
Advances in Physics Theories and Applications                                                                                                  www.iiste.org 

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) 

Vol.69, 2018         

 

7 
 

Double Diffusive Convection and Internal Heat Generation with 

Soret and Dufour Effects over an Accelerating Surface with 

Variable Viscosity and Permeability 
 

M. Girinath Reddy      Dinesh P. A* 

Department of Mathematics, M. S. Ramaiah Institute of Technology, Bangalore-560 054, India 

 

Abstract 

The study deals with the coupled highly non-linear partial differential equations for the effects of internal heat 

generation (IHG), combined effects of Soret and Dufour with variable fluid properties like variable porosity, 

permeability and viscosity on thermal and diffusion mixed (free and forced) convection flow fluid through porous 

media over moving surface. The numerical computation has been carried out for other additional terms like internal 

heat generation (IHG), viscous dissipation and ohmic effect. We have drawn the numerical results and presented 

graphically for the flow characteristics like velocity, temperature and concentration for the effect of IHG, Soret 

and Dufour effects on mixed (free and forced) convective flow with variable fluid properties for various non-

dimensional parameters namely prandtl number, Eckert number, porous parameter, viscosity parameter, Soret 

number and Dufour number of the problem using the shooting technique. In the absence of the additional terms 

and for constant viscosity our computational results are compared with the earlier works and found to be good 

agreement. 

Keywords:Double diffusive, internal heat generation (IHG), Soret and Dufour effects, variable permeability, 

accelerating surface. 
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0ε          :Porosity at the edge of the boundary layer 

0k          :Permeability at the edge of the boundary layer 

η           :Dimensionless similarity variable 

d           :Constant having value 3.0 
*d          :Constant having value 1.5 

( )θ η      :Dimensionless temperature parameter in PSTC case 

( )g η      :Dimensionless temperature parameter in PWHCF case 

f           :Non dimensionless stream function 

r            :Temperature parameter  

s            :Heat flux parameter  

( )H η      :Dimensionless concentration parameter in PSTC case 

( )h η       :Dimensionless concentration parameter in PWHCF case 

g           :Gravitational acceleration 

 

1. Introduction 

In the process of evaluating the characteristic behavior of the movement of the flow, temperature variations of the 

fluid and changes in the specious or concentration of the fluid flow depends on various forces(external or internal) 

and boundary conditions which influenced many researchers for the importance of understanding or investgating 

the natural phenomena occurs in nature and industrial or practical applications. In the past and recent, the study of 

fluid flow plays an important role for the development or analyze or understanding a physical system. Recently 

some of the interesting applications arises in science, engineering and industry like paper production, coating and 

polymer processing, drying of solids, drying process (food and wood products), petroleum industry, soil physics, 

food processing, geothermal reservoirs, filtration of solids from liquids, hydro-geology, chemical engineering, air 

conditioning, casting and welding, cloth industry, thermal insulation, enhanced oil recovery and many other. 

In the above mentioned applications several authors come across with the constant fluid properties i.e. without 

changin viscosity, permeability, porosity and diffusivity etc. i.e. which are not varying with respect to the physical 

quantities like position or time or temperature or concentration. Many authors have invesigated mathematically 

the above practical application problems by considering constant fluid properties over non-accelerating surface 

and which may fulfill the requirements of the experimental or industrial results. Later, the researchers developed 

these physical models by incorporating the accelerating surface with constant fluid properties. Various  aspects of 

the above practical application problems for a gradual increase in understanding the problem of flow induced by 

a solid surface and continuous flat surface have been investigated by some of the authors name few [1-2]. The 

effect of the temperature heat sources or sinks in stagnant flow studied by Sparrow and Cess [3]. Several earlier 

research works has been carried out on non-moving surface with constant surface velocity and temperature but for 

many practical and industrial application problems the surface undergoes stretching and heating or cooling which 

is due to the fact that the  changes of the surface velocity and temperature, which in investigated by Tsou[4]. Later 

the study has been carried out by the authors [5-7] on the stretching surface with constant surface temperature.  

