
Advances in Physics Theories and Applications                                                                                                  www.iiste.org 

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) DOI: 10.7176/APTA 

Vol.78, 2019         

 

13 
 

Statistical and Squeezing Proprieties of Superposed Single-Mode 

Squeezed Chaotic State 
 

Alemayehu Getahun 

College of natural and computational scinces, Department of physics, Mekdela Amba 

University, Dessie, Ethiopia 

 

Abstract 

In this paper we have studied the statistical and squeezing proprieties of light produced by superposition of a pair 

of single-mode squeezed chaotic light beams. Applying density operator of single-mode squeezed chaotic state; 

we obtain the anti-normal order characteristics function which enables us to find the Q function. With the resulting 

Q function, we calculate the photon statistics and the Quadrature squeezing for single-mode squeezed chaotic light. 

Moreover applying Q function of single-mode squeezed chaotic state the superposed light beams would be driven. 

With the resulting Q function we calculated the photon statics and the quadrature squeezing for superposed light 

beams. To get the maximum squeezing to be 95%, for nth = 0 and r = 1.5. 
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1 Introduction 

The most important quantum states of light are chaotic state, coherent state and squeezed state. Chaotic state is 

one of the classical features of light with super-Poissonian photon statics. And its best example is thermal light. 

The coherent state is a specific superposition of number states which does not possess number of photons as well 

as it is known by minimum uncertainty and poissonian photon statistics. Squeezed state satisfies non-classical 

feature of light, with sub-poissonian photon statistics [1]-[4]. 

The quantum distribution of radiation is the core idea in quantum optics. This used to describe the quantum 

properties of light. Some of them are the P function, the Wigner function and the Q functions. The P-function is c-

number function with the anti-normal order density operator over π.  And used to describe the superposition of 

two light beams with different states but having the same frequency. The Wigner function is the c-number function 

corresponding to the symmetric order density operator over π. The Q function is the most widely used one because, 

it is used to describe the superposition of two light beams with the same frequency but may be in the same or 

different states. This is described in terms of normally ordered density operator divided by π [5]. 

 

2 Methods 

Within density operator we calculate the anti-normal order characteristic function which is used to obtain the Q 

function. With the help of resulting Q function we calculate the density operator for superposed single-mode 

squeezed Chaotic state, the mean photon number, the variance of photon number, the photon number distribution 

and quadrature variance for both single-mode and superposed single-mode squeezed chaotic state. 

 

3 Single-mode squeezed chaotic state 

3.1 Single-mode chaotic state 

Thermal light is the best example of light mode in a chaotic state, which is generated by the source in thermal 

equilibrium at the minimum temperature. This is not a pure state, instead it can be described by density matrix and 

has mean which is less than variance so, and we called as classical feature of light. It can be used to describe light 

of the bulb, Black-body radiation and etc. In this section we seek to determine the density operator for chaotic light 

in terms of the P function using Lagrangian multipliers and by maximizing entropy. The entropy of thermal light 

can be described as [6]. 

 

3.2 Single-mode Squeezed State 

A degenerate parametric amplifier, consisting of nonlinear crystal pumped by coherent light, is a source of single-

mode squeezed light. In this system a pump photon of frequency 2ω is down converted into two twines signal 

photons each of frequency ω as shown in Fig. (1) [6]-[10].  

 
Figure 1: A degenerate parametric amplifier with nonlinear crystal pumped by coherent light 
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3.3 The Q function for single-mode squeezed chaotic state 

The Squeezed chaotic state is obtained by performing squeezing operator on thermal state.Which have both 

classical and quantum nature rather than quantum or classical nature only because the system obeys both features 

simultaneously. Thus, consider the light mode initially in a chaotic state then the state vector for the squeezed 

chaotic light would be given by, ��sc = | ψ>sc <ψ| = ��(r)|φ>th< φ | ���(r) = ��(r)th���(r).                                                    (1) 

Eq. (1) describes the density operator for single-mode squeezed chaotic state. The Q function for single-mode 

squeezed chaotic state in terms of anti-normally ordered characteristics function is expressed in [9]-[12], ���∗, �, �� = �� � �������∗, �, ��e��∗����∗�,                                                                     (2) 

 

Where ����∗, �, �� = �� e��∗���������∗��
                                                                                         (3) 

