkijij uTuT   ,,, )(                                                            (1) 

The Gauss’s law of electrostatics without free charge is: 

0, iiD                                                                          (2) 

The strain-mechanical displacement relations are:  

)( ,,2

1
jiijij uuS                                                                 (3) 

The electric field - electric potential relations are: 

iiE ,                                                                          (4) 

The linear piezoelectric constitutive relations are:  

kkijklijklij EeScT  , klkklikli ESeD         ),3,2,1,,,( lkji                (5a,b) 

Where, in the above, ijT , 

kjT , iu , iD , ijS , iE  are the components of stress, initial stresses, mechanical 

displacement, electric displacement, strain, and electric field, respectively;   and   are the mass density and the 

electric potential; ijklc  are the elastic moduli at constant electric field, ik  the dielectric coefficients at constant 

strain field and kije  the piezoelectric coefficients. Common notational conventions are employed throughout, such 

as the comma for differentiation with respect to a space coordinate and a dot for differentiation with respect to time.  

Associating ),,( zr   with )3,2,1( , respectively, the matrices of the elastic, piezoelectric, and dielectric constants 

for a ferroelectric ceramic poled in the z direction (crystal symmetry 6 mm ) are:  
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Where we have a compact matrix notation [11]. This notation consists of replacing pairs of indices ij  or kl  by 

single indices p or q , where kji ,,  and l  take the values 2,1  and 3 , and p  and q  take the values 5,4,3,2,1  

and 6   according to: 

 
ij  or kl  

11 22 33 23 or 32 31 or 13 12 or 21  

 p  or q  1 2 3 4 5 6  

 

3. Formulation of the Problem 

We consider an infinite circular cylinder of inner radius a  and outer radius b . The cylinder is made of ceramics 

with axial poling along the 3x direction we choose ),,( zr  to correspond to )3,2,1(  so that the poling direction 

corresponds to 3.  The inner and outer surfaces are being electroded. There is no load applied, and we are interested 

in anti-plane axi-symmetric free vibrations [25].  The radial modes of an infinite cylinder are independent of  and 

z , and have the circumferential mechanical displacement 0u .  Substituting from Eqs. (3), (4) and (6) into 

Eqs. (5)  and the resulting expressions into Eqs. (1) and (2) leads to the governing equations: 
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with Eq. (1)2 being satisfied identically. It is seen that the radial extensional mode ru cannot be excited electrically, 

the free vibrations of which have been discussed by [25]. The radial shear mode zu  is, however, coupled to the 

electric potential   and therefore examined below. 

Eliminating   from Eqs. (8) and (9), and assuming a steady-state solution in the forms: 

,)(),(,)(),( titi
zz ertrerutru                                            (9) 

the following equation for zu is  obtained: 

,0
1 2

2

2





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


z

zz u
r

u

rr

u
                                                       (10) 

Where       ,/ *
44

22 c                                                       (11a) 

            ),1)(( 2
1544

*
44 kcc rr                                              (11b) 

and         1144
2
15

2
15 )/(  

rrcek                                               (11c) 

where 
2
15k is the square of  the electromechanical coupling factor for shear (see, e.g. ,  ref.[2]).  The  general 

solution of Eq. (10) is:   

),()( 0201 rYArJAuz                                                         (12) 

Where 0J  and 0Y  are the zero-order Bessel functions of the first and second kind, respectively. Solving Eq. (8) 

for   in view of Eq. (12), 

.)/ln()]()([ 430201

11

15 AbrArYArJA
e

S



                                 (13)                                         

4. Boundary Conditions 

The following boundary and continuous conditions should be satisfied. It should be pointed out that two kinds of 

mechanical and electrical boundary conditions would be considered in this study. So the boundary condition may be 
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written as: 

a) Free tractions and unelectroded surfaces  

If the cylindrical surfaces are free from tractions, i.e. the shearing stress must vanish.  

,0rzT      for  bar , ,                                                        (14) 

If  the electrodes are open for the electrical boundary conditions. This may express by  

,0rD  for   bar ,                                                             (15) 

 In which case, we have 03 A , and 

 01  ija                                                                     (16) 

b) Free tractions  and electroded surfaces  

The faces of  the cylinder are traction- free. So, the shearing stress  rzT must vanish.  

,0rzT   for  r = a , b.                                                             (17) 

Applying an alternating voltage of potential 
tie 2  to the electroded cylindrical surfaces. Therefore, the 

electrical boundary conditions are: 

tie          at   bar , .                                                   (18) 

Using the boundary conditions  Eqs. (17) and  (18),  it can be shown that  

,2
2
151  k                                                                      (19) 

   Where  

ijb
h)ln(

1
2


                                                                  (20) 

 

c) Clamped  and electroded surfaces  

We consider the case when the two cylindrical surfaces are fixed and the two electrodes are shorted [25] . Then one 

may get: 

,0zu           for     bar ,                                                  (21) 

,0  for  bar ,                                                              (22) 

Which implies that    ,03 A   ,04 A                  
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These conditions  lead to the following equation: 

03  ijd                                                                      (23) 

