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Abstract 

There is hardly any branch of physics one can approach successfully without resorting to quantum statistical 

mechanics.  It has been proven that the quantum mechanical description of a system gives accurate results.  To 

use quantum statistical mechanics, the system are treated at their microscopic level.  Most systems consist of 

many particles and in order o deal with such large numbers, one has to resort to statistical method related to the 

partition function of statistical mechanics.  In this study, we haves used the partition function which is  a 

statistical parameter to explore the thermodynamic properties such as Helmoltz free energy, Entropy, internal 

energy and heat capacity of a magnetic materials in a ferromagnetic system using the first and second 

dimensional Ising model. The results show that in one-dimensional model, phase transition does not occur at 

finite temperature but susceptibility of a system can be measured from the fluctuations in the magnetization in 

the second dimensional Ising model. 

 

1. Introduction 

The discovery of magnetic material predates the invention of writing.  Humans were fascinated by the attractive 

or repulsive force between magnets and they assigned magical and esoteric values to these objects.  Later the 

Chinese discovered the earth’s field and use magnets as compass [1,2]. Electric and magnetic phenomenon was 

scientifically investigated, when placed in an external magnetic field of their own.  It points either in the same 

direction (paramagnetism) or in the opposite direction (diamagnetism) [3,4].  Ferromagnetism is the ability of a 

paramagnetic material to retain spontaneous magnetization as the external magnetic field is removed [5,6].  The 

only ferromagnetic elements iron (Fe), Cobalt (Co), Nickel (Ni), Gadolinium (Gd) and Dysprosium (Dy) [7,8]. 

Ferromagnetic materials have a large, positive susceptibility in an external field, they exhibit strong 

attractive force to magnetic fields.  They involve spin of electron of the outer layers because of their unpaired 

electrons so their atoms have a net magnetic moment. Even though electronic exchange forces in 

ferromagnetisms are very large, thermal energy eventually overcomes the exchange and produces a random 

effect.  This occurs at a particular temperature called curie temperature (Tc) and above this temperature all 

ferromagnetic substances changes to paramagnetic substances.  As T → Tc the magnetization goes to zero 

following a power law [9,10]. 

The Ising model [11] is a crude model for ferromagnetism, it was invented by Lenz who proposed it to 

his Ph.D student Ernest Ising.  By 1925, Ising submitted his dissertation which was the first exactly solved one-

dimensional case.  This model receives great attention from both physicist and mathematicians in that; it is the 

simplest model of statistical mechanics where phase transitions can be vigorously established.  The Ising model 

has a probabilities interpretation [12,13]. 

Heermann in 1990 discussed large-scale simulation of the two-dimensional kinetic Ising model.  The 

dynamics of the system is specified by the transition probability of the Markova chain which will be realized by 

a Morite Carlo Algorithm [14].  He therefore calculated the dynamical critical exponent (z) for the Ising model 

defined by the Hamiltonian 

 ∑−=
ji

jigI SSjH
,

sin               (1) 

where ji,  are nearest-neighbouring pair of lattice sites [15, 16]. 

Kosiorek et al in 2004 also studied the nanoscopic structures in the form of pyramids and can be fabricated on a 

bulk substrate.  They considered the magnetic properties of a nanoscopic pyramid described by the model of 

localized and other spin ½ Hamiltonian using Ising model defined by [11, 12, 13]. 

 ∑−= z

lffl SSIH ''
2

1
        (2) 

where I is the coupling parameter. 

The aim of this paper is to determine the thermodynamic properties of magnetic materials in a 

ferromagnetic system using Ising model.  In this work, we shall explore the use of the Ising model and apply it to 

thermodynamic properties of magnetic materials.   
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2.0 The Ising Model 

In 1920, Wilhelm Lenz proposed a basic model of ferromagnetic substances to his Ph.D student Ernest Ising. By 

1925, Ising was submitting his dissertation which was the first exactly solved one dimensional case, and as such 

was later called Lenz-Ising model [11, 12]. 