And  � = �1 + 2"#$%�&'"ℎ�� + "#$% + 1 

                                            ) = −�1 + 2"#$%�+,&ℎ�&'"ℎ�                                                (4) 

Substituting Eq.(3)in Eq.(2), we see that ���∗, �, �� = �� � -��� e��∗���∗����∗��������∗��
                                                                   (5) 

Carrying out integration with the help of � -��� e���∗��.��/�∗�0���1�∗�� = 2 ����345 exp [:�;<=;�<>��:�?@=> ]
                                                  (6) 

                                                                                

                                                                           For � > 0 

We get ���∗, �, �� = D��E�� FGHI�D��∗�J� K����∗�LM.
                                                                            (7) 

Where O = ����P�      ,                                                                                                                                              (8) 

And  Q = P���P�    .                                                                                                                                                (9) 

 

 

3.4 Photon statistics 

Here we wish to calculate the mean photon number; the variance of photon number and then photon number 

distribution of the light generated by single-mode squeezed chaotic light employing the Q function. 

3.4.1 The mean photon number 

The mean photon number in terms of the Q function is given by "# = � ������∗, �, ��e4�∗�.     (10) 

Up on expanding the exponential function e4�∗� in power series as e4�∗� = R1 + S + 12 S� + ⋯ U �∗α, 
                                                             = �1 − M��∗α + N��.                                                                           (11) 

Interims of  Eqs. (4), (8) and Eq. (9) the mean photon number for single -mode squeezed chaotic state take the 

form "# = "#$% + �1 + 2"#$%�&'"ℎ��  (12) 

Fig. (2), shows that as the mean photon number of thermal light and squeezed parameter(r) increase the mean 

photon number of single-mode squeezed chaotic state increases. So the use of thermal light is to increase the mean 

photon number of single-mode squeezed chaotic state. 
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Figure 2: Plots of mean photon number Eq. (10) versus squeeze parameter(r) for different value of  "#$%. 

3.4.2 The Variance of Photon Number 

The variance of photon number for single-mode squeezed chaotic light in anti-normal order form is putted as, �∆"�� =Z ������� > +2"# − "#�.    (13) 

 

Where Z ������� > = � ������∗, �, ��e4�∗��� .     (14) 

we can expand e4�∗���
 in power series form as, e4�∗��� = [1 − �O�∗ − Q�� \\�∗ + E� \�\�∗� + ��! ^−�O�∗ − Q�� \\�∗ + E� \�\�∗�_.

� + ⋯ ` �∗���,                            (15)                                                                                       

 Using Eq. (15) in Eq. (14) and applying the differentiation, we see that   Z ������� >=  2�� + )�                                  (16) 

On account of  Eqs. (4),  (16)  and  Eq. (12) the variance of photon number described as    ∆"� = 2"#$% − "#$%� + 3�1 + 2"#$%��&'"ℎ�� + �1 + 2"#$%��&'"ℎ3�−�1 + 2"#$%�+,&ℎ�&'"ℎ�.                               (17)                                     

Fig. (3) Shows that the variance of photon number (broken line) is greater than mean photon number (solid line) 

which indicates the radiation has super-Poissonian photon stastics. 

 

 

 

Figure 3: Plots of the mean photon number Eq. (12) and the variance of photon number 

Eq. (17) versus squeeze parameter(r) for "#$%= 0.25. 

3.4.3 Photon number distribution 

The photon number distribution for single-mode light is expressible in terms of the Q function as, b�", �� = �D��E��c�d! \�e\�∗e\�e FGHI���D��∗��J� �����∗��M|�g�∗gh  (18) 

Up on expanding the exponential part in a power series, we have FGH[���D��∗��] = i �1 − j�k�∗k�kl!k , 
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FGHIE� ��M = i ^Q2_m ��mn!m  

                                                              FGHIJ� �∗�M = ∑ ^J� _p�∗�p
q!q .  (19) 

Substituting Eq. (19) into Eq. (18), we find 

 b�", �� = �D��E��c�d! ∑ ^r�_s<t���u�v
w!x!y \�e\�∗e\�e �z�m�k�∗�q�k�w!x!y! |�g�∗gh, (20) 

 

Performing some mathematical rules we find b�", �� = �O� − Q��c� ∑ d!���{�e?�|E�}��}�m!���d��m�![d]kgh . (21) 

 

On account of Eq. (8), (9) and Eq. (4) we can put the photon number distribution as, 

b�", �� = ������d#~����d%�������d#~����c� �∑ d!� e�~��?e�~��c<�e�~����e���<�c<e�~����e?�pR ?�c<�e�~��;������e��  �c<�e�~����e���<�c<e�~���U�p
��p�q!���d��q�![d]qgh �.  

