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Abstract 

In this paper, we have exposed a process of how to implement a new splitting Adomian 

decomposition homotopy perturbation method to solve fifth-order KdV equations. The new 

methodology is applied on two kinds of  fifth-order KdV equations with initial data: The  first   

is Sawada-Kotera equation and the second its Lax equation. The  numerical  results  we  

obtained  from  solutions of  two kinds of fifth-order KdV equations, have  good convergent  

and high accuracy comparison with other methods in literature. The graphs and tables of the 

new analytical approximate solutions show the validity, usefulness, and necessity of the  

process. 
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1- Introduction 

The KdV equation is the nonlinear partial differential equation and it's an important equation 

describe a large number of physical phenomena for example; shallow  water  waves,  ion 

acoustic plasma waves, bubble-liquid mixtures. It name is taken from the world  who  

discovered its Kortewge-de Vries in 1895. Many scientists and researchers attempted to find 

solution of fifth-order KdV equation by using different methods for examples; Sawada and 

Kotera [1] use inverse scattering method and Lax[2] travelling wave solution to solve  5th-  

order KdV equation analytically. Bakodah [3] used modified Adomian decomposition method 

for solving fifth-order KdV equation. Wazwaz [4] applied sine-cosine and  tanh  method  to 

solve fifth-order KdV equation. Ghasemi et. al. [5] suggested  numerical solutions for fifth- 

order KdV equations by applying homotopy perturbation method. While, Adomian 

decomposition method(ADM) and homotopy perturbation  method(HPM)  are  active  and 

strong in finding solutions for physical and mathematical problems,  so many authors apply 

them to solve linear or non-linear initial-boundary value problems. The first method's name is 

taken from the scientist who discovered it ; namely, G. Adomian[6],  and  the  second  was  

found for first time by the Chinese Mathematician He[7]. In many works[8,9,10], the authors 

used ADM to find analytic and approximate solutions for different problems. In the same 

direction, the HPM is active to find solutions for non-linear equations[11,12,13]. 

 

Depending on the above literature review of the researchers' attempts to expand and develop 

ADM and HPM to solve  linear and  nonlinear boundary value  problems,  and depending on  

our simple information about applications of these methods to solve the  problems that are  

under consideration study. We adopt our new method based on combining Adomian 

decomposition and Homotopy perturbation methods with the splitting time scheme for 

differential operators, namely splitting decomposition homotopy perturbation method  

(SDHPM) [14], to solve fifth-order KdV equation. The power of this manageable method is 

confirmed by applying it for two selected problems as a test to be illustrated by the  

effectiveness   and   validity  of  new  methodology  in   finding   solution  of   fifth-order  KdV 
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equation. The numerical  results  we  obtained have shown that  the efficiency,  activity and  

high accuracy of the new method in comparison with standard ADM and HPM[5]. 

 
2- The main idea of the SDHPM method: 

    The basic idea of SDHPM depends on the algorithms of ADM and HPM those will be 

discussed in this section. The main idea of the standard two methods Adomian decomposition 

method  and Homotopy perturbation method will be explained to the general initial value 

problem  as in the following differential operators form: 

 

                  gNuRuLu                                                                                                   (1a)     

                      )0,(0 xuu                                                                                                           (1b) 

The linear terms decomposed into RuLu  ,while the nonlinear terms are represented by Nu , 

where L  is an easily invertible linear differential operator, R is the remaining linear part, 

),( txuu   is exact solution of Equation(1), and ),( txgg   is known analytic function.  

 

2.1 Algorithm of ADM: The principle of the Adomian decomposition method when applied 

for Equation(1) is in the following form (Celik et al.,2006[15]; Seng et al.,1996[16]). 

 

                                      )()()( 111 NuLRuLgLu                                                            (2) 

 

 Where                             


t

dtL
0

1 (.).                                                                                     (3)

      is the inverse operator of L . 

 

  The decomposition method represents the solution of Equation (2) as the following infinite 

series: 

                                                       





0n

nuu                                                                                (4) 

 

  The nonlinear operator )(uNu   is decomposed as: 

                                           





0n

nANu                                                                                        (5) 

  where nA  are Adomian 's polynomials , which are defined as (Seng et. al. 1996[16]): 

 

                          

00!

1



















 






n

i

i

i

n

n

n u
d

d

n
A    ,...2,1,0n                                                     (6) 

 

Substituting Equations (4) and(5) into Equation (2), we have 
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     Consequently , it can be written as:
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                       where )0,(xu  is the initial condition. 

