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Abstract 

The Method of Variational Moment Approach (VMA) depends on the relation that connects the real and 

imaginary parts of the optical model potential, known as the causality-based dispersion relation, where the 

Causality Principle sets forth that a scattered wave cannot be transmitted before the arrival of the incident wave. 

In this Study, an attempt is made to extend the application of the VMA Method, which dealt with simple systems, 

such as the proton- nucleus system and the neutron-nucleus system, in order to study the dispersion of complex 

systems such as the nucleus-nucleus system at a low range of energy. 

Wherefore, we found the following: 

1. The values of the geometrical parameters for the optical model potential specified in accordance with 

this Method and for the 

pa

interaction at the  energy range are correlated 

with the energy of the projectile and the linear dependence; 

2. After having calculated the real and imaginary momenta values  in terms of energy, it is 

further found that the values of such momenta are typical to their referential counterparts; 

3. After having calculated the values of the total reaction cross section and the differential reaction cross 

section and in dependence on such parameters using the SPI-GENOA program, it is found that they are 

approximating the experimental counterparts (those experimentally measured). 

4. Through the study of the energy-dependent potential, it is also found that there is a deviation in its 

behavior in vicinity of the quantum energy barrier. 

 

Introduction 

The α-particle optical model potential plays a key role in the studies of nuclear structure and nuclear reactions. It 

is used to unify the bound and scattering α-particle states [1], to analyze the superheavy particles induced by the 

α-decay[2 ], which constitutes the fundamental basis for the applications of nuclear astrophysics, and for the 

estimation of the radiation damage effects ensuing from the concomitant fusion state and the accelerator–driven 

systems (ADS). Due to such importance of the α-particles optical model potential (OMP), trials were made in 

order to determine and figure out its shape by studying the mutual effects of the α-projectiles at a certain range of 

energy into the direction of the target nuclei, in search for a certain phenomenological  method. In previous 

literature, the OMP of the α-projectiles at certain intermediate range of energies was determined well, and in 

order to ascertain the determined findings, the data, which was related to the scattering α-particles at low range 

of energies, were analyzed, and whereby it was found that the OMP parameters, obtained from α-particle elastic 

scattering at intermediate range of energies, [3.4] were invalid for the phenomenological  description of the 

scattering α-particles for lower energies (<40 MeV). 

Within the work [5] and upon analyzing the elastic scattering of the heavy ions bombarded at the 

energy 

[5] 

 MeV via the nuclei, there has been, for the first time, reference to the 

Threshold Anomaly (TA) phenomenon. Within the work [6], an interpretation for the TA phenomenon is 

provided through the introduction of the dispersion relation that connects both real and imaginary parts of 

potential. The optical model (OM) is used in order to explicate the mechanism of mutual effects between the 

nucleons and the nucleus, to expound the properties of colliding particles at an intermediate range of energies, 

and to render an accurate determination of the potential parameters. Insomuch as the low-energy ranges are 

concerned and due to the unavailability of experimental data at that time about each of the 

gy

 energy-

dependent reaction cross-section, polarization  and the  energy-dependent total cross-section, the OM 

was hardly made use of in breaking down all such previous values. Notwithstanding, the OM was tantamount to 

be the basis that had been sprung from several works and literature, and from which were emanated results that 

constitute a key cornerstones for future works. In light of the foregoing, both Researchers [1.2.3] devised a 



Advances in Physics Theories and Applications                                                                                                  www.iiste.org 

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) 

Vol.61, 2017         

 

40 
 

newly sophisticated model, which is systemized along the lines of the optical model, and which is called “the 

dispersive optical model” that incorporates two at-odds methods in principle: the Dispersive Optical Model 

method (DOMA) and the Variational Moment Approach (VMA) method. The former method involves the full 

description of potential by setting such potential on the basis of utilization of a full set of OP parameters, which 

is ideally selected while collating them with the elastic-scattering experimental data. The latter method was ab 

initio applied to study the mutual effects ofofofofofofofofofof , and  at the low- and 

intermediate-ranges of energy. This method depends on the dispersion relation that connects both real and 

imaginary components of optical model potential leading to the reduction of the number of potential geometrical 

parameters required to be fathomed. This method is built on the analysis of the data that is related with the 

scattering nucleons of the ,  and  in their entirety in order to determine the OP parameters. 