                                                                                                                                                     (22) 

Fig. (4) Shows that the photon number distribution increase with number of photons. But photon number 

distribution decrease as mean photon number of thermal light and squeezed parameter(r) increase. 

 
Figure 4: Plots of photon number distribution Eq. (14) versus number of photons (n) 

 

3.5 Quadrature squeezing (fluctuation) 

The squeezing properties of single-mode light are described by two quadrature operators defined by [13], ∆��� =Z ���, ��� >. (23) 

Using Z U, V >=Z �� > −Z � >Z � > Eq.(23) can be rewritten as ∆��� = 1+Z ��� > �Z ���� > +Z ���� > +2 Z ����� > ∓Z �� >�− 2 Z �� >Z ��� >, (24) 

Where the expectation values are Z �� > =Z ��� � 0. (25) 

And Z ��� >=Z ���� >=b (26) 

On account of Eq. (4), and expanding trigonometric function in exponential form the plus and minus quadrature 

is rewritten as ∆��� = �1 + 2"#$%�F∓��. (27) 

Fig. (5), shows dependence of the system on its initial state. As we see from the figure while squeezing parameter 

increase the corresponding quadrature variance decreases. But the quadrature variance increases with mean photon 

number of thermal light. 
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Figure 5: Plots of ∆���  Eq. (27) versus r for different values of "#$% 

Furthermore the quadrature squeezing for single-mode squeezed chaotic state relative to the coherent state is 

given by, � = �∆����;�∆�<��∆����; .                               (28) 

Where the quadrature variance for coherent state is �∆����/ = 1, (29) 

In view of this, we get � = 1 − ∆���,    (30) 

Substituting Eq. (27) in (30), we get � = 1 − �1 + 2"#$%�F���. (31) 

 

4 Superposed single-modes squeezed chaotic state 

To describe the superposition we use two single-mode squeezed chaotic light beams which are emitted from 

different sides onto a mirror. We assume that one side of the mirror is totally trans missive and the other one is 

totally reflective. At the back of the mirror we see pair of light which is called as the superposed single-mode 

squeezed chaotic light as shown in Fig. (6) 

 
Figure 6: The schematic representation for the superposition of two light beams 

 

4.1 The Density operator for pair of superposed single-mode squeezed chaotic state 

Density operator for superposed single-mode light beams can be written interims of Q function as; ������ = ∑ � -����,{ +�{������{|� >Z �|.  (32) 

Where                                            �� = � -��� |� >Z �|,  (33) 

Applying the fact that                                           |� >Z �|���� = �∗�|� >Z �|,  (34) 

And  

                                  |� >Z �|��{ =�� + \\�∗�{|� >Z �|,                                                        (35) 

Employing the preceding two equations, one can write the density operator for first light beam as, ������ = � �� ���� ^��∗ + � + \\�c∗_ ���������0����−���,  
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=� �� ���� ^��∗ + � + \\�c∗_ |�� >Z ��|.                                                                                (36) 

In which                                  �� ^��∗ + � + \\�c∗_ = �� ∑ +�{�,{ ��∗� ^�� + \\�c∗_,    (37) 

Is the Q function for first light beam.                                    � � ���� = F�c��<��c�� ,                                                                                   (38) 

Is the displacement operator 

                                  ���0� = |0 >Z 0|,                                                                                          (39) 

Is the density operator at initial time. 