           Hence all the terms of u  are calculated and the general solution obtained according to ADM as 

          





0n

nuu . The convergent of this series has been proved in[16]. However ,for some problems 

          this series can't be determined [15], so we use an approximation of the solution from truncated  

          series 

                                                         



M

n

nM uU
0

   with   uU MM lim                                                                    (9) 

2.2 Algorithm of HPM: To illustrate the basic idea of the homotopy technique [17,18] for 

Equation(1) ,with the boundary condition : 

                                                                     0, 













n

u
u                                                                                           (10) 

where,    is a boundary operator, we construct a homotopy    Rprv  1,0:),(  which satisfies: 

              1,0,0)()()()()()1(),( 0  pgvNvRvLpuLvLppvH                             (11a) 

or      0)()()()()(),( 00  gvNvRpupLuLvLpvH                                             (11b) 

  where  1,0p  is an embedding parameter, 0u  is an initial approximate of Equation (1) ,                                                                                          

which satisfies the boundary conditions. Obviously , from Equation(11) we have; 

                                                            0)()()0,( 0  uLvLvH                                                                       (12) 

                                                           0)()()()1,(  gvNvRvLvH                                                             (13) 

The  changing process of p  from zero to unity is just that of ),( prv  from )(0 ru  to )(ru . In 

topology, this  is called deformation , and )()( 0uLvL  , gvNvRvL  )()()(  are called 

homotopic. And  assume  that  the solution of  Equation (11) can be written  as a power series in 

p : 

                         ..2

2

10  vppvvv                                                                                             (14) 

Setting 1p  results in the approximate solution of Equation (1): 

                          ...lim 210
1




vvvvu
p

                                                                                    (15) 

The converge of this method is studied in [19]. 

2.3 Algorithm of SDHPM: Now, to illustrate the basic idea of the new methodology, we 

decomposed the linear differential operator in Equation(1a) into two parts of differential  

operators as the form : 

                        )()()( hLwLuL   ,                                                                                 (16), 

 where  1,0,,1   . By  this  definition, we  can split  Equation(1a)  into two  kinds   of 
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differential operator equations; one is linear and the other is non-linear as; 

 

                                           0)()(  wRwL                                                                           (17) 

 

                                           0)()(  ghNhL                                                                      (18) 

 

We apply ADM as explained above on Equation(17) to find the solution as series ,..2,1, nw
n  . 

depending on the initial condition 0
u , then using the result as an initial condition for the series 

solution ,..2,1, nh
n  that is obtained by using algorithm of HPM for Equation (18) 

respectively. Repeating this iterative procedure between Equation(17) and Equation(18) by 

exchange, in order to reach to the original series solution ,..2,1, nu
n , then use (9) to obtain on 

the solution u . 

 

2.3.1 Algorithm Analysis of SDHPM for fifth-order KdV equation: 

 

        Consider the fifth-order KdV initial value problem as the form: 

 

                  02  xxxxxxxxxxxxt uduucuubuuau                                                       (19) 

                            0)0,( uxu                                                                                                      (20) 

 

where u  represent the velocity and cba ,,  and d  are real parameters. 

Now, we start applying the ADM algorithm for Equation (19) with initial condition(20). 

Following, we define the differential operators ,,
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               02  uLduLucuLuLbuLuauL xxxxxxxxxxxxt
                                             (21) 

 

By defining the inverse operator 
1L  that is given in(3), we can write Equation (21) as; 

 

              )()()()()0,(),( 1111 uLLdKuLcMuLbNuLaxutxu
xxxxxtttt

                              (22) 
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nx
CuLuKuBuLuLMuAuLuNu  are the nonlinear 

operators can be calculated by using Adomian's polynomial which is define in Equation(6). 

The components solutions can be written as;       





0

),(),(
n

n txutxu                             

The associated decomposition method is given by 

 

                              )0,(0 xuu                                                                                                 (23a) 

             )()()()( 1111

1 nxxxxxtntntntn uLLdCLcBLbALau 

                                     (23b) 

 

 

http://www.iiste.org/


Advances in Physics Theories and Applications 

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) 

Vol.66, 2017 

www.iiste.org 

25 

 

 

where; 
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Consequently the iterative solutions are; 
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and so on. 

