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Abstract 

The objective of this paper is to investigate some aspects of dispersion relation of  flexural waves propagation in a 

transversely isotropic hollow circular cylinder of infinite extent placed in a primary magnetic field. A frequency 

equation appropriate to the hollow circular cylinder is obtained by using the lame (Helmholtz) potentials for arbitrary 

values of the physical parameters involve as well as the primary magnetic field. Numerical calculations have been 

carried out when the cylinder is made of the material of Zinc Oxide. This study shows that waves in a solid body 

propagating under the influence of a superimposed magnetic field can differ significantly from those propagating in 

the absence of the magnetic field. Also, one may see that the effect of the primary magnetic field is to increase the 

values of the materials constants. Finally the results are given for different values of the primary magnetic field and 

presented graphically. The standard results of the previous investigations have also been deduced as particular cases. 

Keywords: Natural frequencies, Magnetoelasticity, Flexural wave, transversely isotropic materials 

1. Introduction 

The analysis of flexural wave propagation in isotropic, homogeneous circular cylindrical shell according to the 

theory of elasticity has been done by many authors like: Greenspoon [1], Pao [2], Kumar [3], Hutchinson [4],  Martin 

[5] and Honarvar et al. [6].  With the advancement of space research, it has become necessary to obtain a deep 

insight in the behavior of materials, especially of the anisotropic ones that are so frequently used in the missiles and 

other allied systems. Many authors such as: Mirsky [7], Prasad et al. [8], White et al. [9] and Tsai [10] have presented 

papers on the transversely isotropic cylindrical shells of infinite extent. Suhubi [11] Datta [12] and Abd-alla [13, 14] 

have been discussed a similar problems but in more general way where the magnetic field is taken in their 

considerations. For more details, one may go through recently published monographs of Nowacki [15], Moon [16], 

Parton et al [17], Maugin et al [18] and Auld [19].  Recently, the interaction of electromagnetic fields with the motion 

of a deformable solid is being received greater attention by many investigators. Therefore, many researchers have 

investigated the effect of the magnetic field on the wave propagation in anisotropic cylindrical materials. Barakati 

and Zhupanska [20] studied the effects of pulsed electromagnetic fields on the dynamic mechanical response of 

electrically conductive anisotropic plates.  Dinzart and Sabar [21] presented numerical investigations into magneto-

electro-elastic moduli responsible for the magneto-electric coupling as functions of the volume reaction and 

characteristics of the coated inclusions. Akbarovet al. [22] studied torsional wave dispersion in a three-layered 

(sandwich) hollow cylinder with finite initial strains. Chattopadhyay et al. [23] studied the propagation of 

horizontally polarized shear waves in an internal magnetoelastic  monoclinic stratum with irregularity in lower 

interface.  Tang and  Xu [24] have applied the method of eigenfunction expansion to solve the problems of transient 

torsional vibration responses of finite, semi-infinite and infinite hollow cylinders. Acharya et al. [25] investigated the 

effect of the transverse isotropy and magnetic field on the interface waves in a conducting medium subject to the 

initial state of stress of the form of hydrostatic tension or compression. Petrov et al. [26] focused on the nature of 

ferromagnetic resonance (FMR) under the influence of acoustic oscillations with the same frequency as FMR. 

Mol’chenko et al. [27] constructed a two-dimensional nonlinear magnetoelastic model of a current-carrying 

orthotropic shell of revolution taking into account of  finite orthotropic conductivity, permeability and permittivity.  

Abd-Alla and Abo-Dahab [28] studied the influence of the viscosity on reflection and refraction of plane shear elastic 

waves in two magnetized semi-infinite media. Selim [29] showed the effect of damping on the propagation of 

torsional waves in an initially stressed, dissipative, incompressible cylinder of infinite length. Dai and Wang [30] 

illustrated an analytical method to solve magneto-elastic wave propagation and perturbation of the magnetic field 
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vector in an orthotropic laminated hollow cylinder with arbitrary thickness. Liu  and Chang  [31] investigated the 

interactive behaviors among transverse magnetic fields, axial loads and external forces of a magneto-elastic beam 

with general boundary conditions.  

    In this paper the materials were considered to be homogeneous and transversely isotropic. Plane waves 

propagation is discussed considering the solution of the equations of motion and the solution of the electro-magnetic 

equations of Maxwell in cylindrical coordinates. The treatments were carried out under the consideration of the 

displacement field, which does not depend on the vertical coordinate, may be written in terms of Lame potentials 

(sometimes is co-called Helmholtz potentials). A frequency equation concerning to the hollow circular cylinder is 

obtained by using the arbitrary values of the physical parameters involve as well as the primary magnetic field. 

