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Abstract 

The non-relativistics study of particles under the modified inversely quadratic Hellmann potential has been 

studied. The energy eigenvalues and the corresponding wavefunction expressed in terms of the Jacobi 

polynomial are obtained using the parametric NU method. In obtaining the solutions for this system, we have 

used an approximation scheme to evaluate the centrifugal term (potential barrier). To test the accuracy of our 

result, we compared the approximation scheme with the centrifugal term and the result shows that there is an 

agreement between the centrifugal term and the approximation scheme for a very small screening parameter; 

showing that our potential is a short range potential. The results obtain from this work, would have many 

application in inner shield ionization problem, Electron core, Solid state Physics, Alkali-Hydride molecules. 

Three special cases of this potential have also been discussed. 

 

1.0 INTRODUCTION 

Over the years, theoretical physics has been successful in explaining the behaviour of different particles in 

different potentials. This has been made possible by obtaining exact or approximate solution of non-relativistic 

and relativistic wave function for different physical systems of interest. The exact or approximate solution of this 

equation with central potential plays an important role in quantum mechanics [6, 9, 21, 26].  Inthat effect, exact 

solutions of quantum system are significant in Physics. Solving the non-relativistic and relativistic equation is 

still an interesting work in the existing literature [2, 16, 18]. 

Recently, the study of exponential-like type potentials has attracted much attention [25, 28]. However, 

the bound state solutions of the Schrodinger wave equation (SWE) of some of these potentials are possible for 

cases such as the Hellman potential [11],the wood-saxon [5, 7]. 

Moreover, when an arbitrary angular momentum quantum number 
( )l

 is present the Schrodinger wave 

equation (SWE) can only be solved approximately using suitable approximation scheme [22]. Some of such 

approximation scheme includes; conventional approximation scheme proposed by Greene and Aldrich [8]; 

improved approximation scheme by [20]. Elegant approximation scheme [14], and Good approximation by [30]. 

The approximation scheme used in this study was given by [4]. This approximation scheme is used to deal with 

the centrifugal term.  

Various methods have been used to solve the SWE, Klein-Gordon equation and Dirac Equation exactly 

or approximately. These methods include: Asymptotic Iteration Method (AIM) proposed by [29], 

supersymmetric quantum mechanics method (SUSYQM) proposed by [12], Shifted N

1

expression [23], 

factorization method [3, 15],Nikiforov-Uvarov (N-U) method proposed by [24] and others [13, 17]. 

The main aim of this study is to use the approximation scheme proposed by [4] and the Nikiforov-

Uvarov method to obtain the approximate bound state solutions of SWE with modified inversely quadratic 

Hellmann potential model (MIQH) defined as: 
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Where 0V
and 1V

 are the potential depths, a and b are the strength of the Coulomb and Yukawapotential 

respectively andα is the screening parameter(range).The MIQH potential is a short ranged and central potential. 

It could be used to describe nucleon-nucleon interaction, meson-meson interactions and has other applications in 

atomic and nuclear physics, chemical and other related areas. 

 

2. THE GENERALIZED PARAMETRIC NIKIFOROV-UVAROV (N-U) METHOD 

The N-U method was presented by Nikiforov and Uvarov[24] and has been employed to solve second order 

differential equations such as the Schrödinger wave equation (SWE), Klein-Gordon Equation (KGE) and Dirac 

Equation.  
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The SWE is given by: 

( ) 0)()()('' =−+ rrVEr ψψ
         (2) 

And can be solved by transforming it into a hypergeometric type equation using the transformation  

)(rss →
           (3) 

And the resulting equation is given by: 
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Where σ and 
2σ are polynomial of atmost second degree and τ

(
 is a polynomial of first degree and 

( )sψ
is a 

polynomial of hypergeometric type.  

The generalized parametric N-U method was introduced by [27] and is given by: 
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Eq. (5) is solved by Comparing it with (4), we have 
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According to the NU method, the energy eigenvalues equation and eigenfunctionrespectively satisfy the 

following sets of equation  
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3. FACTORIZATION METHOD 

In spherical polar coordinate, the SWE with potential V(r) is given as [28] 
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Using the common Ansatz for the wave function  

( ) ( ) ( )φθγφθψ ,,, lm
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The above simplify to  
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Where λ = l(l+1)  

 

4. THE SOLUTION OF RADIAL PART OF SWE WITH MIQH  POTENTIAL 

Substituting the potential of (1) into the redial Schrödinger equation of (11), we obtain 
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It is well known that the Schrodinger equation of (8) cannot be solved exactly for 0≠l by any known method. 

