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Abstract 
In this work, we study phase transitions in dilute Bose-Einstein Condensates theoretically. The Gross-Pitaevskii 
equation (GPE) is applied to describe the properties of dilute Bose gases near zero temperature for various 
confining geometries. Then, using the harmonic trap, the Thomas Fermi equation has been investigated. The 
Bose-Hubbard Model has been also investigated using the mean field approach. It is indicated that Bose-Einstein 
condensation is a second order phase transition. We also presented an exactly solvable phase transition model in 
which the phase transition is purely statistically derived. It is found out that the mean field theory can be applied 
to a number of physical systems so as to study the phenomena of Berezinsky-Kosterlitz- Thouless (BKT) phase 
transitions. 
Keywords: Phase Transition, BEC, GPE, Bose-Hubbard Model, Berezinsky-Kosterlitz-Thouless (BKT), Mean 
Field equation 
 
1.  Introduction 
Phase transitions and existence of long-range order are core areas of contemporary statistical mechanics. This 
general concept can be utilized to predict properties of various materials of scientific and technological interest 
as well as to gain understanding of a myriads of phenomena ranging from the origin of the universe to the 
behavior of water at different temperatures. One of the most interesting phase transitions is the formation of 
Bose-Einstein condensation (BEC) [1]. Phase transitions are ubiquitous in nature, and can be arranged into 
universality classes such that systems having unrelated microscopic physics show identical scaling behavior near 
the critical point [2, 3]. BEC was originally conceived by S. Bose and Albert Einstein, who concluded that if a 
gas of atoms could be cooled below a transition temperature, it should suddenly condense into a remarkable state 
in which all the atoms have exactly the same location and energy. The wave-function of each atom in a BEC 
should extend across the entire sample of gas. For a dilute gas, the requisite transition temperature is so low as to 
be un-achievable by the technology of Einstein’s day [2, 4]. 

In nature, particles can be divided into two categories: bosons which are particles with integer spin (e.g. 
photons) and fermions which have half-integer spin (e.g. electrons). A key difference between the two is that 
fermions are limited to only one particle per state as per the Pauli- exclusion principle, while bosons can occupy 
the same state in any number. In the Bose- Einstein statistics, the occupation of the ground state of the system 
diverges in the limit of zero temperature, leading to macroscopic population of this single state [11]. All of these 
aspects are well described by a non-linear Schr dinger equation, in which the non-linearity arises from repulsive 
potentials between the Bo-sonic atoms that make up the condensate [12]. 

BEC is a state of matter of bosons confined in an external potential and cooled to temperatures very 
near to absolute zero. Under such super-cooled conditions, a large fraction of the atoms collapse into the lowest 
quantum state of the external potential, at which point quantum effects become apparent on a macroscopic scale. 
When a Bo-sonic system is cooled below the critical temperature of BEC, the behavior of the system will change 
dramatically, because the condensed particles behave like a single quantum entity [14, 15]. 

The Gross-Pitaevskii (GP) theory was developed by Pitaevskii [19] and Gross [20] independently in 
1960s. For a long time, the validity of this mean field approximation lacks of rigorous mathematical justification. 
Mean field theories, for instance the Gross-Pitaevskii theory successfully describe a broad variety of interesting 
phenomena observable for the spatial distribution of the gas in a harmonic trap, for recent reviews of numerous 
successful applications of the mean field theories in BEC in atomic gases [21]. This work provides the theory of 
phase transitions in dilute BEC. Applying the mean field theory it is also attempted to study the consequences of 
phase transitions in dilute BEC and investigate the Gross-Pitaevskii mean-field ground state properties in 
interacting and non-interacting limits. 
 
2. Methodology  
2.1.  The Mean-Field Theory 
The mean field theory the many-body Hamiltonian is given by the same as the basis of field operators the total 
Hamiltonian can be written in the form. We consider the general case of  spineless bosons that are interacting 
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with a potential . Thus using again the basis of field operators the total Hamiltonian can be written in 
the form 

 
In the case of weak interactions BEC occurs when a macroscopic number of atoms oN  occupies the same 

single-particle wave function and the ratio (N − N0) /N << 1 in the thermodynamic limit ®N . In this case,  
 and the operators   and   and can be treated as real numbers:   and the 

field operator can be decomposed in 

 

Where    is called quantum depletion. Treating the depletion as a small perturbation, 

Bogoliubov built the first-order theory of uniform Bose gases. 
 