Numerical calculations have been carried out for the cylinder is which is made up of zinc. This study shows that 

waves in a solid body propagating under the influence of a superimposed magnetic field can differ significantly from 

those propagating in the absence of the magnetic field. Also, one may see that the effect of the primary magnetic 

field is to increase the values of the material constants. Some of the results obtained in earlier works are obtained as 

particular cases of the more general results derived here. Finally, the results have been given for different values of 

the primary magnetic field and it has been presented graphically. 

 

2. Basic equations 
The problem being one of magneto-elasticity, the basic equations are those of electromagnetism and of elasticity. The 

Maxwell equations governing the electromagnetic field, are: 

J
c

H
rrr π4

=×∇  ,     
t

B

c
E

∂
∂

−=×∇

r
rr 1

,       ,0. =∇ B
rr

   HB e

rr
µ=                                               (1) 

where the displacement current is neglected and Gaussian unites have been used. We have also Ohm's law in the 

following form: 
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The needed strain-displacement relations are [8]: 
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The constitutive stress-strain relations are [13]: 

,131211 zzrrrr ececec ++= θθτ ,131112 zzrr ececec ++= θθθθτ .66 θθτ rr ec=   (4) 

Taking into account the Lorentz body force, the stresses equations of motion become [9]: 
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The electro-magnetic field equations in vacuum are given by [14]: 
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Substituting the values of the stresses from (4) in the equations of motion (5) and (6). Using (1) and (2) the equations 

of magneto-elasticity for a transversely isotropic perfectly conducting elastic material are: 
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where, we have considered the following relations: 
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3. Solution by using Lame (Helmholtz) potentials 

A circular cylindrical solid of transversely isotropic elastic material of inner and outer radii a   and b , respectively 

and subjected to an axial magnetic field is considered. The material of the elastic cylinder is regarded as a perfect 

conductor and the regions inside and outside, it is assumed to be vacuum. With reference to the cylindrical 

coordinates ),,,( zr θ  the displacement field for the case of plane motions is written as: 

0),,,(),,( === wtrvvtruu θθ                                                                                            (11) 
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r

 may be decomposed into a 

gradient of a scalar potential ),,( tr θΦ  and a rotation of a vector potential ),,( tr θΨ  according to the following 
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From (12) in (8) and (9), one may get 
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From equation (13) and (14), we have the following:  
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Now, consider harmonic solutions ),,( tr θΦ=Φ  and   ),,( tr θΨ=Ψ ) in the form 
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where ω   is the frequency of the vibrations and ,...)2,1,0( =nn  is an integer indicating the number of 

circumferential waves. Substituting from Eqs. (17) into Eqs. (15) and  (16), we obtain the well-known Bessel 

equations for )(rφ and  )(rψ : 
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The general solutions of the equations (18) and (19) may take the following form: 
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The equation governing magnetic field in vacuum is 
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Hence the magnetic field in vacuum is given by: 
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where 3A  and 3B  are arbitrary constants.  

4. The boundary conditions and the frequency equation 
For free motion, the boundary conditions require that the total stress vanishes and the continuity of the magnetic field 

on the surfaces bar ,= , i.e., 
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Substituting the values of the stresses and the magnetic field in the above boundary conditions and eliminating 

32211 ,,,, ABABA  and 3B , we get the frequency equation which may be written in the following form: 
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5. The frequency equations of radial and torsional waves 

    When 0=n  and using the properties determinants, the equation (28) becomes 

                             021 =∆⋅∆                                                                                                             (30) 

i.e. the determinant equation ( 0=∆ ), breaks into the product of sub determinants ( 021 =∆⋅∆ ), which is satisfied 

if either 01 =∆  or 02 =∆ , where 

          0

0

0

0

0

666261

555251

262221

151211

1 ==∆

XXX

XXX

XXX

XXX

           0
4443

3433

2 ==∆
XX

XX
                                       (31) 

The frequency equation (31), corresponds to magneto-elastic radial waves [13]. While the frequency equation (32), 

corresponds to the magneto-elastic torsional waves [7] and [11],  where ijX  is given by (29) when 0=n . 