The roots of Eqs. (16), (20) and (23) give the values of natural frequencies for the radial vibrations of 

axially polarized piezoelectric circular cylinder. It is easily noted that the frequency Eqs. (16), (20) and (23) involve 

the dimensions ba,  of the cylinder and the elastic, electric and the initial stress constants. To simplify the 

calculation of the eigenvalues of Eqs. (16), (20) and (23), we confined our attention to make these quantities 

dimensionless, therefore we introduce the following transformations: 

.
1
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where the elements of the determinants in Eqs. (16), ((20) and (23) are, respectively: 

)( 1111  hJa , )( 1112  hYa , 

),( 1121  Ja  ).( 1122 Ya  

and 

),()( 101011  JhJb  ),()( 111112  hJhJb  

),()( 101021  YhYb  ).()( 111122  hYhYb  

and 

)( 1011  hJd , )( 1012  hYd , 

),( 1021  Jd  ).( 1022  Yd  

5. Numerical Results and Discussion 

A computer program has been written for numerical evaluation of the frequency equations (16), (20) and (23). 

Numerical calculations have been carried out for a PZT-4 which possesses class 6mm symmetry. The computational 

piezoelectric material parameters are taken from Ref. [3] which are summarized in the following Table 1.  

 

 

Table 1: the physical constants of ceramic PZT-4 

Units (Ceramic)PZT-4 
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3/ mkg  7500  

2/ mN  
10

44 106.2 c  

2/ mC  5.1015 e  

mF /  
9

11 108.5  X  

The calculation of the roots of the dispersion Eqs. (16), (20) and (23) which may be regarded as function of 


rrThn ,,,  ,(we will replace 


rrT  by   for simplicity) represents a major task of this work. The dimensionless 

frequency   is calculated and plotted against the thickness ratio bah /  for three different values of initial 

stresses   for the first three modes and when (n=0,1).  

We have adopted the following iterative procedure for numerical computations. For   a fixed value of l  we evaluate 

the determinant, which is presented in the left hand side of Eqs. (16), (20) and (23) for various values of the 

unknown quantity  , commencing with the initial value zero and each time adding a fixed but small increment to 

that unknown quantity till the value of the determinant changes its sign. Then the ''bisection method also, known as 

method of having the interval or Bolzano method'' is applied to get the located root. With this root as the initial value, 

the procedure is repeated to find the next root [8]. 

The roots of the frequency equations give the values of the characteristic circular frequency parameters of the first 

three modes for various geometries. These roots are presented graphically for various thickness of the circular 

cylinder and for different values of the initial stress.  

Figures (1), (2) and (3) represent the first, second and third modes, respectively, of the natural frequency   versus 

h  for different values of initial stresses 
1110)3,2,1(    for the boundary conditions are free tractions and open 

circuit. It is seen that the circular frequency monotonically increases with diminution the thickness of the circular 

cylinder, while it becomes worth less with augmentation of the values initial stresses.  

The general form of the dispersion curves illustrated in Figs.(1), (2), and (3) are very similar to those presented in 

Figs. (5), (6) and (7), for the boundary conditions are free tractions and close circuit, as well as which are also shown 

in Figs. (9), (10) and (11) for the boundary conditions are clamped surfaces and open circuit. 
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Figure (1), The first mode of the natural frequency   versus h  for different values of initial stresses 

1110)3,2,1(   (Free tractions and unelectroded surfaces). 
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Figure (2), The second mode of the natural frequency   versus h  for different values of initial 

stresses 
1110)3,2,1(   (Free tractions and unelectroded surfaces). 

 

Figure (3), The third mode of the natural frequency   versus h  for different values of initial stresses 

1110)3,2,1(   (Free tractions and unelectroded surfaces). 
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Figure (4), The first three modes of the natural frequency   versus h  for the value of initial stresses 

11102  (Free tractions and unelectroded surfaces). 

 

Figure (5), The first mode of the natural frequency   versus h  for different values of initial 

stresses 
1110)3,2,1(   (Free tractions  and electroded surfaces). 
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Figure (6), The second mode of the natural frequency   versus h  for different values of initial 

stresses 
1110)3,2,1(   (Free tractions  and electroded surfaces). 

 

 

Figure (7), The third mode of the natural frequency   versus h  for different values of initial stresses 

1110)3,2,1(   (Free tractions  and electroded surfaces). 
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Figure (8), The first three modes of the natural frequency   versus h  for the value of initial stresses 

11102  (Free tractions  and electroded surfaces). 

 

Figure (9), The first mode of the natural frequency   versus h  for different values of initial stresses 

1110)3,2,1(   (Clamped  and electroded surfaces). 
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Figure (10), The second mode of the natural frequency   versus h  for different values of initial 

stresses 
1110)3,2,1(   (Clamped  and electroded surfaces). 

 

Figure (11), The third mode of the natural frequency   versus h  for different values of initial stresses 

1110)3,2,1(   (Clamped  and electroded surfaces). 
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Figure (12), The first three modes of the natural frequency   versus h  for the value of     

                   initial stresses 
11102  (Clamped  and electroded surfaces). 
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