 

Furthermore, the density operator at initial time corresponds to superposed light beams can be written as, ����=  � �� ���� ^��∗ + �� + \\��∗_ � � ����������� � �−���.      (40) 

In which subscript ”ss” stand for superposed light beams, and the Q function in Eq. (40), takes the form, �� ^��∗ + �� + \\��∗_ = �� ∑ +�{�,{ ��∗� ^�� + \\��∗_{,        (41) 

Which represents the Q function corresponding to second light beams, Also using the fact that � � ����� � ����|0 >Z 0|� � �−���� � �−��� = |�� + �� >Z �� + ��|, (42) 

And on account of  Eqs. (36), (41) and Eq. (42) we can write the density operator for superposed single-mode light 

beams as, 

  ����=   � �� ���� ^��∗ + �� + \\�c∗_ � �� ���� ^��∗ + �� + \\��∗_ |�� + �� >Z �� + ��|.   (43) 

 

4.2 Photon statistics 

Here we wish to calculate the mean photon number, the variance of photon number and the photon number 

distribution for the superposition of two light beams employing the normally ordered density operator. 

4.2.1 The mean photon number  

The mean photon number is expressed in terms of the density operator as; 

 

                                                                          "#�� = �������������.      (44) 

Using Eq. (43) in (44), we see that "#�� = � �� ���� R��∗ + �� + zz��∗U � �� ���� R��∗ + �� + zz��∗U ����∗�� + ��∗�� + ��∗�� + ��∗���,                                                                                        (45)     

This can be seated in the form, "#�� =Z ������������� > +Z ������� >Z ������ > +Z ������������� > +Z ������� >Z ������> ,                                                                                                                                                             �46� 

Next we proceed to evaluate the expectation values evolved in Eq. (46). 

       Z ������� >=  � �� ���� ^��∗ + �� + \\��∗_ ��∗�� , ' = 1,2.                                                    (47) 

In which    

         �� ^��∗ + �� + \\��∗_ = �����∗ + ���F4� ,                                                                           (48) 

Where S� = −�O� − Q�� \\��∗ + E�� \�\��∗� , (49) 

Substituting Eq. (48) in (47), we see that Z ������� >=  � �� �������∗ + ���F4���∗��.                                                                               (50) 

where    F 4���∗�� = ��∗�� − �O���∗ − Q������ , 
                                                             =(1-O�) ��∗�� + Q����.                                                  (51) 

Using Eq. (51) into Eq. (50) the mean photon number for superpose light beams takes 

the form, 

     "#�� =  2"#$% + 2�1 + 2"#$%�&'"ℎ��.                                                                                      (52) 

In view of Eqs. (12) and (52), we see that the mean photon number for identical superposed 

light beams are two times that of single-mode one. 

4.2.2 The variance of photon number 

The variance of photon number for the superposed light beams is expressible as                                                           
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∆"��� =Z ������� > +2"#�� − "#���.           (53) 

Where Z ������� > =Z ��������� > +Z ��������� > +4 Z ������� >Z ������� > +Z ����� >Z ���� > +Z ���� >Z �����> ,                                                                                                �54� 

After calculating all expectation values and using Eq. (52) the variance of photon number given by, ∆"��� = 4"#$% − 2"#$%� + 6�1 + 2"#$%��&'"ℎ�� + 4�1 + 2"#$%��&'"ℎ3�− 2�1 + 2"#$%�+,&ℎ�&'"ℎ�                                                                                    �55� 

From Eq. (17) and (55), we see that the variance of photon number for superposed light beams is twice that of 

single-mode one. But the variance of photon number for the superposed light beams is greater than single-mode 

squeezed chaotic state. Fig. (7) Indicates both the mean photon number and variance photon number increase with 

squeezing parameter. But the variance of photon number is greater than the mean photon number; so the photon 

statics for the superposed single-mode squeezed chaotic state satisfies super-Poissonian photon statistics. 

                         
Figure 7: Plots of mean (Eq. (52)) and variance of photon number (Eq. (55)) versus r for the superposed light 

beams taking "#$% = 0.25 

4.2.3 Photon number distribution 

The photon number distribution for superposed light beams written as, b�", ���� = �D���E���c�d! \�e\��∗e��e [FGHI���D����∗���J�� ���∗������M` |��∗g�� = 0.                             (56) 

Applying the power series expansion, we find FGH[���D����∗��] = ∑ ���D��}��∗��k!k ,                                               (57) 

FGHIJ�� �����M = ∑ �J�� �|���|m!m ,    (58) 

And  FGHIJ�� ���∗��M = ∑ �J�� �p��∗�pq!q  .                        (59) 

With these result, Eq. (56), is expressed as 

 b�", ���� = ��4�c� �∑ "! ^>=_e?�p^?�= _e?�p
��p�q!���d��q�![d]qgh  .   (60) 

Eq. (60) represents the photon number distribution for identical superposed single-mode squeezed chaotic state. 