 

6. The numerical results 
For numerical calculations, we consider the following transformation 
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The calculations of the roots of the frequency equation (28), represent a major task and requires a rather extensive 

effort of numerical computations. The computations have been carried out on an electronic computer for the case of 

Zinc Oxide which has the following physical constants [19]. 
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7. Discussion and conclusion 

The non-dimensional frequency Ω  versus the thickness bah /=  are plotted in all the Figures (1-9) which 

illustrate the effects of the primary magnetic field on the flexural vibrations of a transversely isotropic circular 

cylinder  for the value of non-dimensional wave number .n  

The frequency equations (28) and (31) are solved numerically, and for this purpose a matrix determinant computation 

routine was used for different Ω  and h  along with a root finding method to refine steps close to its roots. For each 

pair (Ω  and h ) the frequency equations are solved using "interval halving" iteration technique [34].  

Figures 1, 2 and 3 represent the first, second and third modes, respectively, of dimensionless frequency Ω for flexural 

vibrations versus different values of bah /=  for value of 
765 10,10,10=oH ,  when n=1. In Fig. 1, the first 

mode of dimensionless frequency Ω decreases slightly as the ratio thickness h  increases for 

(
65 10,10=oH Oersted). While, it increases monotonically as function of h  for the value of primary magnetic 
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field increases as well (
710=oH  Oersted). Figures 2 and 3 show that the effect of the values of the primary 

magnetic field (
65 10,10=oH  Oersted) on the second and third modes of flexural vibrations is very small and 

barely curves in these two cases coincide to each other. While, it increases nonlinearly as function of h  for the value 

of (
710=oH Oersted). It is obvious from Figs. 5, 6 and 7 that the first, second and  third modes increase with the 

decrease of the thickness h . While all of these modes increase when increasing the imposed magnetic field oH . The 

first three modes of dimensionless frequency spectrum Ω  versus different values of h are given in Figure 4 for the 

value of (
710=oH Oersted), when the circumferential wave number 1=n  is calculated and given in the form of 

graphs. Also, for 0=n  and when the value of (
710=oH Oersted),  Figures 8 and 9 presents the first three modes 

of Ω for radial and torsion vibrations, respectively,  against different values of h . It was found that in this case, the 

frequency Ω of torsion vibrations is not affected with the values of the primary magnetic field oH . 

Nomenclature 
ρ  Constant mass density of the material 

ijM  Maxwell stress tensor 

ijc  Elastic material constants 
eµ  Magnetic permeability 

oH
r

 
Initial constant magnetic field vector ω  Angular frequency 

h
r

 
Perturbation of the magnetic field vector t  Time 

E
r

 
Perturbation of the electric field vector c  Velocity of light 

ijτ  Components of the stress tensor σ  Electrical conductivity 

ije  Components of the strain tensor J
r

 
Current density vector 

B
r

 
Magnetic induction ΨΦ,  Displacement potentials 

vu,  Radial and tangential displacements   
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Figure 1 .The first mode of dimensionless frequency Ω  for  flexural  vibrations  

versus different values of h=a/b for value of 
765 10,10,10=oH ,  when n=1. 
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Figure 2 .The second mode of dimensionless frequency Ω  for  flexural  vibrations  

versus different values of h=a/b for value of 
765 10,10,10=oH ,  when n=1. 

 
Figure 3 .The third mode of dimensionless frequency Ω  for  flexural  vibrations  

versus different values of h=a/b for value of 
765 10,10,10=oH ,  when n=1. 
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Figure 4 .The first three modes of dimensionless frequency Ω for flexural vibrations 

 versus different values of h=a/b for value of 
710=oH ,  when n=1. 

 

 
Figure 5.  The first mode of dimensionless frequency Ω  for  radial  vibrations  

versus different values of h=a/b for value of 
610)10,5,1(=oH ,   when n=0. 

 



Advances in Physics Theories and Applications                                                              www.iiste.org 

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) 

Vol 13, 2013         
 

32 

 

 
Figure 6.  The second mode of dimensionless frequency Ω  for  radial  vibrations  

versus different values of h=a/b for value of 
610)10,5,1(=oH ,   when n=0. 

 

 
Figure 7.  The third mode of dimensionless frequency Ω  for  radial  vibrations  

versus different values of h=a/b for value of 
610)10,5,1(=oH ,   when n=0. 
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Figure 8 .The first three modes of dimensionless frequency Ω for radial vibrations  

versus different values of h=a/b for value of 
710=oH ,   when n=0. 

 

 
Figure 9 .The first three modes of dimensionless frequency Ω for torsion  

vibrations versus different values of h=a/b,   when n=0. 
 