Let the exact states (microstate) in the system be S (S = 1, 2, 3,..... n), the energy of this microstate be Es such 

that the partition function (z) which is a statistical parameter becomes  

  ∑ −=
s

EseZ
β

         (3) 

where β  is the inverse temperature; 
TK B

1
=β  and BK  is the Boltzmann’s constant. 

The probability  sP  that a system is in the state S  is  

  sE

s e
Z

P
β−=

1
        (4) 

Applying ∑
s

 to both sides of Eq. (4) gives  

  ∑∑ −=
s

E

s

s
se

Z
P

β1
        (5) 

Substituting Eq. (3) into Eq. (5) 

  1=∑
s

sP         (6) 

The average energy of the system is the total of the energies of the microstates weighted by their relative 

probabilities. 

  ∑=
s

ssPEE          (7) 

Substituting Eq. (4) into Eq. )7) and taking note of Eq. (3) we obtain 

  sEE =         (8) 

The Helmhpltz free energy function is given by  

  ZKTF ln−=         (9) 

 

  ZKTEE s ln−==        (10) 

Also 
β
1

=T  which implies 1=BK  so from Eq. (10)  

  
β∂

∂
−=

Z
E

ln
        (11) 

From fluctuation in energy in a canonical ensemble 

  vCKTE 2=         (12) 

where 
T

U
Cv ∂

∂
=  is the heat capacity and U  is the internal energy of the system 

But 
Z

U
1

=  

  
T

Z

T

Z
Cv ∂

=
∂








∂
=

ln

1

       (13) 

Substituting Eq. (13) into Eq. (12) we have  

  
T

Z
KTE

∂
=

ln2
       (14) 

The entropy of the microstates can be defined from the statistical weights by using the function  
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  ( )EKS B Ω= ln        (15) 

( )EΩ  is the number of microstates with energy E  . From the first law of thermodynamics 

  WEQ ∂+∂=∂    

where =Q quantity of heat, =E  internal energy  and =W Work done on the system. 

When the system is heated without any work 0=∂W  then EQrev ∂=∂  

But TdsQrev =∂  and hence 

  ,TdsE =∂  thus 
TE

S 1
=

∂
∂

      (16) 

Equation (16) shows that the entropy will increase slowly as the temperature gets higher, but entropy will never 

decrease as the temperature increases.  Equation (15) can also be defined directly in terms of the distribution 

function and the logarithm of the distribution function of a subsystem has the form. 

  ( ) EZE β+=Ω lnln         (17) 

The mean value of Eq. (17) can be written as 

  ( ) EZE β+=Ω lnln         (18) 

The entropy of the system can then be written as  

  ( )EES Ω−=∆= lnln        (19) 

Substituting Eq. (17) into Eq. (19) 

  ( )EZS β+−= ln        (20) 

Substituting Eq. (20) into Eq. (15)  

  ( )EZKS B β+−= ln       (21) 

Equations (20) and (21)  are equal since 1=BK  and sEE = . Also from Eq. (16) 

  
T

E
S

∂
∂

=          (22) 

Substituting Eq. (10) into Eq. (22) we have  

  
( )

T

ZKT
S

∂
∂

−=
ln

        (23) 

Equation (23) shows that entropy will never decrease as the temperature increases. 

 

3.0 Calculation of the Ising Model in one-dimension 

In one-dimension Ising model, there is no external magnetic field.  The energy is equal to the enthalpy as there 

will be no work done by the system.  Each configuration is given by the Hamiltonian  

  ∑
−

=
+−=

1

1

1

N

i

iiJH σσ         (24) 

The partition function thereby becomes  

  







= ∑∑∑

−

+
+

±=±=

1

1

1

11

exp...
1

N

i

iiN JZ
N

σσβ
σσ

     (25) 

Using the hyperbolic function xee xx cosh2=− −
, Eq. (25) reduces to  

  { } JJ NN

N

βσσβ
σ

cosh2exp 1

1

=−
±=

∑       (26) 

Substituting Eq. (26) into Eq. (3) we have 

  [ ] ...2,1,0;cosh2 1 == − NZJZ NN β       (27) 