2.2 The Gross-Pitaevskii Equation (GPE) 
The Gross-Pitaevskii Equation (GPE) is a form of Non-Linear Schr¨odinger Equation (NLSE) that has been 
successfully used to describe the static and dynamic properties of BEC at very low temperatures. The condition 
for BEC phase-transition does not depend on interaction between atoms, the product (the condensate) is strongly 
affected by the interaction between atoms. The dilute-gas condensate can be well described by a macroscopic 
wave function or order parameter 

, which satisfies the Gross-Pitaevskii equation [11]. The field operator can be decomposed as  
    
Where   is a classical field defined as the expectation value of the field operator, 

  .  It has a well-defined phase and its modulus gives the density of the 
condensate . It is often called the wave function of the condensate and it characterizes the off-
diagonal behavior of the one-particle density matrix: 

  
Which is different from zero for macroscopic distances |r – r’| of the order of the size of the sample (long-range 
order). In order to derive the equation of the condensate wave function   we use the time evolution for 
the field operator   in the Heisenberg equation with the many-body Hamiltonian, Eq. (1). These yields 

 
Where  

 
Where using the properties of commutation relation we have . 
From commutation relations we assume set the values of   are 

 
For the interaction (non-linear) part of the Hamiltonian in Eq. (7) and similarly let us consider the following for 
the linear part of the Hamiltonians, 

  
The application of the relation of commutation and the substitution of Eq. (7) and Eq. (8) Followed by replacement of r’ by r gives us the time dependant GPE in the operator form 
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To solve the GPE in non-operator form, let us split the Bose field operator in Eq. (9) into the 

 

 
is the ground state expectation values of the bose field that describes a non-uniform condensate, and  
and  annihilates and creates non-condensate particles density. By using the decomposition in Eq. (11) 
and setting 

 and express the cubic non-
linearity of the Bose operator in Eq. (9) in terms of the following expression as 

 
The self consistent mean-field approximation given as 

 
We can be used to simplify the last term of Eq. (12). Therefore, using this approximation, Eq. (12) can be written 
as 

 
Substituting Eqs. (13 and 14) into Eq. (9) gives us 

 
Assuming that all sorts of fluctuations can be ignored, the variation terms in the above equation can be canceled. 
Thus, we are left with 

 
where  is the atomic mass, g is the self-interaction constant and  is the total confining potential 
which shows the variation of condensate wave function with respect to time [5]. We also make some additional 
approximations such as for T = 0 and for weakly interacting systems we can replace  with the classical 
field . With the approximation we can replace  

 
Where g is coupling constant given by the equation 

 
This characterizes the strength of inter-particle interactions. The value of  can be either zero, positive or 
negative according to the sign of the scattering length a. For s = 0 we recover the ideal, non-interacting limit. 
Positive (negative) values of correspond a to effective repulsive (attractive) interactions respectively. In the most 
common case of a three dimensional magnetic trap  has the form,  

     
where  and  are the transverse and the social trap frequencies respectively and  is called the 

asymmetry parameter. If  the trap is spherical, whereas if  the trap is cigar-shaped and for  
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the trap is pancake-like. The condensate wave function is normalized to unity that is 

 
Eq. (16) is called the Gross-Pitaevskii equation (GPE). It has the form of a non-linear Schr¨odinger equation [23]. 
 
3. Discussion 
3.1.  A Bose Gas in a Harmonic Trap 
The BEC of ideal Bose gases is a special case of the generalized BEC phase transition. By studying this exactly 
solvable model, we can also obtain a deeper insight into the BEC of ideal Bose gases. The conservative traps 
used to confine the ultra cold atoms in this work create potentials U(r) that can be approximated as harmonic trap 
potential 

 
The total number of atoms  in the grand-canonical ensemble and using Bose statistics is given 
by the sum over the eigen-states of single-particle Hamiltonians ( ) 

 
Where  is the chemical potential and    is the Boltzmann constant and T is the temperature. 
The confining potential for alkali atoms at low energies is given by 

 
The thermodynamic limit in the case of harmonic trapping is defined by setting  andddddd , with the 
combination  kept fixed where  is the geometric average of trap frequencies. The 
eigenvalues of this single-particle of Hamiltonian of the form 

 
With the quantum numbers  the population of the ground state N0 becomes microscopic of the order N, 

when the chemical potential μ becomes equal to the energy of the lowest state   where 

   is the arithmetic average of the trapping frequencies. Using the condition that 
the excitation energies are much larger than the level spacing of the trapping potential one can replace the sum 
by an integral over Eigen states of the single-particle Hamiltonian. This semi-classical approximation is valid 
when . If we separate the number of particles in the ground state N0 from the rest of the integral 
one can find the number of particles in the excited states, 

 
The above integral can be evaluated if we make a change of variables , etc, giving 

 
Where ,   is the Riemann zeta function yielding results such as 

, etc. We can also calculate the transition temperature T0 c for non- 
interacting bosons, by setting  at the transition. One finds that 

 

 
Inserting the above expression for the transition temperature into Eq. (26) one finds the T dependence of the 
condensate fraction for T < T0 
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For the transition temperature and the condensate fraction can be compared with those for an ideal i.e. 

