
Advances in Physics Theories and Applications                                                              www.iiste.org 

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) 

Vol.16, 2013         
 

64 

Energy Spectra and Wave Function Analysis of q-Deformed 

Modified Poschl-Teller and Hyperbolic Scarf II Potentials         

Using NU Method and a Mapping Method 
A Suparmi

1*
, C Cari

2
, H Yuliani

2 

1,2 
Physics Department, Sebelas Maret University, Jl. Ir. Sutami no 36A Kentingan Surakarta 57126. Ph. 646994, 

636895. Fax.646655, Indonesia 

3
 Graduate student, Physics Department, Sebelas Maret University, Jl. Ir. Sutami no 36A Kentingan Surakarta 57126. 

Ph. 646994, 636895. Fax.646655, Indonesia 

*
E-mail:suparmiuns@gmail.com 

The research is partially financed by Hibah Pascasarjana 2340/UN27.10/PG/2012 

Abstract 
The solution of Schrodinger equations for q-deformed modified Poschl-Teller and hyperbolic 
Scarf II potentials are investigated using Nikiforov-Uvarov method and a mapping method. By 
applying a translation of spatial variable non-deformed potentials are mapped on to deformed 
potential or vice versa and as a product the potential’s parameters scaling obtained. The bound 
state energy spectra obtained using NU method are given in the close form and the corresponding 
wave functions are formulated in terms of the Jacobi Polynomials. The energy spectra and the 
radial wave functions of the system are also produced by a mapping using potential’s parameters 
scaling from the non-deformed to the deformed potential. 

Keywords:Energy spectra, wave-function, q-deformed hyperbolic Scarf II, q-deformed modified 
Poschl-Teller, Nikiforov-Uvarov method, a mapping method   

 

1. Introduction 

The exact analytical solution of Schrodinger equations for a class of shape invariant potentials are 
only possible if the the angular momentum l=0 . For 0≠l , the Schrodinger equation can only be 
solved approximately by using different suitable approximation scheme for centrifugal term. One 
of the suitable approximation scheme is firstly proposed by Greene and Aldrich (1976) and 
recently improved (Akpan et.al. 2012), this approximation works very well for potentials whose 
functions are hyperbolic or trigonometric function. 

Quantum deformation has received much attention because of its relation with applications in 
nuclei (Sviratcheva 2004; Honusek 1992), statistical-quantum theory and conformal field theory 
(Swamy 1998; Spiridonov 1992). The q-deformed potential is special kind of f-deformed 
potential with only one deformed parameter q (Darareh & Harouni 2011). The q-deformed 
quantum harmonics oscillator has been investigated intensively by some authors in describing the 
physical models, such as vibrational and rotational spectra of molecules (Ballesteros, A.,et.al. 
2005; Bonatsos 1992). The quantum deformation of hyperbolic potential which was introduced 
by Arai (1991), has been investigated by some authors (Eshghi, 2012; Akpan et. al. 2012 Eg˘rifes 
et. al. 2000).  

Dutra (2005) has reinterpreted the idea of quantum deformation as a kind of parameter scaling 
symmetry of the model, so the q-deformed potential is not a new class of potential. The non-
deformed potentials are mapped into the corresponding non-deformed ones or vice-versa by a 
convenient translation of the spatial variable, and so its energy spectra and wave functions. 

 In this work we analyze the energy spectra and wave functions of q-deformed modified Poschl-
Teller and hyperbolic Scarf II potentials. The hyperbolic Scarf II potential is also called as 
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generalized Poschl-Teller potential (Derezi´nski & Wrochna 2010). Both potentials have been 
investigated intensively by some authors (Agboola, 2011; Hassan,et.al. 2012; Ikhdair, 2009; 
Suparmi, et.al. 2012). We intend to determine the energy spectra and wave functions of the q-
deformed potentials using Nikiforov-Uvarov (NU) method and mapping method. The modified 
Poschl-Teller potential has been used in atom optics and nanostructure physics (Dalarsson 2005). 

The NU method, that was developed by Nikiforov-Uvarov (1998), was used to solve Schrodinger 
equation by reducing it to the hypergeometric type equation by a suitable change of variable. The 
Nikiforov-Uvarov method has been used to obtain the energy eigenvalues and the corresponding 
eigenfunctions for a number of physical potentials.  