 

Now, By using HPM algorithm to Equation (19) ,we have: 
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We assume the solution as a power series in p ; then we have:  
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By equal the term which have the same power of p , we get:  
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   (26) 

and so on. Then the approximate solution can be found by setting 1p , 
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The application of SDHPM algorithm for Equation(19) is as follows: 

Applying (17) and (18) with 5.0  on (19) to obtain: 
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   uLucuLuLbuLuaLuhL xxxxxxxt   212)(                                                             (29) 

Then applying ADM for (28) to obtain; 
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and applying HPM for (29) with result of (30) to obtain; 
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Then, after repeating this procedure between two schemes(ADM &HPM) by exchange, we have: 
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

 

                                                                                                         (33a) 

Repeated this alternate procedure between two schemes ADM and HPM by using Equations (28) 

and (29),we obtain successive solutions that can be written as a sum;                                

                                





0

210 ),(),(
n

n txuuuutxu   
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The convergent of this series will be proved in the next section theoretically. However, for some 

problems this series can't be determined, so we use an approximation of the solution from 

truncated series: 

                                           



M

n

nM uU
0

with  uUM
M




lim  

The acceleration for this convergent means the need to few terms of the above equation, for 

obtaining the formula which nearby to the exact solution. 

 

3. Numerical Test and Discussion: 

     The theoretical analysis of SDHPM  done in section 2 will be applied here to find the 

analytical approximate solution of two kinds of KdV initial value problems: The first  contains 

Sawada-Kotera equation and obtained if put 1,15,15,45  dcba  in Equation(19), and 

the second contains Lax equation and obtained if put 1,10,30,30  dcba  in 

Equation(19). 

 

Test problem 1 (P1) [5]: Consider Equation (19) as a Sawada-Kotera equation, with the exact 

solution  20

42 )16(sec2),( xtkxkhktxu  ,and the initial condition   .)(sec2)0,(
2

0

2 xxkhkxu    

The iterative solutions for this problem by using SDHPM can be obtained after  we split the linear 

operator of time of Sawada-Kotera equation as in Equation(17,18), then by using algorithm of 

SDHPM for Equations(28,29) that is represented by equations(30-33),we get the successive 

analytical approximate solution of Equation(19) as the following: 
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Tables (1-2) show the absolute error of present study compared with standard ADM and HPM [5] 

for   problem (1)   at   different   time   and   space.   Figure (1)  illustrates  the  plot  of   exact  and  
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approximate solution at 001.0,15
0
 xandkt  and the approximate solution at different value 

of time ( 20,10,5,1,01.0t ). 

 

Table.1: Absolute error
Exact

uu 
1

 comparison between present study ,HPM,and ADM for p1   

x
 Method      0.2               0.4            0.8            1.6              2               4                6                8               10 

  

0.2 

Present study  

HPM[5] 

ADM 

1.64 E-20   6.58 E-20   2.63 E-19  1.05 E-18  1.64 E-18  6.58 E-18  1.48 E-17  2.63 E-17   4.11 E-17 

1.91 E-15   3.83 E-15   7.67 E-15  1.53 E-14  1.91 E-14  3.83 E-14  5.75 E-14  7.67 E-14   9.59 E-14    

5.57 E-15   1.15 E-14   2.30 E-14  4.60 E-14  5.57 E-14  1.15 E-13  1.72 E-13  2.30 E-13   2.87 E-13 

 

0.4 

Present study  

HPM[5] 

ADM 

1.64 E-20   6.58 E-20   2.63 E-19  1.05 E-18  1.64 E-18  6.57 E-18  1.48 E-17  2.63 E-17   4.11 E-17 

3.83 E-15   7.67 E-15   1.53 E-14  3.07 E-14  3.83 E-14  7.67 E-14  1.15 E-13  1.53 E-13   1.91 E-13 

1.15 E-14   2.30 E-14   4.60 E-14  9.21 E-14  1.15 E-13  2.30 E-13  3.45 E-13  4.60 E-13   5.75 E-13 

  1 

Present study  

HPM[5] 

ADM 

1.64 E-20   6.56 E-20   2.62 E-19  1.05 E-18  1.64 E-18  6.56 E-18  1.47 E-17  2.62 E-17   4.10 E-17 

9.59 E-15   1.91 E-14   3.83 E-14  7.67 E-14  9.59 E-14  1.91 E-13  2.87 E-13  3.83 E-13   4.79 E-13 

2.87 E-14   5.75 E-14   1.15 E-13  2.30 E-13  2.87 E-13  5.75 E-13  8.63 E-13  1.15 E-12   1.43 E-12 

 