 
For the transition temperature and 
 

          

For the condensate fraction compare Eqs. (25) And Eq. (28) we note that the trapping potential affects the 
transition temperature and the number of particles in the condensate. For the same total number of atoms, the 
number of atoms in the ground state is larger in the case of a confined system than a free system [5, 13]. In such 
harmonic trapping potentials the conditions for Bose-Einstein condensation can be calculated. For a gas trapped 
in 3D the critical temperature is given by           

           
With the number of atoms [13]. For large number of particles and when the chemical potential greatly 
exceeds the level spacing of the trap the quantum pressure, i.e. the kinetic energy term for many properties of 
BECs it is useful to examine the possible approximations of the GP- equation. To do so, one has to look at the 
different parts of the total energy of the system. It can be distinguished in three parts. These are the kinetic, the 
potential and the interaction energy respectively which are Ec + Ep + Ei. From Eq. (16) for the GPE to obtain the 
equilibrium properties of a Bose-Einstein condensate it is useful to look for the stationary solutions of the GP-
Equation. Those can be found by separating the time-dependant solutions in a time-independent part and a time 
evolution term:                           

            
Where the temporal evolution is fixed by the chemical potential and the stationary GP-Equation 
For the wave function (r) then reads:      

                                 

Then neglecting this regime is called Tomas-Fermi (TF) regime within the TF [1] regime the 
stationary GPE becomes 

 
 

 
The condensate density  assumes a parabolic density profile, or more generally its shape is an inverted 
potential U(r). In this notation also the role of  controlling the number of particles becomes immediately clear. 
Both densities represent the same number of atoms, enabling us to see the influence of the interactions. In the 
case of the Gross-Pitaevskii equation, the non-linear  term allows the term between square brackets 
individually to become small, canceling the need for highly oscillatory terms [5]. 
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3.2. Bose-Einstein Condensates as Phase Transitions 
An ideal gas consisting of non-interacting Bose particles is a fictitious system since every realistic Bose gas 
shows some level of particle-particle interaction. Nevertheless, such a mathematical model provides the simplest 
example for the realization of Bose-Einstein condensation.  

This simple model, first studied by A. Einstein [14], correctly describes important basic properties of 
actual non-ideal (interacting) Bose gas. In particular, such basic concepts as BEC critical temperature Tc (or 
critical particle density nc), condensate fraction N0 = N and the dimensionality issue will be obtained. By 
neglecting atom-atom interactions the BEC behaves as an ideal gas with all atoms occupying the ground state of 
the harmonic potential U(r). This case is accurately described by the ground state wavefunction of a three 
dimensional harmonic trap and the ground state of the system is obtained when setting all non-interacting bosons 
occupy the lowest single-particle state; there,  has the Gaussian profile 

 
The ground state of the ideal gas of harmonic trap is then substituting in to the equation of the time independent 
of GPE. The density distribution of the ground state   has a Gaussian profile and grows linearly with N. 
In contrast, the size of the condensed cloud is independent of N and is determined by the harmonic oscillator 
length 

 

  

Which is the average width, the individual condensate widths , where i = x,  y, z can 

then be used to determine the momentum spread using the Heisenberg uncertainty principle  

 
By using   the average release energy for a non-interacting condensate can be calculated and is 
independent of N 

 
The theoretical description of Bose-Einstein condensation does not need a special trapping geometry. It was in 
fact formulated first for uniform systems. For dilute atomic gases in practice however some kind of trap is 
needed, to keep the atoms thermally isolated from their environment. In this case, the trapping scheme generally relies on the magnetic interaction of the atom’s magnetic moment with an external magnetic field. Most of these 
traps provide harmonic confinement with axial symmetry [29]. 
 