This paper is organized as follows. NU method is briefly reviewed in section 1.1. The quantum 
deformation of hyperbolic potentials and the mapping method  are discussed in section 1.2. The 
energy spectra and the corresponding wave functions of q-deformed modified Poschl-Teller and 
hyperbolic Scarf II potentials are found using NU method in sections 2.1 and 2.2. The use of a 
translation of spatial variable that maps energy spectra and wave functions of non-deformed 
potentials into deformed ones is discussed in section 3 and brief conclusion is presented in 
section 4. 

1.1 Review of Nikiforov-Uvarov Method 

The one-dimensional Schrodinger equation of any shape invariant potential can be reduced into 
hypergeometric or confluent hypergeometric type differential equation by suitable variable 
transformation (Yasuk F. et. al. 2005;  Natanzon 1971). The hypergeometric type differential 
equation, which can be solved using Nikiforov-Uvarov method is presented as  

0)(
)()(

)(

)(
22

2

=+
∂

∂
+

∂
∂

s
s

s

s

ss

s
ψ

σ
σψ

σ
τψ

 (1) 

where )(sσ  and  )(sσ   are polynomials at most in the second order, and )(sτ   is first order 

polynomial. Equation (1) can be solved using separation of variable method which is expressed 
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and )(sφ  is a logarithmic derivative whose solution is obtained from  condition  
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The value of k in equation (5) can be found from the condition that under the square root of 
equation (5) have to be square of polynomial which is mostly first degree polynomial and 
therefore the discriminate of the quadratic expression is zero. A new eigenvalue of equation (3) is 
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The new energy eigenvalue is obtained using equation (6) and (7). 
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To generate the energy eigenvalues and the corresponding eigenfunctions, the condition that 0
' <τ   

is required.  The solution of the second part of the wave function, yn(s), is connected to Rodrigues 
relation which is given as 

            (9) 

 

where Cn is normalization constant, and the weight function )(sρ  satisfies the condition 

( )
)()( ss

s
ρτ

σρ
=

∂
∂                (10) 

The wave function of the system is therefore obtained from equation (4) and (9). 

1.2.Review of q-deformed hyperbolic potential and a mapping between q-deformed potential and 
non-deformed ones 

The q-deformed hyperbolic functions introduced by Arai are given by 
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By using a translation of spatial variable introduced by Dutra  
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the deformed hyperbolic functions change into non-deformed ones and vice-versa as follows 
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Two of a class of hyperbolic potentials that will be discussed in this paper are the q-deformed 
modified Poschl-Teller and hyperbolic Scarf II potentials with centrifugal term whose effective 
potentials, respectively, are expressed as 
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By using equations (12) and (13) the effective potentials in equation (15) change into 
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Non-deformed Hyperbolic Poschl-Teller and Scarf II potentials with centrifugal term are 

expressed as 
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By comparing equations (16a) and (16b) we obtain the relation of potential’s parameters between 

the deformed potentials and the corresponding non-deformed potentials. This relation is called as 
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potential’s parameter scaling. By using the potential’s parameter scaling the energy spectrum and 

wave function of non-deformed are mapped to the deformed ones. 

2. Solution of deformed potential using NU method 
2.1. Solution of Schrodinger equation for q-deformed modified Poschl-Teller with centrifugal 
term using NU method 

The radial Schrodinger equation of q-deformed modified Poschl-Teller with centrifugal term is 
given as 
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For  
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Equation (18) is solved using NU method by introducing the new variable  
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By comparing equations (1) and (20) we have 
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Using equations (5) and (21) we obtain 
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The quadratic expression under the square root of equation (22) must be completed square of first 
degree polynomial therefore equation (22) can be rewritten as  
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and the discriminate of the quadratic expression under the square root that must be zero is given 
as 
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To calculate the value of k in equation (24), we simplify equation (24) by setting  
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and  gives 
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From equations (23), (25) (27), and (28) and by imposing that 0' <τ  we obtain 
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The new energy eigenvalue in equation (3) is obtained from equations (7), (21a), and (30) given 
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The energy eigenvalue calculated from equations (25) and (33) is given as 
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From the two equations of energy spectra expressed in equations (34a) and (34b) only equation 
(34b) that produces the original energy spectrum of modified Poschl-Teller potential, which is 
obtained for q=1 and l=0, given as 
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The first part of the wave function is obtained from equations (4), (21) and (29) given as 
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By using equation (9) together with equation (37) we obtain the second part of the wave function 
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The total radial wave function of q-deformed modified Poschl-Teller potential with centrifugal 
term is given as 

( ) )()()()( 4

1

24

1

2 syqsssr n

ow ++− −== χχ  (40) 

q=1, l=0 and n=0 is the special case where the wave function of the system reduces to the 
ground state wave function of modified Poschl-Teller potential given as 
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This result is in agreement with the result determined using hypergeometric equation (Suparmi 
2011). 

