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Abstract 

 The calculation of the thermodynamic properties in the Bose-Einstein distribution is presented. The behaviour of 

the Bose-gas in the Bose- Einstein distribution is analysed based on high and low temperature dependence. At � >

��  all particles are in the excited state and the ground state is essentially occupied. But at  BTT <  particles 

gradually falls to the ground state and eventually contains all the particles in the system as .0→T The analytical 

expressions for some important parameters such as Bose-Einstein condensation of an ideal Bose gas, the 

population density of the excited and ground state particles are also presented. Heart capacity of an ideal Bose gas 

and total internal energy are also calculated and the results presented graphically. The results obtained are 

consistent with those found in the literatures. 

Keywords:  Bose-Einstein condersation, thermodynamics properties, Bose-Einstein distribution, excited state 
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1.0 Introduction 

Thermodynamic is a science that deals with the relations among heart, work and properties which are in 

equilibrium [1,2]. In Thermodynamic the physical properties of substance are often described as intensive or 

extensive depending on the size of the system. The distinction is based on the concept that smaller non- interacting 

identical subdivision of the system maybe identified so that property of interest does not change when the system 

is divided or combined [3,4]. For intensive properties; the physical property of a system does not depend on the 

system size or the amount of material in the system but an extensive property is additive for independent non 

interacting subsystems. The property is proportional to the amount of material in the system and depends on the 

size of the system [5,6]. 

The Bose-Einstein distribution describes the statistical behavior of integer spin particles (Bosons). At low 

temperature, an unlimited number of bosons can be occupied in the same state and this is known as Bose-Einstein 

condensation. However, the result and findings of this work is based on the population density of the Bose-Einstein 

gas. This population density depends on whether the temperature is high or low, at high temperature the particles 

generate an internal energy of which the heart capacity and other thermodynamic properties are also generated 

[7,8].  

A theoretical aspect concerning the thermodynamic properties of an ideal bosonic gas trapped by 

harmonic potential was investigated and analyzed at the University of Saopaulo, Brazil [9]. This was done by 

properly working in the Grand canonical ensemble of which the extensive and intensive thermodynamics variables 

were properly identified. Hasan and Gain in 2013 calculated the heart capacity of a Bose-Einstein condensation 

with two different temperature regime which are � > ��  and 0TT < . Heat capacity was obtained by 

differentiating total energy E(T) with respect to temperature using the density of state approach [10] 

The results are useful in determining how quick a substance will heat up or cool down, and it can also be 

used to estimate how  much energy is needed to raise the temperature of a substance. The study can also be used 

in analyzing the distribution patterns in organelle for example, invertebrate smooth muscles filaments, 

microtubules in axoms and micropirocytic vesicles in papillary endothelial cells [11]. This aimed at calculating 

the thermodynamics properties in the Bose-Einstein distribution and also deal with issues such as collection of 

indistinguishable boson which yield Bose-Einstein distribution, the Bose-Einstein condensation of an ideal Bose 

gas and the population density of an excited and ground state particles. 

 

2.0 Indistinquishable Fermions and Bosons 

In system consisting of collections of identical fermions or identical boson. The wave function of the system has 

to do with either antisymmetric (fermions) or symmetric (bosons) under the interchange of any two particles. With 

the allowed wave functions, it is no longer possible to identify a particular energy state. Instead, all the particles 

are shared between the occupied states and are said to be undistinguishable. 

In the case of undistinguishable fermions, the wave function for an overall system must be ant symmetric 

under the inter change of any two particles. One consequence of this is the Pauli exclusive principle. For a system 

of two fermions, a possible wave function is [12, 13] 
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where 1x  and 2x are the co-ordinate of the two particles and A and B are the two occupied state. If we 

try to put two particles in the same state, the wave function vanishes. Finding the distribution with the maximum 

number of microstate for system of identical fermions lead to the Fermi – Dirac distribution. 

For undistinguishable Bosoms, the wave function for a system of identical bosoms must be symmetric 

with respect to the inter change of any two particles. For a system of two bosoms, a possible wave function is [14 

15] 

( ) ( ) ( ) ( ) ( )[ ]122121
2

1
, xxxxxx BABA ψψψψψ +=   (4) 

If we put two particles in the same states, the wave function does not vanish, there is no limit in the 

number of particles we can put into any given state, and thus Pauli Exclusion Principle does not apply to bosons.  

 

3.0 Bose- Einstein Distributions 
The Bo se-Einstein distribution describes the statistical behavior of integer spin particles (bosons). It is obeyed 

by identical  indistinguishable particles of integral spin that have symmetric wave functions and is so named 

as it was devised by Bose for light quanta and generalized by Einstein [16]. Consider a system having n  

indistinguishable particles.  

If the particle is divided into quantum groups or levels such that there are ............,2,1 innn numbers of 

particles whose approximate constant energies are ............,.........21 iEEE respectively. Assume  ig  to be the 

number of eigen state (ie degeneracy or statistical weight) of the level. Then the Bose-Einstein distribution is given 

by [17, 18] 

1−

=
KT

E

i
i

i

Be

g
n        (5) 

where B is the normalization term, K is the Boltzmann’s constant and T is the thermodynamic temperature. 

 

4.0 Bose-Einstein Condensation  

Let us consider a boson gas consisting of a large number of identical bosons in a box with rigid walls and fixed 

volume moving freely within the box but cannot move beyond its walls. Then the distribution is given in Eq.(5). 

