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Heat and Mass Transfer in Radiative Casson Fluid Flow Caused 
by a Vertical Plate with Variable Magnetic Field Effect  R. Vijayaragavan*      S. Karthikeyan Department of Mathematics, Thiruvalluvar University,  Vellore-632 115, India  

Abstract The aim of the present study is to investigate influence of variable magnetic field, heat and mass transfer in radiative Casson fluid flow past an infinite vertical porous plate. The governing equations of the flow, heat and mass transfer are transformed into a system of nonlinear ordinary differential equations and solved analytically by the perturbation technique with matlab package. The results obtained show that the velocity, temperature and concentration fields are appreciably influenced by the chemical reaction, thermal stratification and magnetic field. It is observed that the thermal radiation and magnetic field decreases the velocity, temperature and concentration profiles. There is also considerable effects of magnetic field and chemical reaction on skin friction coefficient and Nusselt number.    
Keywords: MHD, Variable magnetic field, Radiative, Casson fluid, dissipative, Heat transfer, Mass transfer. 
 
Nomenclature     垐,x y    :  Dimensional distance along and perpendicular to the plate            g    :  Gravitational Acceleration           T̂     :  Dimensional Temperature          T∞   :  Free stream dimensional Temperature          K̂  :  Permeability of the porous medium           Ĉ  :  Dimensional Concentration          C∞ :  Free stream dimensional Concentration   ,T Cβ β  :  Thermal and Concentration expansion coefficient             P̂  :  Pressure            p

C  :  Specific heat of constant pressure              µ  :  Viscosity              ˆ
rq  :  Radiative heat flux         ,ρ σ  :  Density and Magnetic Permeability     v µ
ρ=  :  Kinematic viscosity       0,D Q  :  Molecular diffusivity and Dimensional heat               R :  Chemical reaction               F  :  Magnetic Field 