2. 2 The solution of Radial Schrodinger equation for hyperbolic Scarf II potential with 
centrifugal term 

The radial Schrodinger equation for hyperbolic Scarf II potential with centrifugal term is given as  
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By setting the new wave function 
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For 1<<<rα  the approximation value of centrifugal term is given as 
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By using a canonical transformation, srq =αcosh  in equation (44), we obtain 
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By comparing equation (45) with equation (1) we get 
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Inserting equation (46) into equation (5) we have   
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Since the expression under the square root in equation (47) is quadratic expression with variable s 
and it has to be square of first degree polynomial, then equation (47) becomes 
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and the discriminate of the quadratic expression under the square root that has to be zero is 
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in equation ( 49) the we get 

( ) ( )( ) 02 2222222 =+−−−− uqvtvqvtkqk                                                                                      (51) 

The value of k obtained from equation (51) are 
( )

q

qutqvt
k

2

42 2422

1

−+−
=

   

and   

  

( )
q

qutqvt
k

2

42 2422

2

−−−
=

                                                           (52) 

By imposing that 0' <τ   then  equation (48) is rewritten as 
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By using equations (8) and (53) we get  
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and from equations (52) and (53) we have 
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The new eigen value is obtained from equations  (46) and (54) as 
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To simplify the calculation we set 
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and therefore from equations (59), (60), and (61) we get 
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When we set q=1 and l=0 in equations (57) and (58) , the energy eigenvalue in equation (58) 

reduces to the energy eigenvalue of hyperbolic Scarf II potential given as  
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The energy eigenvalue that satisfies the energy of hyperbolic Scarf II is 
2nE  therefore the values of 

nandk λλτπ ,,,   are 22222 ,,, nandk λλτπ . Thus the energy eigenvalue of the system, 
2nE is 
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The radial wave function is determined using equations (4), (9), (10), (48), (53), and (54). 
The first part of the wave function obtained from equations (4), (48) and (53) is 
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The weight function of the second part of the wave function is obtained by inserting equations 
(46) and (54b) into equation (10) given as 
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The second part of the radial wave function obtained from equations (9) and (62) is given as 
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The radial wave function obtained from equations (61) and (63) is given as 
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3. The Calculation of energy spectra and wave functions using  mapping method through 
linear transformation of spatial variable 

3.1  Determination of energy spectrum and wave function of deformed modified Poschl-Teller 
potential using a mapping 

By comparing the deformed potential in equation (16a) and non-deformed potential in equation 
(16b) we obtain the relation of parameters between non-deformed and deformed hyperbolic 
Poschl-Teller potential given as   
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The energy spectrum, the first part of wave function and the weight function obtained using NU 
method for non-deformed hyperbolic Poschl-Teller potential are given as 
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By plugging equations (14) and (67) into equations (68), (69), (70) we have 
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and the deformed weight function 
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The second part of deformed wave function is given as 
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The first wave function and the weight function obtained through a mapping using transformation 
of spatial variable are in agreement with the result obtained using NU method which are 
expressed in equations (37), (39).  
3.2  Determination of energy spectrum and wave function of hyperbolic Scarf II potentials using 
a mapping 

Secondly, we will determine the energy spectrum and wave functions of q-deformed hyperbolic 
Scarf II potential with centrifugal term by a transformation of potential parameter. By comparing 
equations (16a) and (16b) we get the relation of hyperbolic Scarf II’s potential parameter between 
the deformed and non-deformed ones given as 
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The energy spectrum, the first part of wave function and the weight function are given as 
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By inserting equation (14) and (75) into equations (76), (77), and (78) we have the energy 
spectrum, the first part of wave function, and the weight function given as  
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Equations (80), (81), and (82) are similar to the equations (60), (61), and (62) since equation (57) 
is the same with equation (83). Therefore the total wave function calculated using a mapping will 
also be in agreement with the result of direct calculation using NU method. 

4.Conclusion 

The energy spectra and wave functions of deformed modified Poschl-Teller and hyperbolic Scarf 
potentials are analyzed using NU method and a mapping method. The approximate energy 
spectra of the two system are expressed in the closed form and the radial wave function are 
expressed in term of Jacobi polynomials. By a translation of spatial variable the potential 
parameters of non-deformed potential are mapped into the parameters of the deformed ones, and 
in turn the energy spectra and wave functions of the non-deformed potentials are mapped into 
energy spectra and wave functions of the deformed potentials.  
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