This method was afterwards applied in order to study the optical and non-optical systems of  

and  [7]that have got more than or less than one nucleon or two or three nucleons outside the closed 

shell, and less than one nucleon or two or three nucleons outside the closed shell respectively. In view of the 

successful results reached by this Method (i.e. the VMA method), we deemed it advantageous to extend it to 

incorporate the study of more complicated systems (that is to say, the nucleus-nucleus systems), an example of 

which is ), and to build and figure out the shape of potentials through finding the geometrical 

parameters for such potentials at the low- and intermediate-ranges of energies since the preceding studies were 

mainly dependent on scrutinizing the values of intermediate energies. 

Making use of the VMA method to study the scattering α-particles at low and intermediate ranges of 

energy would allow the interpretation of several reactions, at the top of which the interpretation of the deviation 

phenomenon near the Coulomb barrier. It would further interpret and render an explanation for the mass number 

and energy dependence of the imaginary potential and the estimation of the reaction total cross-section and 

differential at such ranges of energy. 

 

Modus Operandi of Finding the OMP Parameters of the Nucleus-Nucleus  

System: 

In the framework of the VMA method, the central part of the mean field M (r, E) resulting from the mutual effect 

of the nucleus-nucleus global system is topically local, and is expressed thereabout according to the following 

equation: 

 

The first term M (r, E): it represents the real part of potential, which is composed of two components: 

1. The V0 (r, E) Component, which consists in an energy-related exponential function, and the shape 

thereof is smooth; 

2. The Dispersive component, which is called the "Dispersive potential" (i.e. the "Dispersion 

Relation"). This relation connects both of the real and imaginary parts of potential, and is 

expressed in the following integral equation: 

 
Where: P is dependent on the principal value of the integrand; 

The energy-dependent  relates mainly to energy. Consequently, the first term of Eq. (1) 

represents the summation of two terms; i.e.: 

 

 
It is to be known that the Dispersive potential has got two component; to wit, the surface and volume dispersive 

potentials, which are expressed as stated in Eq. (3). 

As for the second term of Eq. (1): W (r, E) represents the imaginary part of the OP, which consists in the 

summation of two terms (i.e. the volume and surface imaginary potentials), and which is expressed in the 

following equation: 

 
It is notable that both Eq. (2) and Eq. (3) are correlated with each other via the Dispersion Relation. 

The third term of Eq. (1),  represents the potential arising from the mutual effects between each 

spin of the incident particle and orbital momentum of the target nucleus. 
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The forth term of Eq. (1), , represents the optical potential (OP). 

Due to the disparity of the OP parameters, reproduced by the energy analysis of the experimental data 

pertaining to the reaction cross-sections, and the rendition of a value commensurate with the reaction cross-

sections, it behooved to search for some coefficients that help reduce the number of parameters on one hand and 

eliminate ambiguity on the other hand through determining them. These coefficients are known as the second-

order moments of optical potential (the volume integrals per nucleon). These moments render an in-depth 

understanding of the behavior of the energy-dependent optical potential [8]: 

1- The second-order Moment of the Real-Part Potential 

po

 

2- The second-order Moment of the imaginary-Part Potential    

And the second-order dispersive moment, where the second-order moment of the imaginary-part Potential is 

determined in the framework of the VMA method by the following equation: 

 

 

: It represents the second-order moment of the volume imaginary potential; 

: It represents the second-order moment of the volume surface potential; 

 

Returning to the second-order moment of the total imaginary potential  the volume imaginary 

potential    by the Brown-Rho Scaling Relation [9], it is expressed as follows: 

 

 
 

 

Where  consist in parameters that are set by the way of identifying   for the sake of 

eliciting different values of energy with the same value thereof 

y 

, which is calculated by using the classic 

Optical Model (TOM). We will tackle the explanation of E0=0 later on. 

As for the second-order surface imaginary moment of the surface imaginary potential,   it is determined 

by the difference of   and as follows: 

 
Having calculated the second-order moments of the volume, surface and total imaginary potentials in line with 

the preceding equation, we can afterwards find out the imaginary potential with both of its volume and surface 

imaginary parts as follows: 

 
Where it is known that: 

 
At & Ap represent respectively the mass numbers of the target nucleus and the projectile. p
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While it is known that: 

 
It is apparently notable that the finding of energy dependencies of both Wd(E) and WW(E) relies on 

determination of the values of the reproduced parameters 

pe

, which are included in the fitting of 

 and  as mean values. 

As for the real part of the central potential, it is composed of the summation of two terms as stated in Eq. (3): 

 

 It determines the Dispersion Relation (DR), which connects both of the real and imaginary parts of 

potential as shown in the following equation: 

 

The dispersive potential is composed of the summation of two term; i.e. the surface dispersive potential  and 

the volume dispersive potential

mp

.  