 
1.Introduction Convective flow with simultaneous heat and mass transfer under the influence of a magnetic field and chemical reaction have attracted a considerable attention of researchers because such process exist in many branches of science and technology. Possible applications of this type of flow can be found in many industries viz. in the chemical industry, cooling nuclear reactors and magnetohydrodynamic (MHD) power generators. Free convection flow occurs frequently in nature. It occurs not only due to temperature difference, but also due to concentration difference or combination of these two. Many transport processes exit in industrial applications in which the simultaneous heat and mass transfer occur as a result of combined buoyancy effects of diffusion of chemical species. Free convection flows in a porous media with chemical reaction have wide applications in geothermal and oil reservoir engineering as well as in chemical reactors of porous structure. Moreover, considerable interest has been evinced in radiation interaction with convection and chemical reaction for heat and mass transfer in fluids. This is due to the significant role of thermal radiation in the surface heat transfer 
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when convection heat transfer is small, particularly, in free convection problems involving absorbing-emitting fluids. Nandeep et al. [1] analyzed MHD boundary layer flow past an exponentially permeable shrinking sheet of a Casson fluid. Hayat et al. [2] considered two-dimensional boundary layer flow of carreau fluid past a permeable stretching sheet. Raju, Sandeep [3] studied the effects of nonlinear thermal radiation and non-uniform heat source/sink in unsteady three-dimensional flow of Carreau and Casson fluids past a stretching surface in the presence of homogeneous heterogeneous reactions and the governing equations are solved by R-K based shooting method. Chakravarthula SK. Raju et al. [4] discussed the influence of thermal radiation and chemical reaction on the boundary layer flow of a MHD Jeffery Nano fluid over a permeable cone in the presence of thermophoresis Brownian motion effects. Casson fluid flow in the stagnation point region of a sphere with cross diffusion effects has been considered by Pushpalatha et al. [5]. Hakiem and Amin [6] have examined the influences of mass transfer on buoyancy induced flow over vertical flat plate embedded in a non-Newtonian fluid saturated porous medium. Najeeb Alam Khan and Faqiha Sultan [7] have considered the double diffusive Darcian convection flow of Eyring-Powell fluid from a cone embedded in a homogeneous porous medium with the effects of Soret and Dufour and the governing equations are numerically solved by non-perturbation scheme. Louis Gosselin, Alaxander K. da Silva [8] has been investigated to maximize the heat transfer rate removed from a warm plate by the Nano fluid. Chamkha and Aly [9] have obtained the numerical solution of steady natural convection boundary-layer flow of a nanofluid consisting of a pure fluid with nanoparticles along a permeable vertical plate in the presence of magnetic field, heat generation or absorption and suction or injection effects. The induced magnetic field effect on the stagnation point flow of a non-Newtonian fluid over a stretching sheet with homogeneous-heterogeneous reactions and non-uniform heat source or sink and the ordinary differential equations are numerically solved by R-K and Newton’s method has been considered by Raju et al. [10]. The Magneto hydrodynamic three-dimensional boundary layer flow of an incompressible casson fluid in a porous medium has been obtained by Shehzad et al. [11]. Hayat et al. [12] have been investigated the mixed convection flow of non-Newtonian Nano fluid over a stretching surface in presence of thermal radiation, heat source/sink and first order chemical reaction. Raju et al. [13] have been analyzed the flow, heat and mass transfer behavior of casson fluid past an exponentially permeable stretching surface in presence of thermal radiation, magnetic field, viscous dissipation, heat source and chemical reaction. Nadeep et al. [14] have been studied magneto hydrodynamics Casson fluid flow in two lateral directions past a porous linear stretching sheet. Jasmine Benazir et al. [15] have been analyzed the effects of double dispersion, non-uniform heat source/sink and higher order chemical reaction on unsteady, free convective, MHD Casson fluid flow over a vertical cone and flat plate saturated with porous medium. Jagdish Prakash et al. [16] have been studied flow, heat and mass transfer characteristics of unsteady mixed convective magneto hydrodynamic flow of a heat absorbing fluid in an accelerated vertical wavy plate, subject to varying temperature and mass diffusion, with the influence of buoyancy, thermal radiation and Duffer effect. Shehzed et al. [17] have been investigated the convective heat and mass conditions in three-dimensional flow of an oldroyd-B Nano fluid and the governing problem solved numerically by convergent approximate solutions. The mixed convection boundary layer flow of a magneto hydrodynamic second grade fluid over an unsteady permeable stretching sheet discussed by Hayat and Qusim [18]. Parha et al. [19] have been analyzed the mixed convection flow and heat transfer from an exponentially stretching vertical surface in a quiescent fluid. Sajid and Hayat [20] have been studied the effect of radiation on the boundary layer flow and heat transfer of a viscous fluid over an exponentially stretching sheet. Anur Ishak [21] has been studied the effect of radiation on magneto hydrodynamic boundary layer flow of a viscous fluid over an exponentially stretching sheet. Mustafa et al. [22] have been discussed the unsteady flow and heat transfer of a Casson fluid over a moving flat plate with a parallel free stream. Mohammad Mehdi Rashidi et al. [23] have been examined heat and mass transfer in a steady two-dimensional magneto hydrodynamic viscoelastic fluid flow over a stretching vertical surface by considering Soret and Dufour effects. The boundary layer flow and heat transfer characteristic of second order fluid and second grade fluid with variable thermal conductivity and variation over an exponentially stretching sheet in porous medium have been studied by Singh et al.[24]. Iskandar Waini et al. [25] studied the effect of aligned magnetic field towards the flow and heat transfer of the upper-convected Maxwell (UCM) fluid over a Stretching/Shrinking sheet. Ali and Sandeep [26] investigated the heat transfer behavior of electrically conducting MHD flow of a Casson nanofluid over a Cone, wedge and a plate and a Cattaneo-Christov heat flex model with variable source/sink and nonlinear radiation effects. Anantha Kumar et al. [27] analyzed the thermo diffusion and diffusion thermo effects on MHD Casson fluid over a linear/nonlinear Stretching sheet and the governing equation are solved numerically using Range-Kutta based Shooting technique. The influence of aligned magnetic field on an unsteady flow of a Casson fluid past a vertical permeable oscillating plate in presence of radiation, chemical reaction and heat generation/absorption analyzed by Ramana Reddy et al.[28]. Ananth et al. [29] analyzed the Stagnation-point flow of a Casson fluid toward a stretching sheet with nonlinear thermal radiation and induced magnetic field effects. The induced magnetic field and non-uniform heat Source or Sink effects on the stagnation-point flow of 
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a non-Newtonian fluid towards a stretching sheet in the presence of homogeneous-heterogeneous reaction investigated by Raju et al. [30]. Naveed Ahmed et al. [31] discussed squeezing flow of an electrically conducting Casson fluid has been taken into accound and the governing equations are solved analytically by using the variation of parameters method.    Thus the present’s investigation is concerned with the study of variable magnetic field effect and radiative Casson fluid in two dimensional MHD flow, heat and mass transfer of viscous incompressible fluid pass a permeable vertical plate in a porous medium. The effects of various physical parameters on the velocity, temperature and concentration profiles as well as on local skin friction co-efficient and local Nusselt number are shown graphically.    
 