Several authors deals with the study of convective fluid flow in a or through flow permeable medium called 

porous medium taken a majore role for the scholors/researchers due to wide diverse range of engineering and 

industrial applications as mentioned below. We can observe the effect of porous media in the industrial applications 

like heat exchangers in high heat flux applications such as air conditioning, insulation of the heated body, electronic 

equipment, sensible heat storage beds, thermal energy storage, drying process (wood and food products) and 

filtration process etc. During the last few decades, several researchers [8-10] studied free convection, heat and 

mass transfer in a porous medium. Mass transfer effects on flow past an moving vertical plate has been already 

well studied [11-12]. Furthermore, the problem of heat and mass transfer of non-Newtonian fluids through porous 

media has become a very interesting subject for many research projects [13-15]. 

Eckert and Drake [16] explained the dufour and soret effect which helps in understanding the study between 

the mixtures of gases with modeling weight can be ignored in electronic technology field. Later Kafoussias and 

Williams [17] developed a similar effect on mixed (free forced) convective and mass transfer with variable fluid 
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property like viscosity, which is a function of temperature. Further the same effect of dufour and soret over a 

vertical surface embedded in a porous media is investigated by Anghel et al [18]. Chen and Char [19] analyzed 

the effect of surface temperature power law and surface heat flux power law in the heat transfer characteristics of 

a continuous linear stretching surface. The non-Darcy free and forced convection along a vertical wall in a 

saturated porous medium has carried out by Lai and Kulacki [20]. Alabraba et al [21] explained the binary mixture 

of the laminar convection and hydromagnetic fluid flow along with radiative heat transfer.  

Further Seddeek [22] invesigated  his research work on hydro magnetic fluid flow and heat transfer of 

radiation and oscillatory boundary layer through porous media along with variable viscosity. The mass transfer 

and free convection flow of a viscous incompressible steady and electrically conducting fluid flow 

bounded by vertical infinite surface with constant suction velocity and constant heat flux through a highly 

porous medium was analyzed by Acharya et al [23]. Seddeek [24] have studied the effects of Soret and Dufour 

on mass transfer and mixed convective flow in the presence of suction and blowing over an accelerating surface 

along with a variable viscosity. Chandrasekhar and Namboodiri [25] have explained the behavior of velocity 

distribution and heat transfer of the fluid flow with variable permeability of the porous medium. Later 

Mohammadein and El-Shaer [26] have studied the importance of inertia effects of variable fluid properties through 

sparsely packed porous medium. Recently Dinesh et al [27-29] carried out their research work on mixed convection 

with fluid properties in terms of permeability, porosity and diffusivity over non-accelerating vertical plate for a 

more practical situation problem. Seddeek [30] carried out his research on free convection flow and the effects of 

thermal radiation and buoyancy in the presence of MHD with heat generation and variable viscosity over moving 

permeable surface. Recently Nalinakshi et al [31-34] have studied on mixed convection and effects of internal heat 

generation (IHG) with variable fluid properties like porosity and permeability on past a vertical heated plate. 

Sandeep et al [35-36] have studied the effect of cross diffusion with non-uniform heat sink/source and combined 

effect of non-uniform heat source/sink and viscous dissipation on MHD non-Newtonian fluid flow with Cattaneo-

Christov heat flux. Very recently Sandeep et al [37] have also studied numerically about the unsteady Casson fluid 

flow past a stretching surface under chemical reaction with thermal radiation and cross diffusion. 

In all the above practical applications we come across the variable fluid property (viscosity, permeability, 

thermal diffusion, solutal diffusion) which varies due to the physical parameters or quantities like position or time 

or temperature or concentration. As per our knowledge the researchers/scholars mentioned above are mainly 

concentrated to understand the fluid flow behavior like velocity, concentration and temperature over a non-

accelerating surface or with varying one of the fluid properties like (viscosity, permeability, thermal diffusion, 

solutal diffusion). Also the variation of viscosity of the fluid changes with temperature or permeability of the 

porous medium varies with position or time which is observed in practical applications which are mentioned above 

and these changes affects the characteristics of the fluid flow. Hence the main novelty in our paper is to study 

mathematically the physical behavior of varying fluid properties (viscosity, porosity and permeability) and internal 

heat generation (IHG) along with accelerating boundary surface. To evaluate the variations will affect the flow 

behavior compared to the earlier works for constant viscosity or in the absence of variation of fluid properties and 

the present work satisfy exactly with the earlier works and found an exllent agreement of the numerical results. 