 
They are determined in accordance with the following Dispersion Relation: 

 

 

Es represents a reference energy, for which the second-order moment of potential  is to be set on the 

assumption that  and 

rgy,

 are not correlated with the value of E. For the convenience of calculations, 

we can go beyond the integral reference and operate the preceding integral equation, taking into cognizance that 

each of 

 g yo

 and 

eg

 has the form of the Woods-Saxon (WS) dependence shape, and are determined by the 

following equations: 

 

 

In the framework of the VMA method, the parameters  are required to be taken as mean and 

homogeneous values, that is to say: 

:  

After determining the dispersive component of the real part (namely, the second term in Eq. (3)), we move to the 

determination of the first term (namely, V0(r, E)), which is identified according to the following equation: 

 

 It is determined by use of an equation being similar to Eq. (18). 

As we mentioned hereinabove, V0(r, E) relies on energy and the dependence thereof due to substituting the 

nonlocal potential with a local equivalent as the nuclear power affects a newly localized location. 

The potential depth U0(E) is given the following formula [Ca
40

]: 

 
Nevertheless, the second-order moment of the potential is given y the following equation [Ca

40
]: 

 
Substituting Eq. (22) and Eq. (21) into Eq. (20), we get the value estimated in the first term of Eq. (3) according 
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to the following formula: 

 

 has got the Woods-Saxon dependence shape, and is determined by the following relation: 

 
Taking advantage of Eq. (15) and Eq. (23), the first term in Eq. (3) is rendered as follows: 

 
The second-order moment of real potential represents the sum of both the second-order moment of the potential 

 and the second-term moment of the dispersive potential as follows: 

 

 

- Second-order moment of the volume dispersive potential; 

- Second-order moment of the surface dispersive potential 

They are determined in accordance with the following Dispersion Relation: 

 

As for the moment,  it is determined according to Eq. (22), which is rendered for convenience of all the 

preceding calculations by dividing the radius of Coulomb potential in accordance with the following Equation: 

 

Which is deemed    

The potential of the spin-orbit mutual effect is determined by the following equation: 

 

After finishing the determination of the mean nuclear field components, the reaction cross sections , 

 and 

g 

 by using a program that is written by a Pascal language, in which case the real optical 

potential must be expressed by the parameters of Woods-Saxon optical potential as we are mentioned beforehand. 

Then, the linear extrapolation method of the Wood-Saxon potential must be made use of in accordance with the 

following equation: 

 

  

In the framework of the VMA method, the real potential parameter  is deemed energy dependent, and its 

value is calculated by solving the following equation: 

 

Where  is calculated according to Eq. (25), and  is calculated according to Eq. (24). 

A special program related to the SPI-GENOA Program was prepared, and by which all the calculated values of sp

 are found, then the accurate determination thereof is ascertained by identifying them with their 

experimental counterparts at the same energy values. 
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Empirical Section: 

In the framework of the VMA Method, the at-issue  Nucleus is firstly characterized in pursuance of the 

experimental data that is available in the scientific references concerning the scattering of alpha ( ) by the pe

 Interaction; viz. concerning the reaction total cross section 
)(Es

and differential cross section 

)(qs
and 

)(qP
within the deterministic range of energy at 

MeVE )101( ££ a . 

The potential parameters were reached by the way of searching and simulating the calculated and 

experimental values of 
)(Es

for the interaction 
)( 27Al+a

at the energy range
MeVE )101( ££ a . They 

are listed in the following Table (1): 

Table (1): The Results of the Interaction within the Range of Energy at  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
0.65 1.43 10.5 0.766 2.099 80 3 

0.655 1.435 13.5 0.618 1.871 79 4 

0.66 1.44 16 0.592 1.76 78 5 

0.67 1.445 17.7 0.571 1.759 77 6 

0.675 1.45 19.2 0.564 1.758 76 7 

0.68 1.455 19.8 0.558 1.757 75 8 

0.685 1.46 20.7 0.55 1.756 74 9 

0.69 1.465 21.7 0.544 1.755 73 10 

The values of the Optical Potential parameters, which were found for the System , were approved so 

that the cross section values, calculated by the SPI-GENOA Program, are highly approximate to the 

experimental values of the reaction cross section. In reliance on the foregoing, we set out the following tables 

that incorporate the values of the real second-order moments  and the imaginary second-order moments  

that are fitted with the parameters previously calculated in Table (1) in addition to the cross section values of the 

Interaction  at the range of energy under study. 