Table.2: Absolute error
Exact

uu 
2

 comparison between present study ,HPM,and ADM for p1   

x
 Method     0.2             0.4              0.8             1.6              2               4                 6                8               10 

  

0.2 

Present study  

HPM[5] 

ADM 

6.92 E-21   2.77 E-20   1.11 E-19  4.43 E-19  6.93 E-19  2.77 E-18  6.23 E-18  1.11 E-17   1.73 E-17 

2.56 E-16   5.12 E-16   1.02 E-15  2.04 E-15  2.56 E-15  5.12 E-15  7.69 E-15  1.02 E-14   1.28 E-14    

4.09 E-15   8.19 E-15   1.63 E-14  3.27 E-14  4.09 E-14  8.19 E-14  1.22 E-13  1.63 E-13   2.04 E-13 

  

0.4 

Present study  

HPM[5] 

ADM 

6.93 E-21   2.76 E-20   1.11 E-19  4.43 E-19  6.93 E-19  2.77 E-18  6.23 E-18  1.11 E-17   1.73 E-17 

5.12 E-16   1.02 E-15   2.04 E-15  4.09 E-15  5.12 E-15  1.02 E-14  1.53 E-14  2.05 E-14   2.56 E-14 

8.19 E-15   1.63 E-14   3.27 E-14  6.55 E-14  8.19 E-14  1.63 E-13  2.45 E-13  3.27 E-13   4.09 E-13 

  1 

Present study  

HPM[5] 

ADM 

6.88 E-21   2.75 E-20   1.10 E-19  4.40 E-19  6.89 E-19  2.75 E-18  6.20 E-18  1.10 E-17   1.72 E-17 

1.27 E-15   2.55 E-15   5.11 E-15  1.02 E-14  1.27 E-14  2.56 E-14  3.48 E-14  5.12 E-14   6.40 E-14 

2.04 E-14   4.09 E-14   8.18 E-14  1.63 E-13  2.04 E-13  4.09 E-13  6.14 E-13  8.18 E-13   1.02 E-12 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1): Exact and approximate solution at ,15t 001.0
0
 xandk and the approximate       

        solution at different value of time ( 20,10,5,1,01.0t ) ,for Sawada-Kotera problem. 

The result  shows  that  there is  a good  agreement  with the exact solution as shown in Figure(1). 

Also, we note that the approximate solution converge to the exact solution for large time and its 

stay  governor   on  the   same   pattern.  Then   we   can  say  that,  the  new   method  SDHPM  is 
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efficient method with good converge and high accuracy comparing with ADM and HPM[5].     

 

 

Test problem2 (P2) Lax equation [5]: Consider Equation (19) as in Lax equation with 

the exact solution   2

0

42 )56(tanh322),( xtkxkktxu  , and the initial condition 

  2

0

2 )(tanh322)0,( xxkkxu  . 

 

The iterative solutions for this problem by using SDHPM as the following form: 
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 

 
 
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11736576001167022086096384013063680)1(1920

)9()122885988011944810692035640()1(48

5918721249894482489344261722112455731200)1(48

44706816023224320049766400181112832)1(48

4101672960338398986256146005549003762185012)1(48

66116821401063477043200408631910401489259520)1(480

023514624004817604586)1()23(2
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Tables (3-4) show the absolute error of the present study compared with ADM and HPM 

[5] for problem (2) at different time and space. Figure (2) illustrates the plot of exact and 

approximate solution at 001.0,15
0
 xandkt  and the approximate solution at different 

value of time ( 20,10,5,1t ). The tables of error explained the comparison between the 

present study and ADM and HPM [5] ,and the figures show the efficiency and the 

accuracy of the new method SDHPM. In addition, through the figures, we note that there 

is agreement between the exact and analytical approximate solution and the approximate 

solution stay converge to the exact solution at large time. Then we can say that the new 

method is effect method with good convergence and high accuracy comparing with 

standard ADM and HPM [5]. 

http://www.iiste.org/


Advances in Physics Theories and Applications 

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) 

Vol.66, 2017 

www.iiste.org 

30 

 

 

Table.3: Absolute error
Exact

uu 
1

 comparison between present study ,HPM,and ADM for p2   

x
 Method     0.2             0.4            0.8             1.6             2                4                6                8               10 

  

0.2 

Present study  

HPM[5] 