  ( ) 1
cosh2

−= N

N JZ β        (28) 

The Gibb’s free energy of the system is given as  

  NB ZTKG ln−=         (29) 
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Substituting Eq. (28) into Eq. (29) and evaluating  

  ( ) ( )[ ]JNTKG B βcoshln12ln −+−=      (30) 

In the thermodynamics limit, that is, the limit of the free energy as N tends to infinity. Only the term proportional 

to N is important so Eq. (30) becomes  

  ( )JTNKG B βcoshln−=       (31) 

In the presence of magnetic field, the Hamiltonian becomes 

  ∑∑
==

+ −−=
N

i

i

N

i

ii hJH
11

1 σσσ  ,      (32) 

where the spin labels run modulos N  (i.e iiN =+ ) and .1++= iii σσσ  

The partition function for this new Hamiltonian can be written as  

  ( )















 +Π= ++
=

∑ 11
1 2
exp iiii

N

i
N

h
JZ

i

σσσσβ
σ

    (33) 

Since the potential is very large, we introduce a 2 x 2 transfer matrix 

  







=

−−−

−

1111

1111

PP

PP
P        (34) 

where 
( )hJeP += β

11  is the Hamiltonian  

 
( )hJeP −

−− = β
11  is the Lagrangian 

 
JePP β−

−− == 1111  is the P. E when K. O-=0 

We can now use the transfer matrix to describe our partition function in terms of a product of these transfer 

matrices. 

  
N

n TrPPPPZ
NN

i

==
−∑ σσ

σ
σσσσ 13221

...      (35) 

Matrix P can be diagonalized and the eigenvalues  1λ  and 2λ  are the roots of the determinant in 

( )0det =− Iλρ  and I  is the 2 x 2 identity matrix. 

  

( )

( )
0=












=

−−−

−−−

λββ

βλβ

hJI

JhJ

ee

ee
P        (36) 

Evaluating the determinant and letting ∞≈− Iβ2
l as the potential energy function increases we have  

  0cosh2 22 =−− − JJ eJe ββ βλλ      (37) 

Solving Eq. (37), we obtain 

  
JJJ eJeJe βββ ββλ 222

2,1 coshcosh −+±=     (38) 

But JJ ββ 22 sinhcosh =  when the spin rotates at angle 45o for a one-dimensional Ising model.  Similarly, 

the matrix 
NP has eigenvalue 

N

1λ  and 
N

2λ  and 
NTrP  is the sum of the eigenvalues. 

  
NN

nZ 21 λλ +=         (39) 

Substituting Eq. (39) into Eq. (29) 

  ( )NN

BTKG 21ln λλ +−=                (40a) 

   
































++−=

N

B NTK
1

2
1 1lnln

λ
λ

λ              (40b) 

This approaches 1lnλTNKB−  as N  goes to infinity.  Now taking this to the thermodynamics limit by 

substituting Eq. (38) into Eq. (40a) 

  



 ++−= − JJJ

B eJeJeTNKG βββ ββ 22 2

sinhcoshln             (41) 
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4.0 The Ising Model in two dimensions 

The simplest two-dimensional lattice is a square lattice with yx NNN ×=  

  ( )
yxi iiiS ,,1 =±=                (42) 

  1...,1,0;1..,1,0 −=−= yyxx NiNi  

The simplest form of interaction is nearest-neighbour where iS  interacts with it’s four neighbouring spin with 

the same coupling spin J  

  ∑∑ −−=
i

ij

ji

i SHSSJE ,
,

              (43) 

Here ji,  represents a distant pair of nearest neighbour spins and H  is a uniform external magnetic field.  

The most convenient type of boundary condition is separately periodic in each of the two dimensions: 

  ( ) ( )
yxyyxx iiSNiNiS ,, =++               (44) 

With these boundary conditions, the total number of bonds is exactly 2N. There are 4 bond attached  to each spin, 

but each bond is shared by two spins, thus the number of distinct bonds is 2N. 