3.3. Excited State Population in Harmonic Traps 
The Bose-Einstein statistic gives the probability that in a system of temperature T a particle populates a state of 
energy   

 
As we treat the ground state separately, it is adequate to compute the maximum number of thermal particles at a 
given temperature in the continuum approximation 

 
The critical particle number at a given temperature is defined by 

 
In a harmonic trap one can write explicitly the energy dependence of the density of states, which for any 
dimensional system with axial symmetry is 
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Where                               

For temperatures KBT one can replace the sum over the excited states by an integral (this approximation is called 
the semi-classical approximation), and as  , one can take this integral from  . The 
population of the excited states for 3D system is 

 

 

 
We can evaluate the energy integral using the relation,  

 
Where    then substituting this equation in to Eq. (43) it gives 
as  

 

 
Where  is the BEC critical condition expressed in terms of the Bose function defined by 

 
                                                                   And  

Where  is a fugacity and . The energy integral for uniform 3D, 2D and 1D system 
are then reduced to the Bose function of  and  and  respectively. As  
is negative for all  is smaller than 1 and smaller than . This means that the 
population of the excited states  has an upper bound: 

 
This is the maximal population of the excited states for a given temperature T. To obtain the BEC critical density 
for 3D system is give as 

  

From these the simplest way to include repulsive interaction is the mean field. Assuming that all the effects of 
interaction can be described by all  wave scattering length one can generalized equation  

.   

The simplest way to include repulsive interaction is the mean field. The critical density number 

, 

is a simple consequence of the Hartree-Fock approximation using a pseudo potential to a, in which the shift of 
the single particle energies is give by . The factor of two comes from exchange. Since  is 
the independent of momentum we have to increase the chemical potential by  to keep the same particle 
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density as the ideal gas. Because the Hartree-Fock self energy depends on the density it is more complicated than 
in the non-interacting case and the equation  is non linear.  
This means that BEC occurs when the inter particle distance becomes comparable to the deBroglie wave length 
of the particle at a given temperature. For generally the density of the thermal boson in the trap 

 , for the corresponding peak density . In free phase space density 

is . When the temperature is lower than   or equivalent the density is larger than , the mixture 
of the condensate at  is single particle ground state and the thermal population at single particle 
ground state is formed . 

 
3.4.  Bose-Hubbard Model 
While a Bose-Einstein condensate must occur even for a non-interacting system because of the Bose-Einstein 
statistics, systems with interaction also show Bose-Hubbard Model (BHM) is a kind of phase transition. To study 
the general concepts of quantum phase transitions is the Bose-Hubbard Model. The Bose-Hubbard Hamiltonian 
was first studied by Fisher et.al [31] in 1989 and reads: 

 

 
Here  is the kinetic, is the site population and  is appropriate interaction.  and   are creation and 
annihilation operators for bosons at site    being the occupation number operator at the same site. The 
creation and annihilation operators act on the eigenstates of the single-site occupation number operator, satisfies 
the Fock space. To verify the Hamiltonian  is invariant under a global U (1) phase transformation under 
which . The first term is called the hopping term and describes the hopping of the particles from one 
site to its nearest site  denotes that we sum up only over pairs of nearest neighbors. Hence accounting for 
the delocalization of particles in the lattice this is the kinetic term of the Hamiltonian. The last term is the on-site 
repulsion denoting the repulsion between two particles at the same site. The chemical potential  allows 
controlling the total density of particles in the system. Comparing the hopping and the on-site repulsion we can 
see that, while the former favors states in which the particles are delocalized throughout the lattice, the latter 
makes multiple occupied sites energetically expensive and favors states in which the particles are well localized. We can expect that both terms will compete in the intermediate coupling regime, when μ is small enough, and, 
following the arguments presented in the introduction, we can expect a quantum phase transition. However, 
before going into a mean-field analysis off , which will allow us to verify that this is indeed the case, it is 
instructive to analyze the two limits  (where on-site repulsion dominates) and   (where hopping 
dominates). 
 
3.5.  Limit at Zero Hopping 
In the limit the Hamiltonian reduces to 

 
This Hamiltonian is just a sum of single-site Hamiltonian and therefore the ground state is just the tensor product 
of well defined single-site eigenstates. We can therefore look at a single site by considering a state with  
particles at this site; we get an energy contribution of this site like 

 
This would be minimal for  but casted to an integer value, meaning that the value of  

changes only for integer values of   . As this result is independent of the lattice site, we know that we have a 
commensurate filling of the lattice and the total density would be pinned at an integer value for a whole range of 
the chemical potential. To introduce the  q and  as the creation and annihilation operators for particles at 
momentum , which are given by the Fourier transform of the corresponding real space operators as 
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When M denotes the total number of sites the expectation values of   

               
The sum and the phase factor can be taken out of the expectation brackets, such that we get the sum over the 
expectation values  but this would be zero for , as the ground state is product of single-site 
wave functions, hence it follows      

         

For  

 
And  has no index. This expectation value is independent of  and hence every momentum is covered with the 
same weight which denotes the total delocalization in fourier space and therefore the strict localization in real 
space. 
 