 

2. Mathematical formulation 

Consider a steady (independent of time), two-dimensional ( )&x y , combined effects of species and temperature 

for a viscous, incompressible and laminar fluid flow in the presence of uniform porous medium over an 

accelerating flat plate with internal heat generation, we have assumed that             (a) the Bousinesque approximation 

is taken into account, (b) permeability and porosity are expressed in terms y-coordinate, (c) ohmic effect, combined 

effects of Soret and Dufour are considered, (d) all the molecular transport properties are constant except the 

variable viscosity, porosity and permeability, (e) The viscosity is inversely proportional to function of temperature 

and which is in the form of [ ]1 1
1 ( )T Tγ

µ µ ∞
∞

= + −  or 1
( )ra T T

µ
= −  (see Lai and Kulacki [20]) where 

1
, ra T T

γ
µ γ∞
∞

= = − , where ' ' ra and T  are constants, In general 0a > for liquids and 0a < for gases.  

 



Advances in Physics Theories and Applications                                                                                                  www.iiste.org 

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) 

Vol.69, 2018         

 

10 
 

 
Fig. 1: Physical Configuration 

The physical configuration of the fluid flow is depicted in the Fig. 1, where the velocity component u  is 

considered along with x -direction and v  is in the direction of y , the accelerating surface moves along the x -

axis and both x -axis and y -axis are mutually perpendicular to each other. Under all the above assumptions the 

governing equations of motion are expressed as 
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x y
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∂ ∂
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where rθ  is a viscosity parameter, which is defined by (Seddeek [22]), following Chandrasekhara and Namboodiri 

[25], the variable permeability ( )k η  and the variable porosity ( )ε η  are given by 

 
1

( )

r
r

w w

T T

T T T T
θ

γ
∞

∞ ∞

−
= = −

− −
           (5) 

 0( ) (1 ),k k de ηη −= +             (6) 

*

0( ) (1 ),d e ηε η ε −= +             (7) 

where 0ε  is the porosity and 0k  is the permeability of the porous medium at the edge of the boundary layer, 

3.0d =  and 
* 1.5d =  are considered as constants for variable permeability and porosity respectively and all 

other physical quantities have their standard meanings. The governing equations of the physical model are studeid 

under two different types of boundary conditions, which are the boundary at the accelerating surface and at the far 

away from the oscillatory surface in the porous medium. These two different types of boundary conditions have 

been discussed in the following cases: (i) Prescribed Surface Temperature and Concentration (PSTC) and (ii) 

Prescribed Wall Heat and Concentration Flux (PWHCF). 

 (i) Prescribed Surface Temperature and Concentration (PSTC) 

In this case a polynomial of degree r  has been maintained at the boundary on temperature of the vertical plate i.e. 

the accelerating temperature of the vertical plate wT  is considered in the form of 0

r

wT T A x∞= + , similarly the 

concentration of the accelerating wall wC  is assumed in the form of 1

r

wC C A x∞= + . The following are the 

expressions for boundary conditions on velocity, temperature and concentration fields: 



Advances in Physics Theories and Applications                                                                                                  www.iiste.org 

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) 

Vol.69, 2018         

 

11 
 

0 1, , , 0r r

w w wu bx v v T T A x C C A x at y∞ ∞= = = + = + =        (8) 

 

0, ,u T T C C as y∞ ∞= = = →∞             (9) 

 

where r  is the temperature parameter and  if 0r = then the thermal boundary conditions become isothermal, 

0 1,A A  are arbitrary constants and b  is the constant stretching rate, Since the Eqs.      (1)-(4) are coupled highly 

non-linear partial differential equations, so it is difficult to get the solution of these equations using analytical 

methods or techniques. So we are adopting the numerical technique to solve them. Acharya et al [23] introduced 

the following similarity variable η  and dimensionless parameters , ,f Hθ  to solve these equations numerically. 