ADM 

5.75 E-16  1.15 E-15  2.30 E-15  4.60 E-15  5.75 E-14  1.15 E-14  1.72 E-14   2.30 E-14   2.87 E-13 

1.20 E-14  2.40 E-14  4.81 E-14  9.63 E-14  1.20 E-13  2.40 E-13  3.61 E-13   4.81 E-13   6.02 E-13 

2.57 E-14  5.14 E-14  1.02 E-13  2.05 E-13  2.57 E-13  5.14 E-13  7.71 E-13   1.02 E-12   1.28 E-12 

  

0.4 

Present study  

HPM[5] 

ADM 

1.15 E-15  2.30 E-15  4.60 E-15  9.21 E-15  1.15 E-14  2.30 E-14  3.45 E-14   4.60 E-14   5.75 E-13 

2.40 E-14  4.81 E-14  9.63 E-14  1.92 E-13  2.40 E-13  4.81 E-13  7.22 E-13   9.63 E-13   1.20 E-12 

5.14 E-14  1.02 E-13  2.05 E-13  4.11 E-13  5.14 E-13  1.02 E-12  1.54 E-12   2.05 E-12   2.57 E-12 

  1 

Present study  

HPM[5] 

ADM 

2.87 E-15  5.75 E-15  1.15 E-14  2.30 E-14  2.87 E-14  5.75 E-13  8.63 E-13   1.15 E-13   1.43 E-13 

6.02 E-14  1.20 E-13  2.40 E-13  3.01 E-13  6.02 E-13  1.20 E-12  1.80 E-12   2.40 E-12   3.01 E-12 

1.28 E-13  2.57 E-13  5.14 E-13  1.02 E-12  1.28 E-12  2.57 E-12  3.85 E-12   5.14 E-12   6.43 E-12 

 

Table.4: Absolute error
Exact

uu 
2

 comparison between present study ,HPM,and ADM for p2   

x
 Method     0.2            0.4             0.8            1.6              2               4                6                 8               10 

  

0.2 

Present study  

HPM[5] 

ADM 

7.54 E-17  1.50 E-16   3.01 E-16  6.02 E-16  7.52 E-16  1.50 E-15  2.24 E-15  2.98 E-15   3.72 E-15 

1.18 E-14  2.36 E-14   4.72 E-14  9.44 E-14  2.68 E-14  5.37 E-14  8.06 E-14  1.07 E-13   1.34 E-13    

6.71 E-15  1.34 E-14   2.68 E-14  5.37 E-14  6.71 E-14  1.34 E-13  2.01 E-13  2.68 E-13   3.35 E-13 

  

0.4 

Present study  

HPM[5] 

ADM 

1.48 E-16  2.96 E-16   5.93 E-16  1.18 E-15  1.48 E-15  2.96 E-15  4.43 E-15  5.90 E-15   7.36 E-15 

2.36 E-14  4.72 E-14   9.44 E-14  1.88 E-13  5.37 E-14  1.07 E-13  1.61 E-13  2.15 E-13   2.68 E-13 

1.34 E-14  2.68 E-14   5.37 E-14  1.07 E-13  1.34 E-13  2.68 E-13  4.03 E-13  5.37 E-13   6.71 E-13 

  1 

Present study  

HPM[5] 

ADM 

3.52 E-16  7.04 E-16   1.40 E-15  2.81 E-15  3.52 E-15  7.03 E-15  1.05 E-14  1.40 E-14   1.75 E-14 

5.90 E-14  1.18 E-13   2.36 E-13  4.72 E-13  1.34 E-13  2.68 E-13  4.03 E-13  5.37 E-13   6.72 E-13 

3.35 E-14  6.71 E-14   1.34 E-13  2.68 E-13  3.35 E-13  6.71 E-13  1.01 E-12  1.34 E-12   1.67 E-12 

 
 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

Figure (2): Exact and approximate solution at ,15t 001.0
0
 xandk and the approximate                  

         solution at different value of time ( 20,10,5,1,01.0t ) ,for Lax problem. 

 

4-Convergence analysis of SDHPM: 

      In this section, we will study the analysis of convergence in the same manner as [20,21,22]  

for the decomposition method to the nonlinear fifth-order KdV Equation (19). Let as consider the 

Hilbert space H  which may be defined as   TLH ,02   , the set of applications ; 

   Tu ,0:  with  

t
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 





T

du
,0

2
                                                                               (27) 

And scalar product and induced norm :                                                    

                                 
 





T

uvdvu
,0

,       and     uuu ,
2
                                 (28) 

where ,  is real numbers. 