3.6.  Limit at Dominant Hopping 
In this case the Hamiltonian of Eq. (49) reduces to 

 
It means that . We will first rewrite this Hamiltonian in Fourier space. For that we need the Fourier-back-
expansion 

 
Then the expectation value of   q using the Fourier space this would be given as 
As we consider only nearest neighbors, we can write, , where  is a unitary vector connecting 
nearest-neighbor sites. The summation over i would then give us  and the left phase factor with  just 
can be expressed as a cosine 

 
A system of free Bosonic particles will, at , form a perfect condensate and hence all particles would 
occupy the state with lowest available energy. As  is positive the ground state of this Hamiltonian would be at 

 and therefore the particles occupying the ground state would have zero momentum , 
only one momentum contributes and hence they are well localized at one particular point in momentum space. 
This means, the particles in this state are spread out over the whole lattice in real space and they have a constant 
phase equal for all  phase coherence. 
 
3.7.  Phase Transitions in Bose Gases 
Thermodynamics of Phase Transitions A phase diagram is a representation typically in a plane of the regions 
where some substance is stable in a given phase. The axes represent external control variables (intensive 
parameters), such as pressure, temperature, chemical potential or an external field, or sometimes one extensive 
variable (volume, magnetization, etc) density is sometimes used in the case of fluids. The different phases are 
separated by lines, indicating phase transitions, or regions where the system is unstable. 
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Figure 1: Phase Diagram of State under the , the dotted green line gives the anomalous behavior of 
water, the Clausius-Clapeyron relation can be used to find the relationship between pressure and temperature 
along phase boundaries. 

This graph is the most important features of the phase diagram of a simple substance. The three possible 
phases (solid, liquid and gas) are separated by first-order phase transition lines (continuous lines in the graph) 
where two phases coexist at the same time (hence the name coexistence lines). Phases are indicated by their 
names, and two special points are called  (triple point) and  (critical point). BEC is occurs when the 
temperature  less than the critical temperature i.e. (T < Tc). In the case of homogenous gas BEC occurs only 
atatatatat . Sublimation line is the solid coexists with the gas. This line exists from zero temperature up to the 
triple-point temperature, . On lowering the temperature at constant pressure starting from the gas side, the 
gas would reach the sublimation line, at which crystallites would begin to form until the whole system becomes a 
crystal [13, 16]. 
 
3.8.  BKT Phase Transition 
The formation of a Bose-Einstein condensate represents the most obvious phase transition in dilute Bose gases, 
but the internal degrees of freedom can also give rise to other phase transitions. For the spin or Bose gases, the 
formation of a ferromagnetic or anti ferromagnetic order is an example of a phase transition which shares an 
important common feature with the onset of a BEC a broken symmetry. The BKT transition is perhaps the most 
notable example of phase transitions. The transition from the super fluid phase to the normal fluid phase in two 
dimensions is associated with the unbinding of pairs composed of vortices and anti-vortices. This phase 
transition is the Berezinskii-Kosterlitz-Thouless (BKT) transition. This is infinite order transition, continuous but 
no symmetry breaking. At temperatures much below the BKT transition temperature, the phase fluctuations in 
the quasi-condensate are dominated by the phonons. By the fact that in thermal equilibrium at finite temperature, 
the free energy  must be minimized, it is easy to capture the physical picture of BKT transition.
 
4. Conclusions 
In this paper we have studied different aspects of theoretical study of phase transitions in dilute BEC. BEC, a 
kind of phase transition is discussed for interacting and non-interacting cases. From the many body Hamiltonian 
equation neglecting the fluctuation terms, we derived GPE. The mean field approach leads to the GPE which has 
to be fulfilled by the single-particle wave functions in order to minimize the total energy in the system. In the 
third chapter we showed BEC of harmonic traps and the Thomas Fermi approximation is calculated by 
neglecting the kinetic energy term of the GPE. The ground state of an ideal gas in a harmonic trap is then 
calculated using the time independent of GPE ground state. The BEC of ideal Bose gases is a special case of the 
generalized BEC phase transition. By studying this exactly solvable model, we can also obtain a deeper insight 
into the BEC of ideal Bose gases. The Bose-Hubbard Model can be expressed in terms of the mean field 
approach in the limit at Dominant Hopping and zero Hopping methods. In chapter four, we discussed about 
phase transition in Bose Gases. A phase transition is the transformation of a thermodynamics system from one 
phase to the other state of matter. The mean field theory can be applied to a number of physical systems so as to 
study the phenomena of Berezinskii-Kosterlitz-Thouless transitions. 
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