( )
1

1 2
2 ( ), , ( ) , ( )

w w

b T T C C
b x f y H

T T C C
ψ υ η η θ η η

υ
∞ ∞

∞ ∞

− − = = = =  − − 
   (10) 

the velocity equation (1) will satisfy automatically when the stream function ( , )x yψ is defined in such way that  

u
y

ψ∂
=
∂

 and  v
x

ψ∂
= −

∂
 and the corresponding velocity components are given by 

1

2'( ), ( ) ( ).u bxf v b fη υ η= =−         (11) 

Substituting Eqs. (10) & (11) in Eqs. (2)-(4) using Eqs. (6) & (7), we get the following transformed coupled non-

linear ordinary differential equations.  
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c c c r
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where all the dimensionless parameters are defined in nomenclature section and the corresponding transformed 

boundary conditions in non-dimensional form are:  

( )
'

1

2

(0) , (0) 1, 1, 1 0,wv
f m f H at y

bv

θ= − = − = = = =     (15) 

' 0, 0, 0f H as yθ= = = →∞ .       (16) 

 

(ii) Prescribed Wall Heat and Concentration Flux (PWHCF) 

In this case a dirichelet conditions on temperature is maintained at the wall which is assumed in the form 

0

s

w

T
k q E x

y

∂
− =

∂
 and 1

s

w

C
D m E x

y

∂
− =

∂
. The following are the expressions for boundary conditions on 

velocity, temperature and concentration fields: 

0 1, , , 0s s

w w w

T C
u bx v v k q E x D m E x at y

y y

∂ ∂
= = − = − = =

∂ ∂
    (17) 

0, ,u T T C C as y∞ ∞= = = →∞        (18) 

where s  is the heat flux parameter and the accelerating sheet is subject to uniform heat flux when 0s =  and 

0 1,E E  are choosing constants. Since the Eqs. (1)-(4) are coupled highly non-linear partial differential equations, 

so it is difficult to get the solution of these equations using analytical methods or techniques. So we are adopting 

the numerical technique to solve them. Acharya et al [23] introduced the following similarity variable η  and 

dimensionless parameters , ,f g h  to solve these equations numerically. 
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the velocity equation (1) will satisfy automatically when the stream function ( , )x yψ is defined in such way that 

u
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ψ∂
=
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 and v
x

ψ∂
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∂
 and the corresponding velocity components are given by Eq. (11). Substituting Eqs. 

(11) & (19) in Eqs. (2)-(4) and using Eqs. (6) & (7), we get the following transformed coupled non-linear ordinary 

differential equations 
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where all the dimensionless parameters are defined in nomenclature section. The corresponding transformed 

boundary conditions in non-dimensional form are:  

( )
'

1

2

(0) , (0) 1, 1, 1 0,wv
f m f g h at y

bv

= − = − = = − = − =      (23) 

' 0, 0, 0f g h as y= = = →∞ .       (24) 

 

3. Numerical solution 

For the PSTC case the Eqs. (12) - (14) along with the boundary conditions (15) & (16) are the functions of 

( ), ( ) & ( )f Hη θ η η and similarly for the PWHCF case the Eqs. (20) - (22) along with the boundary conditions 

(23) & (24) are the functions of ( ), ( ) & ( )f g hη η η and which are to be determined. Since the ODE’s are highly 

non-linear, coupled and involved variable coefficient like transcendental terms as well as the corresponding 

boundary conditions so that the known methods pertaining to analytical nature of the solution cannot be applied. 