Where                   S = 2�1 + 2"#$%�&'"ℎ�� + 2�1 + "#$%�� 

                                              ¡ = 2"#$%�1 + "#$%� ¢ = 2�1 + 2"#$%�+,&ℎ�&'"ℎ� 

Fig. (8) Shows relation between the photon number distributions for single-mode squeezed chaotic state (solid line) 

and the superposed light beams (broken line). We observe that for both cases photon number distribution is 

increase with number of photons. But the photon number distribution for superposed light beams is greater than 

single-mode one. 
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Figure 8: Plots of photon number distribution (Eq. (60)) versus number of photons (n) for "#$%= 2 and r = 1.5 

 

4.3 Quadrature squeezing 

The quadrature variance for the superposed light beams takes the form, 

 �∆������ = 2 � [Z ��� >  + Z ���� >  +2 Z ����� >].       (61) 

After evaluating the expectation values of above terms the Variance for the superposed light beams can be, �∆������ = 2�1 + 2"#$%�F∓�� ,                               (62) 

From above equation we can understand that squeezing occurs in plus quadrature. And when we compare Eq. (27) 

with Eq. (62) one can understand that the plus quadrature for superposed light beams for identical light are two 

times that of single-mode one. Quadrature squeezing can be written in terms of quadrature variance as ��� = �∆����}� ∆�<��∆����} . (63) 

Where quadrature variance for vacuum state is �∆����k = 2.  (64) 

On account of Eq. (64), one can describe quadrature squeezing superposed light beams as ��� = 1 − �1 + 2"#$%�F��� .  (65) 

This is the same with single-mode light beam. Fig (9), shows relation between the mean photon numbers of thermal 

light, squeeze parameter and quadrature squeezing. As mean photon number of thermal light increases quadrature 

squeezing decreases and as squeezed parameter increase, the quadrature squeezes increases. 

 

                       

 
Figure 9: Plots of quadrature squeezing for superposed light beams versus squeeze parameter 

Eq. (65)) for different values of "#$%. 
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5 Results 

In this paper we have study the statistical and squeezing properties of both single-modes squeezed chaotic state 

and superposed single-mode squeezed chaotic state. In order to carry out analysis, we have obtained the Q function 

from density operator of single-mode squeezed chaotic state. With Q function we calculate the variance of photon 

number, the photon number distribution, the quadrature variance and quadrature squeezing for single-mode 

squeezed chaotic light. And we get; "#$% ∆��� ��� Degree of squeezing 

0 0.049 0.950 95% 

5 0.248 0.751 75.1% 

10 0.547 0.452 45.2% 

15 0.746 0.253 25.3% 

Table (1) Which shows the relation between mean, plus quadrature, quadrature squeezing and degree of squeezing. 

   Table (1), summarize dependence of quadrature variance, quadrature squeezing and degree of squeezing on mean 

photon number of thermal light.  And  when the mean photon number of thermal light increases, the variance and 

squeezing of the system increases and decrease, respectively. The quadrature squeezing is observed to be high 

when the initial state of the system is vacuum (no photon for convenience) which has corresponding degree of 95% 

for r = 1.5. 

And With Q function of single-mode squeezed chaotic state we calculate the density operator for superposed 

light beams. The result shows the mean photon number increase with increment of the mean photon number of 

thermal light and squeeze parameter, but quadrature variance are decreases as both mean photon number of thermal 

light and squeeze parameter increase. And also the variance of photon number is greater than the mean photon 

number and the radiation has super-poissonian photon statics. 

With density operator for superposed single-mode squeezed chaotic light and respective Q function I have 

calculate the mean photon number, the variance of photon number, the quadrature variance and quadrature 

squeezing.  We have found that the mean photon number for superposed single-mode squeezed chaotic light is two 

times that of single-mode squeezed chaotic light with identical light beams. But the quadrature squeezing does not 

affected by the superposition. 

The other one is that the probability of getting n-number of photon for superposed light beams are greater 

than single-mode squeezed chaotic state. And the variance for superposed light beams are greater than variance of 

single-mode one so the system still satisfies super-poissonian photon statics. 
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