2.Formulation of the Problem Consider two dimensional laminar boundary layer flow of a viscous incompressible electrically conducting and heat absorbing fluid fast a semi-infinite vertical permeable plate embedded in a uniform porous medium which is subject to thermal and concentration buoyancy effects. As shown in Fig.1, x̂  - axis is along the plate and ŷ  - is perpendicular to the plate. The wall maintained at a constant temperature wT  and concentration wC  higher than the ambient temperature T∞  and concentration C∞  respectively. Also, it is assumed that there exists a homogeneous chemical reaction of first order with rate constant R between the diffusing species and the fluid. 

 
       Fig.1. Physical configuration of problem. The physical situation which can be written as             ˆ 0ˆdvdy =                                                                                                                                               (1)             i.e.,   0v̂ v= −   (Constant)                                                                                                                  (2)          ˆ ˆ0ˆdp p

dy
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                                                                                                          (6) Where û  and v̂  are the components of dimensional velocity along x̂  and ŷ  directions respectively. α is the fluid thermal diffusivity. The fourth and fifth terms on RHS of the momentum equation (4) denote the thermal and concentration buoyancy effects respectively. Also second and fourth terms of the RHS of energy equation (5) 
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represents the viscous dissipation and ohmic dissipation respectively. The third and fifth term on the RHS of Eq. (5) denote the inclusion of the effect of thermal radiation and heat absorption effects respectively. The radiative heat flux is given by 
( )ˆ ˆ4ˆrq T T I

y
∞

∂
′= −

∂
                                                                                                                                      (7) Where 0 ˆbwI K d
T

λ
λ

ρ
λ

∞ ∂
′ =

∂∫  , wKλ  is the absorption coefficient at the wall and be λ  is Planck’s function. The appropriate boundary conditions for velocity, temperature and concentration fields are  ˆˆ垐 0 : 0, ,w wy u T T C C= = = =                                                                                                                  (8)  ˆˆ垐 : 0, ,y u T T C C∞ ∞→∞ → → →                                                                                                        (9) where wC  and  wT  are the wall dimensional concentration and temperature respectively. Introducing the following non-dimensional quantities: 2 220 0 20 0ˆ ˆ, , ,v y B vu
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∞ ∞

− −
= = =

− − �������		                                                                                           (10) Using (7) and (10) in Eqs. (4) - (6), we get the following non-dimensional equations:                2 2 2211 sind u du
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γ+ − =                                                                                                              (13) where Gr  is the Grashof number, Gm  is the solutal Grashof number, Pr  is the Prandtl number, M is the magnetic field parameter, F  is the radiation parameter, Sc  is the Schmit number, E  is the Eckert number, φ  is the heat source parameter and γ  is the chemical reaction parameter and K  is the permeability defined as follows: 
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���                                            (14) The corresponding boundary conditions in dimensionless form are 0 : 0, 1, 1y u Cθ= = = =                                                                                                                          (15) : 0, 0, 0y u Cθ→∞ → → →                                                                                                               (16) 
 