To overcome the difficulty raised in the analytical method here we adopt the numerical method to find the solution 

by transforming the higher order coupled non-linear ODE’s into system of first order ODE’s and these first order 

ODE’s can be solved by Runge-Kutta-Fehlberg explicit method and second order accuracy of Newton-Raphson 

method. The combination of these two numerical techniques to estimate an approximate solution of the problem 

is referred as shooting technique. By this we stop the iterative procedure for evaluating the numerical results for 

the above system of equations for the given boundary conditions. We developed these computations using the 

software like Mat Lab in which the computational work is carried out for an accuracy of 
610−

 i.e. the difference 

between the two iterative successive values is less than the prescribed accuracy of 
610−

. 

 

4. Results and discussion 

The importance of this paper is to understand the effect of internal heat generation (IHG) along with the variation 

of viscosity parameter, variation of permeability and porosity is seen in the Darcy term in momentum equation 

and ohmic effect in energy equation respectively. Using Mat Lab software we have drawn the numerical results 

for the system of ODE’s under two different conditions, which are (i) Prescribed Surface Temperature and 

Concentration (PSTC) (ii) Prescribed Wall Heat and Concentration Flux (PWHCF). The non-linear coupled ODE’s 

with variable co-efficients are araising from the momentum, energy and specious equations and which involves 

important non-dimensional parameters like prandtl number, Eckert number, porous parameter, viscosity parameter, 

Soret and Dufour numbers and all other parameters involved in the physical problem are assumed to be fixed value 

throughout the computation. The numerical results are carried out to discuss the variation of velocity or momentum 

of the fluid flow, temperature variation and solutal changes for the above non-dimensional parameters and are 

depicted from the following Figures [2-19]. 

Effect of Prandtl number ( rP ): Figs. 2-4 gives the effects of prandtl number over the velocity, temperature and 

concentration are observed, the variation of the prandtl number is due to changes of viscosity or thermal 
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diffussivity i.e. the increase in the prandtl number of the fluid is due to decrease in the thermal diffusivity of the 

fluid or enhancement of the viscosity of the fluid, this will result a gradual decrease in the flow of velocity of the 

fluid. The percentage of decrement of the velocity is less in the case of PWHCF compared to that of PSTC case 

because of boundary conditions maintained at the accelerating surface, which depicted in the Fig. 2. For the same 

enhancement of the prandtl number we can observe that the gradual decrease of temperature in the Fig. 3, but the 

rate decreases of temperature of the fluid flow is more in the case of PSTC compare to that of PWHCF case because 

of adiabation nature of temperature is maintained at the accelerating wall. An opposite behavior is seen in the Fig.4 

with the case of concentration profile for different values of prandtl number, the acceleration of the concentration 

will gradually increase due to less movement of fluid flow but the effect of prandtl number on concentration for 

both cases is very less compare to that of velocity and temperature. Our computational results have good agreement 

for the variation of prandtl number with the previous works. 

Effect of Eckert number ( E ): Figs. 5-7 show the variation of Eckert number over the velocity, temperature and 

concentration profiles, it plays very important role in understanding the ohmic effect. With an enhancement of 

Eckert number will increase the non-dimensional velocity and temperature profiles in both the cases of PSTC and 

PWHCF, which is due to the increase of kinetic energy of the fluid flow in the physical model, which is dipicted 

in the Fig. 5 and Fig. 6 respectively. An opposite behavior can observe in the case of dimensionlee concentration 

profile in the Fig. 7, i.e. with an enhancement of  Eckert number will reduce the concentration, but it is observe 

that the effect of Eckert number are more in case of PWHCF and compared with that of PSTC for velocity, 

temperature and concentration profiles. 

Effect of Porous parameter (σ ): Figs. 8-10 indicates the effects of porous parameterσ  over the velocity, 

temperature and concentration respectively. Due to enhancement of the viscosity of the fluid or decrease in the 

stretching rate of the moving surface or decrease in the permeability at the edge of the boundary layer, the porous 

parameterσ  will increase and this will result a gradual decrement of the velocity of the fluid flow, which is seen 

in the Fig. 8. An opposite behavior is seen temperature profile for different values of the porous parameterσ . The 

dimensionless temperature increased both in the case of PSTC and PWHCF because the decrement of the 

permeability of porous medium at the edge of the boundary layer or increment of fluid viscosity, which is depicted 

in Fig. 9. For the enhancement of viscosity will reduce the movement of fluid hence the acceleration of the 

concentration will gradually increase i.e. an enhancement of the porous parameterσ  there is a gradual increase of 

concentration is observed in the Fig. 10. If 0σ =  i.e. in the absence of porous parameterσ  our numerical results 

have good agreement with earlier works. 

