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Abstract 

Global Navigation satellite System (GNSS) has become an important tool in any endeavor where a quick 

measurement of geodetic position is required. GNSS observations contain both Systematic and Random errors. 

Differential GPS (DGPS) and Real Time Kinematic (RTK) are two different observation techniques that can be used 

to remove or reduce the errors effects arising in ordinary GNSS. This study has utilized procedure to compare DGPS 

with code and phase solutions.  
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1.0 Introduction 

Real time GPS applications are commonly based on the code (range) measurements. These measurements are 

affected by many biases, which cause the derived three-dimensional coordinates to be deviated, significantly, from 

the true positions [1]. Differential GPS (DGPS) is a method that can be used to remove or reduce the ionosphere, 

troposphere and orbit effects.  

Differential GPS (DGPS) is a method that can be used to remove or reduce the ionosphere, troposphere and orbit 

effects. In DGPS, corrections are generated at a base station and then the rover receiver has the value of errors such 

as ionosphere, troposphere and satellite ephemeris errors. In addition, the satellite or receiver clock errors can also be 

cancelled out by differencing between two receivers or two satellites respectively. Therefore, DGPS can give high 

accuracy after the significant reduction of those errors. 

DGPS works effectively in local areas within 50 kilometres. Therefore, conventional local area DGPS method can’t 

gave a reasonable accuracy for large area applications. The corrections at the user sites can enhance the carrier phase 

ambiguity resolution and improve the positioning accuracy in Real-Time Kinematics (RTK) situations. 

1.2 Test Field Procedure: 

A dual frequency GPS receiver of LEICA RTKGPS 1200 system, was setup at the reference point (NGN95), which 

serve as the control station (master) throughout the research. The receiver at the master station was on static mode 

and at observation rate of (5) seconds. The rover receiver of the same LEICA type was setup at point number (PM-

08) that is about 3 km from the reference receiver with the same parameters as the master receiver as presented in 

figure (1) below. All other stations were similarly occupied as presented in figure (1) and table (1) below.  
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Figure 1: GPS observation 

  Table 1: schematic diagram of distance relationship. 

NGN95 PM-08 PM-09 PM-11 PM-12 PM-13 PM-14 PM-15 

Dis.,(m) 2920 3453 5119 6110 5601 5910 6467 

NGN95 PM-17 PM-18 PM-19 PM-20 PM-21 PM-22 PM-23 

Dis.,(m) 7516 8575 9416 9775 8330 6743 6222 

In addition, the other essential observation operating parameters are the same for both reference and rover receivers, 

which are: the Health/L2 mode is selected as Auto, the minimum elevation angle (mask angle) is (10) degrees, the 

data rate (5) seconds, initialization period is (10) minutes and the minimum number of (4) satellites. 

1.3 GPS Observation Equations 

Two different models for the GPS observations can be applied: one model for the code measurements and the other 

model for phase measurements. The code observation is the difference between the transmission time of the signal 

from the satellite and the arrival time of that signal at the receiver multiplied by the speed of light [2]. The time 

difference is determined by comparing the replicated code with the received one. The time difference is the time shift 

essential to align these two codes. The code observation represents the geometric distance between the GPS satellite 

and the receiver plus the bias caused by the satellite and the receiver clock offsets. Moreover, the atmospheric bias 

and the noise influence the code observations [3]. 

 The basic observation equation related to the code measurement of a receiver (a) to a satellite ( j ) can be written as 

[4].      

R t t C t C t Ion t Trop ta

j

a

j j

a a

j

a

j
( ) ( ) ( ) ( ) ( ) ( )= + − + + +ρ δ δ ζ  ∆ ∆      (1-1) 

Where: 

 R ta

j ( )   The biased code geometric range 

 ρ a

j t( )   The space distance between the satellite and receiver 

 C   Speed of light. 

 δ j t( )   The bias of the satellite clock . 

 δ a t( )   The bias of the receiver clock  

 ∆ a

j Ion t( )  The ionosphere delay in m. 

 ∆ a

j Trop t( )  The tropospheric delay in m. 