The way out is to use approximation for the centrifugal term. On this note, we invoke the approximation used by 

[4] 
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And using the transformation
res α−→  we have, 
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Where the following dimensionless quantities have been defined as; 
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Evaluating equ. (8) we obtain the following parameters 
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 (15)    

Substituting (15) into (6) we obtain the energy eigenvalue equation for the modified inversely quadratic 

Hellmann potential as; 
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Solving (17) explicitly, we obtain the energy eigenvalues for the radial part of Schrödinger wave equation as; 
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Table 1: Energy eigenvalues 
( )eVE

 of the Modified Inversely Quadratic Hellman Potential 
n  l  ).( uaEnl  

01.0=α  02.0=α  
1 0 -0.003004 -0.003261 

2 0 -0.01691 -0.002182 

2 1 -0.00116 -0.00160 

3 0 -0.001204 -0.00200 

3 1 -0.00100 -0.00200 

3 2 -0.009709 -0.001638 

 

Evaluating (6), the corresponding wave function for the radial part is obtained as;  
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And using the transformation
res α−→  we have 
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The total wavefunction for the system can be express as; 
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And nlN
   is the normalization constant and nP

is the Jacobi polynomials. 

 

5. DISCUSSION OF RESULTS 

The variation of MIQH potential with the radial distance of separation between the interacting particles for 

screening parameters α = 20, 10, 5, 2, 0.1,0.01, 

2.00 =V
, 

2.01 =V
and 1== ba  is Fig.1. At very lowα  the curves almost coincide showing that the curves 

are only interpretable at large α, meaning that the interacting particles are very massive.  

In order to test accuracy of this study, we compare the approximation scheme and the centrifugal term as shown 

in Fig. 2. From the graph, it shows that the approximation scheme is good for the screening parameter 

01.0=α  meaning that the MIQH potential is a short range potential. 

The energy spectrum of MIQH potential is reported numerically for various state for 

1,5.0,1.0 10 ====== hµbaVV
 with two different screening parameters 01.0=α and 0.02 in 

Table 1. There is no degeneracies for the considered eigenstate as shown in the table. 

Now, a few special case of our results are discussed below. By adjusting some potential parameters. Some well-

known potential can be obtained. 

 

5.1 YUKAWA POTENTIAL 

Setting 0=a , 1=b  into Eq.(1), Yukawa potential [31]  is obtained as: 

 r

eV
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Substituting these parameters into Eq. (17) gives the corresponding energy eigenevalues as; [10] 
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5.2 COULOMB POTENTIAL  

By setting 
01 =v

, 1=a , 0=b  into Eq.(1), the coulomb potential is obtained   

 r

V
rV 0)(

−
=

          (22) 

With the energy eigenevalue equation as [19] 
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5.3 HELLMAN POTENTIAL 

If 
10 =v

 and 
01 =v

, bb −= , The Hellmann potential can be obtained as: 

r
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The corresponding energy is given by as found in[11] 
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Figure 1. The Variation Of (MIQH) Potential With Radial Distance. 
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Figure 2. Comparison Of The Centrifugal Term And The Approximation Scheme. 

 

6. CONCLUSION 

In this study, the approximate bound state solution of SWE with modified inverselyquadratic Hellmann Potential 

(MIQH) via parametric Nikiforo-Uvarov (N-U) method was obtained. The energy eigenvalues and the 

corresponding total normalized wave function were also obtained. The numerical energy eigenvalues obtained in 

this study is presented in Table 2. The behaviour of the potential was discussed in Figure 1. Our results could be 

used to study inner shell ionization problem, Electron core, Solid state Physicsand Alkali-hydride molecule[1]. 

Under appropriate choice of parameters, the potential reduces to few well known potential in literature such as 

the Yukawa potential, Coulomb potential and the Hellmann potential. 
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