Consider the behavior of the constant B that appears in the above equation. This quantity correspond to the partition 

function in the Boltzmann’s distribution function and B can be determined by the constant. 

,Nni =∑        (6) 

where N  is the total number of particles. But the density of state for spin zero particles moving freely in a box of 

volume V, mass of particle m and energy of the particle E is given as 
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Replacing the summation in Eq.(6) over discrete energy levels by an integration over a continuum of energy levels, 

we have; 
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Substituting Eq. (5) and Eq. (7) into Eq.(8) gives 
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defining a function F (B) such that  
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Let KT
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and the Eq. (9) a nd Eq. (10) becomes 
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In terms of F(B) the total number of particles becomes 
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Using  Eq. (14) in Eq. (11) we have  
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From  Eq. (12) we have noticed that for � >> �, 
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The total number of particle for high temperature becomes: 
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and the Bose-Einstein gas B becomes 
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Here, the Bose-Einstein condensation can be discused. If � < �, there is a possibility of an energy level iE such 

that .0<in Clearly we cannot have a negative number of particles in any level at so we expect .1≥B Since 

)(BF takes a maximum value at  ,1=B then the maximum value of )(BF is given by  
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where ( )xξ  is the Riemann Zeta function defined as ( ) ∑
=

=
α

ξ
1

1
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We expect that as temperature goes down, )(BF ) has to go up. But )(BF has a finite maximum below some 

temperature BT at which the particle starts to disappear and is given by: 
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BT  is known as the Bose-Einstein temperature or the critical temperature, for � < �� the particles disappear to the 

ground state. 

Since the lower limit of the integral in Eq.(8) is zero, we assume that the ground state has a zero energy, the density 

of state and the population density is zero in the small energy range dE→0 . 

For a Bose Einstein gas, there is no limit to the number of particles that can fall to the ground state. At BTT > all 

particles are in excited state and the ground state is essentially occupied. But at BTT <  particles gradually fall to 

the ground state and eventually contains all the particle in the system as 0→T . 

 

5.0 The Population Density of an excited state particles in the Bose-Einstein Gas 

Let the population density of an excited state be given by: 
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Let the function )(TB  be the Bose-Einstein distribution, then for Bose-gas )(TB  is given by  
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where 
1−F  is the inverse of F  given by Eq. (11) and for BTT >>  we have  

  ,

2

3

1 2

3


















=

BT

T
B

ξ
      (23) 

where B  is the Bose-Einstein gas of the population density in an excited state.  Then the total population density 

of an excited and ground state particles of Bose-gas is given by  
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This leaves the remaining population in the ground state as 
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6.0 Total Energy of the Bose-Einstein Gas and Thermodynamics Properties 

If we assume that the ground state is a state of zero energy, then particles in the Bose-Einstein condensation makes 

no contribution to the total energy )(u and it’s written as  

  dE
mV

dEEEnu
KT

E

Be

E
ex ∫∫

∞

−

∞







==
0

1

2

3

220

2

3

2

4
)(

hπ
   (26) 

where we have used Eq. (24) for the density of particle in an excited state, and the total energy expressed as  
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At low temperature )( BTT < we can take 1=B , and  
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We see that at 2

5

, TuTT B α< , but at 1, >>≥ BTT B so we make the approximation 
yy BeBe ≈−1  from Eq. 

(27) we have that  
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Substituting Eq. (23) into Eq. (29), we have  

   NKTu
2

3
=       (30) 

The behavior this internal energy with temperature is presented in Fig.1. 

 

 

Fig. 1: Internal energy versus temperature 

By the implication of Eq. (30) the thermodynamics properties such as heat capacity and grand potential 

for this system can be obtained. Heat capacity for this system can be obtained by differentiating the total energy 

in Eq. (30) with respect to temperature at constant volume as  
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for an ideal gas, kinetic Energy kE is the same as potential energy pE  so kEu 2=  and RNk =  where R is 

the molar gas constant, =N Avogadro’s constant so from Eq. (31) 

   RCv 3=
                                                                                   (32)

 

Equation (32) is known as Dulong-Petit law [19].  

 

The variation of heat capacity with temperature is presented in Fig. 2 below. 
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Fig. 2: Heat capacity versus temperature 

Another thermodynamics property to be evaluated is the grand potential, the Grand potential is a 

thermodynamics potential denoted by ( )µ,TΩ . This potential is a function of temperature T  and chemical 

potential µ [20] 

   µNdsdTd −−=Ω      (33) 

Obtaining N at constant temperature ( )T  
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Also obtaining S at constant µ  
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7.0 Conclusion 

A Bose-Einstein condensation is a rare state of matter in which a large percentage of boson collapse into their 

lowest quantum state, allowing quantum effect to be observed on a macroscopic scale.  We used an accurate semi-

classical approach to calculate the thermodynamics properties of a Bose-Einstein gas.  An expression for the 

critical temperature   BT , the Bose-Einstein condensation and the population density of particles in an excited state 

and ground state was properly identified.  The calculated results shows that for BTT < , the particles of boson 

disappears to the ground state and this constitute Bose-Einstein condensation and at this point the internal energy 

is zero.  But for BTT >  the particle of bosons are in excited state and an internal energy is said to occur.  

Consequently, the heat capacity is obtained from the derivative of total internal energy with respect to temperature. 

The variation of these properties; internal energy and heat capacity with temperature are discussed in Figs. 1 and 

2 respectively. 
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