 

5.0 Thermodynamic Properties of Magnetic Materials using the Ising Model  

We are now going to use the Ising model to determine the four thermodynamic properties such as Helmholtz free 

energy, the entropy, heat capacity and internal energy. 

 

5.1 Helmholtz Free Energy 

This property can be analyzed using Eq. (38). From the equation, it could be observed that when 0=J , the 

thermodynamic eigenvalue 1λ  is relevant, 02 =λ  and the Hlemholtz free energy per spin is obtained using Eq. 

(9) and Eq. (28) as  

 ( )JTNKF B βcosh2ln−=
             

(46)
 

 where N is the number of particle per spin (i.e N = 0, 1, 2, ....). 

 

         

5.2 Entropy 

From the relation in Eq. (22) and carrying out the partial derivatives of in Eq. (46) we obtain the entropy for the 

ferromagnetic material  as 

  




















−
















=

TK

J

TK

J

TK

J
NKS

BBB

B tanhcosh2ln            (47) 

 

5.3 Internal Energy 

The internal energy is the sum of Helmholtz free energy and the product of temperature and entropy 

( )STFE +=  with the help of Eqs., we obtain the internal energy as  

 







−=

TK

J
NJE

B

tanh              (48) 

 

5.4 Heat Capacity 

The partial differential of the internal energy with temperature give heat capacity 







∂
∂

=
T

E
CV

 from Eq. (48) 

  

  















−

∂
∂

=
TK

J
JN

T
C

B

V tanh              (49) 
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=

TK

J
h

TK

NJ
C

BB

V

2

2

2

sec              (50) 

 

6.0 Discussion  

The thermodynamic properties of ferromagnetism have been explored using the transfer matrix form of the 

partition function using Ising model is presented in this paper and the variation of these properties with 

temperature are also discussed graphically. In Fig. 1, we have shown the behaviour of free energy of this system 

with change in temperature while the entropy and heat capacity as functions temperature are plotted in Fig. 2 and 

Fig. 3 respectively. Comparing thermodynamic properties of this system, it can be seen that for the internal 

energy, as temperature increases the internal energy increases negatively.  But at low temperature 

0;0 →→ ET  the entropy increases with temperature and this is in agreement with second law of 

thermodynamics 0≥∆S [17,18].  

 
Figure 1: Free energy dependent on temperature 

It is interesting to note that as ∞→T , the entropies of the system approaches a constant value.  The 

second law of thermodynamics is also still obeyed since 0=∆S  in the region for the heat capacity Cv , at the 

extreme[18]. Also as 0→T , the heat capacity increases with increase in temperature and reach  a maximum 

valued and then start decreases as 

2









→

TK

J
KCv

B

B for the ferromagnetic system. Heat capacity increases 

with increase in temperature and has a maximum value and then decreases as  

2









→

TK

J
KCv

B

B  for 

ferromagnetic system. 
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Figure 2:  Entropy (S)  as a function of temperature 

 
Figure 3: Heat capacity as a function of temperature. 

Similarly, the free energy reduces at low temperature and increase (negatively) at high temperature. 

This is also in agreement with the theory of thermodynamics[19, 20]. 

 

7.0 Conclusion 
We have been able to investigate the thermal properties of magnetic materials in a ferromagnetic system using 

first and second dimension Ising model.  It is an interesting model as phase transition does not occur in the on-

dimensional model at a finite temperature.  But in the second-dimension, susceptibility of the system can be 

measured from the fluctuations in the magnetization.  The susceptibility per spin can be determined by specific 

heat of the system and can also be measured using a fluctuation dissipation theorem. It is worthy to note here that 

each thermodynamic property of the ferromagnetic system considered has different behaviour.  But each 

corresponding thermodynamic parameter for the system converges at extreme values of the temperature, that is, 

in the limits 0→T  and ∞→T . The behaviour of ferromagnetic system under change in temperature has 

been discussed as shown in Figures 1-3.  

The work could be extended by looking more closely at the rotational variance that is observed in the 

sub-lattice prediction.  Also as there is an oddity in the results at low temperatures, it could further be 

investigated to determine if it is affected by the lattice size as well as the current lattice configured.   
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