Effect of Viscosity parameter ( rθ ): Figs. 11-13 illustrate the variations of viscosity parameter rθ  in terms of 

velocity, temperature and concentration respectively. With the changes of viscosity parameter rθ  there is a drastic 

change in velocity, which diminishes exponentially and the percentage of decrement of the velocity is more in the 

case of PSTC compare to that of PWHCF case. This is due to the fact that the enhancement of the viscosity 

diminishes the flow rate or in the other words the heat transfer between wall to far away from accelerating plate is 

decrease and which is depicted in the Fig. 11. There is an opposite behavior of heat transfer can be observed with 

the variation of viscosity parameter rθ  on the non-dimensional temperature as shown in Fig. 12. Here heat transfer 

is more in the case of PWHCF compare to that of PSTC case. Similarly a slight change is observed in the Fig. 13 

in the case of specious or concentration profile with respect to the viscosity parameter rθ . Since the concentration 

will not affects directly for the variations of viscosity parameter but indirectly the concentration will affect through 

temperature and momentum equations. 

Effects of Soret number ( rS ) and Dufour number ( fD ): Figs. 14-16 indicates the variations of the Soret 

number over the velocity, temperature and concentration profiles respectively. With  increase of the Soret number 

the dimensionless velocity, temperature and concentration will also increase, which is due to the effect of 

temperature gradient and the effect of mass diffusion. Similarly we can also plot the behavior of velocity, 

temperature and concentration profiles for various values of Dufour number in the Figs. 17-19 respectively. The 

increase of Dufour number leads to raise the non-dimensional velocity and as well as temperature of the fluid, 

which can be depict in the Fig. 17 and Fig. 18 respectively where as an opposite behavior can be gleaned from the 

Fig. 19 in the case of concentration profile i.e. an increase of Dufour number helps in reducing the dimensionless 

concentration which is due to the fact that the contribution of the species or concentration gradients to the thermal 

energy flux in fluid flow. 
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Table 1. The numerical results for 
' ' ' '(0), (0) (0)f andθ φ for 00.1, 0.4, 0.22, 0.71rE Sc Pε= = = =  

for variable porosity and permeability and effect of internal heat generation. 

Table 1 shows our computational results and which are compared with the earlier work of Nalinakshi et al 

[31] and found to be an exllent agreement for the accuracy of 10-6 for the constant viscosity of the fluid. 

 

5. Conclusions 

In this study we analyzed the effects of internal heat generation (IHG), combined effects of Soret and Dufour with 

variable fluid properties like variable porosity, permeability and viscosity on thermal and diffusion mixed (free 

and forced) convection flow fluid through porous media over moving surface. The numerical computation has 

been carried out for other additional terms like internal heat generation (IHG), viscous dissipation and ohmic effect. 

We have drawn the numerical results and presented graphically for the flow characteristics like velocity, 

temperature and concentration for the effect of IHG, Soret and Dufour effects on mixed (free and forced) 

convective flow with variable fluid properties for various non-dimensional parameters namely prandtl number, 

Eckert number, porous parameter, viscosity parameter, Soret number and Dufour number of the problem using the 

shooting technique. In the light of present study the main conclusions are drawn: 

• The velocity and temperature profiles decreased for an increase in prandtl number rP  whereas the 

concentration profile is increased for an increase prandtl number rP . 

• The velocity profile decreased for an increase in viscosity parameter rθ whereas temperature and 

concentration profiles increased for an increase in viscosity parameter rθ . 

• As an increase in porous parameterσ  results decrease the velocity profile but increase the temperature and 

concentration profiles. 

• Soret number helps to enhance the velocity, temperature and concentration.  
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