The Adomian decomposition method is convergent if the following conditions are satisfied ; 

     HuukukuuLt  ˆ,,0,,: 1

2

1
 

:)( Whatever may be 0M ,there exist a constant 0)( MC  such that for Huu ˆ,  with 

MuMu  ˆ, , we have:    wudcbMCwuLt  ))(,(,  for every Hw . 

Now , we will use the following theorem to satisfy the above conditions as [20,21]. 

Theorem 1:  If     and )(  are satisfied , then ADM of Equation (21) is convergent. 

Proof : It is easy to prove    and )(   as the same manner in[9,20,21] to obtain on the results: 

Then condition    holds with )2( 43211  dcbaMk  , where 1 , 2 , 3  and 4  are 

constants  and the condition )(  is satisfied with )())(,( dcbaMdcbMC  . Hence 

the prove is complete.                                                                                                                 ■                                                                     

                                                                                                                                                                                                    

Let us consider Equation (1) (after we apply the HPM) in the following form: 

       ))()()(()()( 00 uLvRvNgpuLvL                                                                     (29) 

Applying the inverse operator, 
1L   to both sides of Equation (29) , we obtain 

        ))()(( 0

111

0 uvRLvNLgLpuv  
                                                             (30) 

Suppose  that                  





0i

i

iupv                                                                                 (31) 

Substituting (31) into the right-hand side of Equation (30), yields 

       ))()((
0

0

1

0

11

0
uupRLupNLgLpuv

i

i

i

i

i

i  









                                                        (32) 

if  1p , the exact solution may be obtained by using Equation (14) as; 

          
















 












0

1

0

11 ))(())(()(
i

i

i

i uRLuNLgLu  

To study the convergence of this method , let us state the following theorem. 

 

Theorem 2: (Sufficient Condition of Convergence)[19]  

Supposes that X  and Y  are Banach spaces and  YXN :  is a contractive nonlinear mapping , 

that is  .10,)()(;,    wwwNwNXww  

Then according to Banach's fixed point theorem N has a unique fixed point u , that is .)( uuN   

Assume that the sequence generated by homotopy perturbation method can be written as; 

 ,...3,2,1,),(
1

0

11  




 nwWWNW
n

i

innn
 

and suppose that:      )(00 wwW r  where  rwwXwwr   |)(                     (33) 

Then we have :           ),.()( wWi rn            .lim)( wWii n
n




 

Proof :  We can see the proof in [19]. 
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   Depending on the above theorems and their proofs, the converge of SDHPM( sufficient 

condition of convergence) is to be hold. Also, the combination of the two theorems gives us 

guarantee for convergence of the solutions that are obtained by SDHPM.  

   We illustrate the convergence of  Splitting Adomian decomposition homotopy perturbation 

method theoretically by applying the sufficient condition of convergence.  According to the 

theorems of convergence, the convergence of splitting Adomian decomposition homotopy 

perturbation method for the non-linear fifth-order KdV equation (19) and (30-33) will be 

illustrated as follows respectively. By using definitions (27) and(28) and  supposing that  
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with the theorem (2) (Sufficient Condition of Convergence) for the nonlinear mapping N , a 

sufficient condition for convergence of the SDHPM is the strict contraction of  N , we have :      

 

   

n

n uuuu

uuuu

uuuu

xtkxkhkxxkhkuu















0

22

02

01

2

0

422

0

2

0

100000461.0,

10000120.0,

)16(sec2)(sec2



 

Therefore, .0limlim 0 


n

n
n

n
uuuu  be hold for the problem 1. Also, for the problem 

2,we have: 

     

n

n uuuu
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uuuu

xtkxkkxxkkuu




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


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

0
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2

0
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0

2

0

10183.0,

10999.0,

)56(tanh322)(tanh322



 

 Therefore, .0limlim
0




n

n
n

n
uuuu   be hold for the problem 2. 

 

5-Conclusions 

     In this paper splitting decomposition homotopy perturbation method, which we proposed in 

the first time in [14] used to solve fifth-order KdV problem successfully. The results which we 

obtain by using Mathcad.15 for solving two types of fifth-order KdV problems;  show that the 

SDHPM its efficient method with good converge and high accuracy to find analytical 

approximate solutions of these two problems. In addition, the absolute errors for the velocity 

explained the high accuracy of the present study. We conclude that the SDHPM is efficient 

method with good converge and high accuracy to find analytic approximate solutions of fifth-

order KdV equation compare with standard ADM and HPM [5]. 
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