Table (2): The Second-Order Moments by taking advantage of the OP Parameters of the by

 Interaction 

  

  

  

  

  

  

  

  

24.9 24.9 3.20E+01 3 

23.37 23.37 9.55E+01 4 

23.87 23.87 2.53E+02 5 

23.37 23.37 4.75E+02 6 

22.87 22.87 6.71E+02 7 

22.37 22.37 8.19E+02 8 

21.88 21.88 9.29E+02 9 

21.4 21.4 1.01E+03 10 

DETERMINATION OF THE SECOND-ORDER MOMENT VALUES OF THE IMAGINARY PART OF THE SURFACE & 

VOLUME OPTICAL POTENTIAL: 

In the framework of the VMA Method, the second-order moments are determined by using the Brown-Rho 

relation [6], namely: 

1- The second-order total moment 
( )EJW ; 

2- The volume imaginary potential 
( )EJ

WW ; 

For assurance of the accurate determination of the geometrical parameters of the optical potential and the 

accurate determination of the terms at the range of energy 
MeVE )101( ££ a , we compared the calculated 

values of the energy dependence of each of the second-order potential of the surface and volume imaginary part 
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with their experimental counterparts for the system . It is graphically represented as shown in Fig. 

(1): 

 
 

Figure (2) stands for the Second-Order Moment of the Imaginary-Part Optical Potential with 

its Energy Dependancy to the at-issue Nucleus, where (r), (X) & (*) are Moment Values in the 

References [10,11,12] 

 

From Fig. (1), it is noted the calculated values of 
( )EJW  are well identified with the data shown in the 

Reference[10], [12] and are clearly discordant with the Alpha-Perey Reference, since they are deemed among the 

classifications that have relied on expectancy (stochasticity) in selecting the optical potential parameters. 

The Finding of the Real Potential in the Framework of the VMA Method: 

After finding the parameters of   through drawing up the second-order moment of the imaginary potential 

in terms of energy, we conducted the fitting calculations in order to find the real moments for the 

 Interaction. They were compared afterwards with their experimental counterparts as shown in 

Fig. (2). 

 
 

Figure (3) represents the Dependency of the Second-Order Moment of the real part of the 

Optical Potential for the Interaction within the Range of Energy 

 

As noted from Fig. (2), there is a deviation in the energy dependence of the real moment at lower range of 

energies, and in particular in the energy threshold region of the interaction, and the interpretation of which is 

attributed to an anomaly, being resultant from the overlap of the real part with the imaginary part of the 

Dispersion Relation (DR). 

The energy dependence of the dispersive moment for the interaction  was only determined through 

the Dispersion Relation (DR), which connects both the imaginary and real parts of OP within the range of energy 

Stochastic Total 

JR-PEREY 
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Figure (4) stands for the Energy-Dependence of the Dispersive Moment of tthe Interaction gu  ( ) ) ) ) 

 at the Energy Range of as it is noted herein that it is in 

approximation of the Behavior of Real Moment near the Threshold, and which has a deviance in 

terms of Energy   

as shown in Fig. (3), which exhibits the Dispersion Relation of the Nucleus under 

study: 

 

DETERMINATION OF THE RADIAL VALUE OF THE REAL POTENTIAL )& STUDYING ITS ENERGY 

DEPENDENCE AT THE ENERGY RANGE OF  IN THE FRAMEWORK OF THE VMA 

METHOD: 

The Optical Real Potential radius for the Interaction is given by means of the following Third-Order Equation: 

 
 

 
Figure (5) reveals the Energy Dependence of the Real Potential Radius reproduced in the Framework of 

the VMA Method 

As it is noted, we find a remarkable rise in the low-range of energy near the Interaction Threshold, and a decline 

thereof with the increasing energy. This explains that at the threshold energy range there are reaction channels 

contributing in the mutual effects between the α-particle and the target nucleus. With the rise in energy, some 

channels are closed, and only a single channel is maintained: the scattering channel 

Optical Potential Parameters in the Framework of the VMA Method: 

After finding all the Parameters 

the amewor of the

 and using the Property , the reaction 

cross section value is calculated in accordance with these parameters, where such parameters are entered into the 

SPI-GENOA Program, and are then compared with their experimental counterparts in the following step. 
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Table (3): The Optical Potential Parameters of the Interaction  resultant in the Framework of the VMA Method  

 

 

  

 

 

 

  

  

  

  

  
)

( 

  

  

  

  

  

  

  

  