 ζ   The observation noise 

 
The phase measurement is the difference between the generated carrier phase signal in the receiver and the received 

signal from the satellite. The phase measurement is in range units when it is multiplied by the signal wavelength. It 

represents the same range and biases as the code observation, and additionally the range related to the unknown 

integer ambiguities. The observation equation for the phase measurement can be written as the follows [4]:    
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Where: 

ϕ a

j t( )  The phase difference between the received code and the replica generated phase in 

receiver 

 N a

j
  The unknown integer ambiguity. 

 λ   The wavelength of the carrier wave. 

  f  The signal frequency. 

 ε   The phase observation noise. 

 

1.4  Double-difference mode 

The double-difference mode is executed between a pair of receivers and pair of satellites as shown in figure (2). 

Denoting the stations by a (a), (b) and the satellites involved by (j), (k). Two single-differences according to equation 

(1-3) can be applied [4]: 
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Figure 2: The double-difference technique. 

 

These single-differences are subtracted to get the double - difference model as: 
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Using the short hand notation as in the single-difference 
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The result of this mode is the omission of the receiver clock offsets. The double-difference model for long baselines 

when there is a significant difference in the atmospheric effect between the two baselines ends can be expressed [2]: 
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1.5 Network Double-difference Error Observable 

Assuming that a network of n GPS reference stations is available, the network single observable vector (ℓ) is defined 

as follows: 
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sv φφφφ ,,,,,, LLLl =                                                    (1-7)      

                               

Where sv

rx

n

nφ  is the phase measurement minus true - range observable from receiver rx to satellite sv in single form. 

The geometric ranges are calculated using precise coordinates of the reference stations. rxn  is the number of 

reference stations, and 
svn  is the number of satellites observed at each station. The network double -difference 

observable vector is [2]: 
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Where: 
xy

abφ∆∇  is the double - difference measurement minus true - range observable between receivers a, b and 

satellites x, y. mathematically, a double -difference matrix B can be used to relate the network single observables and 

the network double - difference observables such that: 

nnn lBl =∆∇                                                                              (1-9)   

n

n

n
l

l
B

∂

∆∂∇
=                                                                             (1-10)   

The dimension of the double - difference matrix is (dm x m), where dm is the number of network double - difference 

observables and m is the number of network single observations [2]. For example, consider an example of 2 

receivers a, b where each receiver tracks 3 satellites 1, 2, 3.  

The network single observable vector is: [ ]321321 ,,,,, bbbaaa llllll  

Choosing satellite 1 to be the base satellite, the double - difference vector, is given as: 

 [ ] [ ])()(),()(, 331122111312

babababaabab llllllllll −−−−−−=∆∇∆∇                       (1-11) 

Performing the partial derivative as shown in equation (1-12),  

 

matrix B is: 
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If the double - difference ambiguities of network baselines are correctly resolved, the network double - difference 

error vector is: 

φδφλδ ucnnn ppdNll ∆∇+∆∇=∆∇−∆∇=∆∇ ),( 0                                      (1-12) 

Where: ),( 0ppdcφ∆∇  is the network double - difference spatially correlated errors and φδu∆∇  represents the 

network double - difference uncorrelated errors. A Kalman filter is used to estimate the float ambiguities using L1 

observations, L2 observations and stochastic modeling of the ionospheric error. The ratio test is used to validate the 

fixed ambiguities. The network double - difference errors are also called the estimated network double - difference 

corrections. These will be used as input measurements for the linear minimum error variance estimator.  

 

2.2 Data Processing: 

After collecting the field data, using dual frequency DGPS receivers, as mentioned above, both L1 data and L2 data 

becomes available. Consequently, to satisfy the objective of this research, the collected data was processed using 

LGO software. The run is performed using CODE and PHASE solution approach.  

 

3.0  Results and analysis. 

The main objective was to investigate the accuracy standard of the final resulted coordinates of surveyed points 

between Dual Frequency DGPS CODE ONLY solution, and CODE AND PHASE solution, for short distances (less 

than 10km). LGO software has the capability of producing results of these two different solutions. 

Table 4.1 shows the output coordinates from the LGO software. Keeping in mind that, all these points ambiguity 

have been resolved. 