3.Method of Solution Eqs. (11) – (13) represent a set of partial differential equations that cannot be solved in closed form. However, these equations can be solved analytically after reducing them to a set of ordinary differential equations in dimensionless form. Thus we can represent the velocity u , temperature θ , and concentration C  in terms of power of Eckert number E  as in the flow of an incompressible fluid Eckert number is always less than unity since the flow due to the joules dissipation is super imposed on the main flow. Hence, we can assume 
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The local surface heat flux is given by ˆ 0ˆ̂
w
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4.Results and Discussion In this work we have obtained analytical solutions of velocity field, temperature and concentration field in the study of mixed convection flow of a viscous incompressible electrically conducting fluid over an infinite vertical porous plate in the presence of magnetic field and radiative casson fluid flow computed results are presented in graphical form. We have extracted interesting insights regarding the influence of all the physical parameters that govern the problem. The influence of Pr 7.0= , 2.0Gm = , 3.0F = , 2.0M = , 4.0Gr = , 2.0Sc = ,0.6θ = , 0.1γ = , 0.5β = , 2.0φ = , 0.01E =  on the velocity, temperature and concentration profile can be analyzed from fig. 2-12 and on skin friction coefficient and Nusselt number in fig. 13-19.  

 
Fig.2. Velocity profiles for different values of Scmidt number. 
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Fig.3. Velocity profiles for different values of Prandtl number. 

 
Fig.4. Velocity profiles for different values of solutal Grashof number. 
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Fig.5. Velocity profiles for different values of chemical reaction parameter. 

 
Fig.6. Velocity profiles for different values of radiation parameter. 
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Fig.7. Velocity profiles for different values of magnetic field parameter. 

 
Fig.8. Velocity profiles for different values of Grashof number. 
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Fig.9. Temperature profiles for different values of radiation parameter. 

 
Fig.10. Temperature profiles for different values of Prandtl number. 
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Fig.11. Concentration profiles for different values of chemical reaction parameter. 

 
Fig.12. Concentration profiles for different values of Schmit number . 
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Fig.13. Variation of skin-friction coefficient for different values of Sc with F . 

 
Fig.14. Variation of skin-friction coefficient for different values of Gr  with M . 
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Fig.15. Variation of skin-friction coefficient for different values of Gmwith γ  

 
Fig.16. Variation of skin-friction coefficient for different values of γ  with Gr . 
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Fig.17. Variation of Nusselt number for different values of φ  with M . 