39.41 396.77 2.01 0.68 1.45 7.49 0.56 1.7823 60.43 3 

51.28 396.97 42.4 0.68 1.45 11.255 0.56 1.78218 60.48 4 

61.51 396.29 209 0.68 1.45 14.577 0.56 1.7809 60.49 5 

68.86 395.04 441 0.68 1.45 17.318 0.56 1.7791 60.47 6 

75.59 393.42 645 0.68 1.45 19.51 0.56 1.7769 60.45 7 

79.11 392.05 802 0.68 1.45 21.245 0.56 1.7747 60.43 8 

83.69 390.18 922 0.68 1.45 22.617 0.56 1.772 60.4 9 

88.77 388 1016 0.68 1.45 23.708 0.56 1.77 60.37 10 

Determination (Calculation) of the Cross Section of the Reaction  by using the Optical Potential 

Parameters reproduced in the Framework of the VMA Method: 

After finding the Optical Potential  (and its Parameters) resultant from the mutual effects between the α-

projectiles towards the target , we conducted the following: 

First: Calculation of the Cross section of the Reaction 

ng

 within the range of energy at 

. It is followed by their comparison with their experimental counterparts at the same 

range of energy under study as shown in Fig. (5): 

 

 
 

Figure (6) stands for the Energy Dependences of the Cross Section and of the Interaction  

at the Energy Range 

rgy pe

 which is calculated by using the As-Amended VMA, 

and the comparison thereof with their Experimental Counterparts in Reference [14]  

As shown in Fig. (5), it is noted that the calculated and experimental values of the cross section of the 

Reaction  are fitted at the range of energy under study and within the permitted experimental errors.   

Second: Calculation of the Differential Cross section of the Reaction 

 p xp

 for the Energy 

  and studying its Angular Dependence as() shown in Fig. (6). 
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Figure (7) stands for the Angular Dependence of the Differential Cross Section of the Reactin gu  ( ) 

 for the Energy 

ng ep

, which is calculated by using the As-Amended VMA 

Method and the comparison thereof with its Experimental Counterparts [15] 

In Fig. (6), it is noted that the calculated and experimental values of the differential cross section of the 

Reaction  are fitted for the small and large angles and they have been behaving on the same lines. 

Therefore, we can say that the differential cross section is so sensitive for the nuclear potential shape that is fitted 

at the higher range of energy than the Coulomb barrier. 

From Fig. (5) and Fig. (6), we can say that the fit is so convincing since the dispersive mean field 

incorporates only so little adjustable parameters. In addition, if the parametric identifications are effected at each 

energy independently, they will be not as good as being resultant in the actually-effected extent, and this refers to 

the following truism: 

The quality of nuclear structure effects plays a more significant role in the lightweight nuclei than 

heavyweight nuclei. In addition, the Woods-Saxon radial shape may be so simple in case of the lightweight 

nuclei. 

The preceding figures ( 3,4,5,6) corroborates the reliability of the dispersive mean field. Furthermore, 

the approximate resemblance between the experimental results and those reproduced from the Dispersive Optical 

Model Analysis proves the accuracy of the method having been made use of. 

 

Conclusions 

1. For the first time, the As-amended VMA Method is used to analyze the differential cross section with its 

angular dependence  and polarization , and the reaction total cross section with its energy 

dependence at the energy range of 

po , 

 for the System . 

2. We found out that the values of the second-order moment of the real part are fitted and identified with their 

counterparts in References [  ] for the Interaction  within the range of energy at rp

. 

3. We found out that the values of the second-order moment of the imaginary part are fitted and identified 

with their counterparts in References [10,11,12] for the Interaction  within the range of energy 

at 

pa

 for instance. 

4. We further found out a heterogeneous behavior in the second-order moment of the real part for the System 

 within the range of energy near the Coulomb barrier (the Energy Threshold). Such behavior 

consists in an anomaly for the energy dependence of the Potential 

(t

.  

5. We further found out a heterogeneous behavior in the energy dependence of the Optical Potential radius 

near the Energy Threshold. This can be explained as result of the Dispersion Relation (DR) that connects 

both real and imaginary parts of Potential, where such anomaly is exhibited due to the closure of some 

reaction channels. 

6. After calculating the reaction total cross section, we found it out to be identified with its experimental 

counterparts for the System  and within the energy range at . 

7. After calculating the Differential Cross section of the Reaction as angularly dependent, we found it out to 



Advances in Physics Theories and Applications                                                                                                  www.iiste.org 

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) 

Vol.61, 2017         

 

49 
 

be fitted and have a homogeneous behavior upon comparing it with its counterparts that are extracted from 

References [15], wherewith the accurate determination of the Optical Potential Parameters as well as the 

accuracy and authenticity of the utilized Method are assured. 

 

Recommendations 

1) To use the As-amended VMA Method in studying a widespread spectrum of nuclei at different ranges of 

energy for the  projectiles; 

2) To extend the Study to incorporate heaviest heavy-ions of  
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