The coordinate’s discrepancies (∆E, ∆N), and positional discrepancies (∆P), between the two dual frequency DGPS 

solutions, of CODE ONLY, and CODE AND PHASE, data processing, are evaluated in the following manner: 

∆E = E code only – E code and phase   

∆N = N code only – N code and phase   

∆P = 22 NE ∆+∆  

Where, the CODE AND PHASE solution is assumed to be the standard or reference solution. Table (4.2) includes 

such discrepancies, for the all fourteen points under consideration, including the reference point (NGN95). In 

addition, figure (4.3) displays the variations of coordinates discrepancies, (∆E, ∆N, ∆P), as computed at each point, 

and defined by the point ID. 
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Table 4.1: LGO software, CODE AND PHASE and CODE ONLY results 

 

Pt. Id 

Code + Phase Solution Code Solution 

East North East North 

NGN95 234604.403 3180412.773 234604.403 3180412.773 

PM-08 236618.466 3182526.913 236618.788 3182527.345 

PM-09 237328.137 3182535.806 237328.648 3182536.36 

PM-11 239251.862 3182558.970 239251.092 3182559.462 

PM-12 240337.101 3182527.901 240337.722 3182527.071 

PM-13 240165.606 3181077.388 240166.069 3181077.831 

PM-14 240514.765 3180383.594 240513.924 3180382.693 

PM-15 240999.488 3179448.527 241000.228 3179448.957 

PM-17 241931.228 3182088.399 241930.368 3182087.469 

PM-18 243123.530 3181387.700 243123.885 3181387.058 

PM-19 243996.530 3181079.872 243997.201 3181078.962 

PM-20 244364.367 3179864.487 244364.799 3179864.958 

PM-21 242934.016 3180318.405 242934.648 3180317.693 

PM-22 241343.872 3180193.391 241344.193 3180193.805 

 

 

Table 4.2: Discrepancies between CODE AND PHASE and CODE ONLY solutions 

Pt. Id ∆E(m) ∆N (m) ∆P 

 

Comments 

NGN95 0 0 0 
Control 

PM-08 0.322 0.432 0.539 
 

PM-09 0.511 0.554 0.754 
 

PM-11 -0.77 0.492 0.914 
 

PM-12 0.621 -0.83 1.036 
 

PM-13 0.463 0.443 0.641 
 

PM-14 -0.841 -0.901 1.23 
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PM-15 0.74 0.43 0.856 
 

PM-17 -0.86 -0.93 1.267 
 

PM-18 0.355 -0.642 0.734 
 

PM-19 0.671 -0.91 1.131 
 

PM-20 0.432 0.471 0.639 
 

PM-21 0.632 -0.712 0.952 
 

PM-22 0.321 0.414 0.524 
 

 

In order to visualize the range of discrepancies variations, the corresponding statistical parameters (Maximum, 

Minimum, Mean, and STDV for single determination) are computed for the 2-D coordinates discrepancies, (∆E, 

∆N), as well as for the positional discrepancies, (∆P), and summarized in table (4.3). 

From table (4.3) and figure (4.3) one can see that all resulted discrepancies are fluctuating round the zero value, in 

both positive and negative directions, with some values showing relatively large discrepancies. 

From table (4.3), for instance, as an example, the positional discrepancies, (∆P), are varying between zero, 1.267, 

with mean value of 0.843, and STDV of 0.253 for single determination. Similar statements can be stated for the other 

evaluated discrepancies, (∆E), and (∆N). 

Table (4.3): Maximum, minimum and standard deviation with the above differences 

 ∆E(m) ∆N(m) ∆P(m) 

STDV. 0.604 0.655 0.253 

Max. 0.74 0.554 0 

Min. -0.86 -0.93 1.267 

 

Moreover, from figure (4.3) one can easily find points of relatively large discrepancies.  

Of course, one should expect undesirable observing circumstances at such points, particularly, the number of 

available satellites, and consequently, the resulted GDOP value. 
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Figure 3 - Variations between CODE AND PHASE and CODE ONLY solutions 
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