 
Fig.18. Variation of Nusset number for different values of Pr  with φ . 
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Fig.19. Variation of Nusselt number for different values of F with M . We observe from Fig.2 given that value of schmit number ( 1.0Sc = ) increase in the peak velocity is seen near the plate. Whereas for higher values of schmit number ( 1.8Sc = ) the peak velocity shifts closer to the plate. Further, it is observed that the concentration boundary layer decreases with increasing values in Sc . Fig.3 depicts the effect of radiation on the horizontal velocity. We note from this figure that there is decrease in the value of horizontal velocity with increase in the Prandtl number Pr . Which shows the  fact that increase in Prandtl number decrease the velocity in the boundary layer due to decrease in the boundary layer thickness.  Fig.4 shows that increase in the solutal Grashof number increases velocity in the momentum boundary layer. It is further noted that the peak value of velocity increases rapidly near the surface as the value of Gmdecrease. The effect of chemical reaction parameter γ  is highlighted in Fig.5.which shows that the velocity decreases with increasing the rate of chemical reaction parameterγ . Hence increase the chemical reaction rate parameter leads to a fall in the momentum boundary layer.  We note from Fig.6 that there is decrease in the value of horizontal velocity with increase in radiation parameter F. which shows the fact that increase in radiation parameter decrease the velocity in the boundary layer due to decrease in the boundary layer thickness. Fig.7 from the effect of magnetic field parameter Mshown that the velocity decreases with increasing the rate of magnetic field parameterM . Hence increase the magnetic field parameter lead to decrease in the horizontal boundary layer. The variation of velocity profile against y  is depicted in Fig.8 for various values ofGr . It is observed that an increasing in Gr  leads to an increasing in the velocity field. In addition, the curves show that the peak value of velocity increases rapidly near the surface as the value of Gr  increases.  The increase of the radiation parameter F  leads decrease the boundary layer thickness and thereby decrease in the value of the heat transfer in the presence of thermal and solutal buoyancy force as shown in Fig.9.similarly the effect is seen by increasing the value of prandtl number as depicted in Fig.10. This is due to the fact that the thermal boundary layer absorbs energy which causes the temperature fall considerably with increasing the value of prandtl number Pr . The effect of the reaction rate parameter γ  on the species concentration profiles for generative chemical reaction is shown in Fig.11. It is noticed from the graph that there is marked effect with increasing the value of the chemical reaction rate parameter γ  on concentration distribution in the boundary layer. It is clearly observed from this figure that the concentration of species value of 1.5γ = at vertical plate decrease till it attains the minimum value of zero at the end of the boundary layer and this trend is seen for all the values of reaction rate parameter. Further, it is observed that increasing the value of the chemical reaction decreases the concentration 
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of species in the boundary layer; this is due to the fact that boundary layer decreases with increasing in the value ofγ . Similarly facts are seen in the case when Schmidt number is increased as noted in Fig.12. It may also be observed from this figure that the effect of Schmidt number Sc  on concentration distribution decreases slowly for higher values of Sc . As can be expected that the mass transfer rate increases as γ  increasing with all other parameter fixed. ie. An increase in the Schmidt number Sc  produces decrease in the concentration boundary layer thickness associated with the reduction in the concentration profiles. Physically, the increase in the value of 
Sc  means decrease of molecular diffusionD . Hence the concentration of the species is higher for smaller values of Sc  and lower for larger values of Sc . Figs.13-19 presents the variation of the local skin friction coefficient 

xf
C and the local Nusselt number / Rex xNu with various values of Sc ,Gr ,Gm ,γ ,φ , Pr , F and M . Fig.13 shows that increasing the value of Schmidt number with F to seen that skin friction is higher for heavier particle 0.5Sc =  than lighter particle0.1Sc = .  Figs.14-16 represents the skin friction coefficient for different valuesGr ,Gm  and γ  to corresponded parametersM , γ  and Gr  respectively. It is found that Grashof, solutal Grashof rates increase the effects of increasing the skin friction coefficient. But Chemical reaction rates increase the effects of decreasing the skin friction coefficient. Figs.17-19 displays the heat transfer coefficient in terms of parametersM ,φ  and M corresponding to the different values ofφ , Pr  and F . This figure clearly shows that the Nusselt number decreases with increasing the value of magnetic field parameter, whereas increasing the value ofφ , Pr and F decreases the value of the Nusselt number.  

 
5. Conclusions 

• In this study, we have to investigate the influence of thermal radiation and magnetic field with Casson fluid flow past a vertical plate. The nonlinear and governing equations are solved analytically by perturbation technique. 
• Velocity, Temperature and Concentration profiles as well as local skin friction coefficient and local Nusselt number are presented graphically and analyzed.  
• It is found that the Velocity, Temperature and Concentration decreases with increasing the values of Sc ,Pr , γ , F , M and the reverse trend is seen by increasing the value of Gr andGm .  
• Also concluded that the Grashof number and solutal Grashof number is to increase skin friction coefficient with magnetic field and chemical reaction increasing the skin friction coefficient. 
• Finally the presence of heat source and thermal radiation decreases the value of Nusselt number with increasing the values of φ  and Pr and F  with corresponding parametersM ,φ andM .  
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