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Abstract 

 Following our previous work on fractional supersymmetry (FSUSY) [1,2], we focus here our contribute to the study 

of the superspace formulation in D1  that is invariant under FSUSY where 3=F  and defined by HQ =3 , we 

extend our formulation in the end of our paper to arbitrary F  with 3>F  .  
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1. Introduction 

 Motivating by the results founded in [1,2], the aim of this paper is to develop a superspace formulation in D1  QFT 

that is invariant under fractional supersymmetry (FSS). In such construction, the Hamiltonian H  is expressed as the 

thF  power of a conserved fractional supercharge: HQF = , with 0=],[ QH  and 3≥F . Here, we shall reformulate 

these results in fractional superspace, using generalized Grassmann variable of order F  satisfying 0=
Fθ . 

Additionally, we construct the Noether fractional supercharges in the case where 3=F . 

The presentation of this paper is as follow: In section 2, we present the Fractional Superspace and Fractional 

Supersymmetry 3=F . In section 3, we will give the Fractional supercharges and Euler-Lagrange equations for 

3=F . In section 4, we will generalise the FSUSY in arbitrary order and finally, we give a conclusion. 

 

2. Fractional Superspace and Fractional Supersymmetry 3=F  

 The FSUSY of order 3  are generated by the Hamiltonian H  generator of the time translation, and Q  the generator 

of FSUSY transformations . they satisfies:  

 HQHQ =;0=],[
3

 (1) 

 In fields quantum theory, this symmetry can be realized on generalized superspace ),( θt  , where t  is the time, and 

θ  is a real generalized Grassmann variable. The latter variable and his derivative ∂
∂

∂
=

θ
 satisfies:  

 0=;0= 33 ∂θ  
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 Ι∂−∂ =θθ θθ q  (2) 

 
2 θθ ∂≡∫ d  

 The introduction of the ε  (parameter of the transformation associated to Q ) et f  (parameter of the transformation 

associated to H ) in the case where 3=F  give the following transformations [3]:  

 )(= 22 εθθε +−−′ qftt  (3) 

 εθθ +′ =  

 where ε  verify:  

 0=3ε  

 εθθε q=  (4) 

 where 3

2

=

πi

eq . The q-commutation relation between the two variables ε  and θ  ensures that:   

    • if 0== 33 θε  then 0=)( 3εθ + ;  

    • the reality of the time is not affected by the FSUSY transformation;  

    • the FSUSY transformations q-commute with covariant derivative;  

    • the FSUSY transformations satisfied the Leibnitz rules.  

We now  can introduce the scalar superfield Φ  of order 3:  

 2
22

1
2

1

0=),( ϕθθϕϕθ qqt ++Φ  (5) 

 where 10 ,ϕϕ  et 2ϕ  are the extension of the bosonic and the fermionic field. These fields verifies:  

 θϕθϕ )(=)( 00 tt  

 θϕθϕ )(=)( 1
2

1 tqt  (6) 

 θϕθϕ )(=)( 22 tqt  

 We now can see that 
*= ΦΦ . Using relations (3), we get easily the FSUSY transformations upon the fields:  

 1
1/2

0 = εϕδϕ q  

 2
1/2

1 = εϕδϕ −−q  (7) 

 012 = ϕεδϕ −∂−  

 

 Then, let us consider the two basic objects Q  and D , which represent respectively the FSUSY generator and the 

covariant derivative [1]  

 22
1

2
)()(=

θ
θθ

θ
θ

∂

∂
+

∂

∂
−∂− − qqQ  

 
222

1
2 )()()(=

θ
θθ

θ
θ

∂
∂

+
∂
∂

−∂− − qD  (8) 

Using the equations (2) and (4), we can prove that:  
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 zQD ∂==
33

 

 DQqQD 2=  (9) 

 ΦΦ εε δδ DD =  

 where  

 ΦΦ Qεδε =  (10) 

The invariant action under the FSUSY transformations in equations (7) is:  

 dtLDdtd
q

S  = 
2

= 1
2 ∫∫ ΦΦ∂−θ  

 ][ 
2

= 12
2

21
2

0
22 ϕϕϕϕϕθθ &&& qqdtd

q
−+−∫  (11) 

 ][ 
2

1
= 12

2
21

2
0 ϕϕϕϕϕ &&& qqdt +−∫  

  

3. Fractional supercharges and Euler-Lagrange equations 

Following [3] and [6], we can introduce the generalized momenta conjugate to iϕ   

 0
0

0 =ϕ
ϕ

π &
&∂

∂
≡

L
 

 2
1

1 =2 ϕ
ϕ

π q
L

−
∂

∂
≡

&
 (12) 

 1
2

2
2 =2 ϕ

ϕ
π q

L

&∂

∂
≡  

 If we consider Φ&  and ΦD  as independent variables, we can prove that the generalized momenta conjugate are the 

components of the fractional superspace momentum conjugate to ),( θtΦ   

 Φ
Φ∂

∂
≡Π D

L

q
t =

2
),(

&
θ  (13) 

which is decomposed as  

 )(2
2

12
2

0=

21
2

1

2
0

2 = =),( i
i

i

i

qqqqt −

−

∑−+−Π πθθϕϕϕθθ &  (14) 

 Note that ΠΠ =*
. If wish to add  

 0=],[  ΦΠ∫ θd  

 0=],[  ΦΠ∫ &θd  (15) 

 0=],[ ΦΦ&  (16) 

we must require  
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 ijijji −≠ 3if= ϕϕϕϕ &&  (17) 

 1221 = ϕϕϕϕ q  (18) 

Focus on the internal-space part of the Lagrangian 12

2

21
22

= ϕϕϕϕ &&
qq

L +− . The Lagrangian variation  

 ]..[
2

]..[
2

= 1212

2

2121 δϕϕϕϕδδϕϕϕϕδδ &&&& +++−
qq

L  

 ]..[
2

]..[
2

= 21
2

12

2

1221 ϕδϕϕϕδϕδϕϕϕδ &&&& q
q

q
q

+++−  (19) 

and knowing that  

 1

2

2

2

1 2
=               ;             

2
= ϕ

ϕ
ϕ

ϕ
&&

qLqL
−

∂

∂

∂

∂
 

 1

2

2
2

1 2
=               ;            

2
= ϕ

ϕ
ϕ

ϕ
qLqL

&& ∂

∂
−

∂

∂
 (20) 

 Then, the Lagrangian variation will be:  

 )()(=
2

2
2

2
1

1
1

1 ϕ
ϕδ

ϕ
δϕ

ϕ
ϕδ

ϕ
δϕδ

&
&

&
&

∂

∂
+

∂

∂
+

∂

∂
+

∂

∂ LLLL
L  (21) 

From this equation, it is easy to show that the generalized Euler-Lagrange equations which follow from a least-action 

principle are:  

 0=)(
11 ϕϕ &∂

∂
−

∂

∂ L

dt

dL
 

 0=)(
22 ϕϕ &∂

∂
−

∂

∂ L

dt

dL
 (22) 

Therefore, the quantity  

 0=         ;              =

2

1=
dt

dC
X

L
C

i
i

i

−
∂

∂∑ ϕ
δϕ

&
 (23) 

 is a constant of motion when the lagrangian varies under a transformation iδϕ  by the total derivative dtdXL /=δ  

where 10
2

1

2

1
= ϕϕ&qX . The particular case of the Hamiltonian when ii ϕδϕ &=  is:  

 
2
0

2

0=
2

1
== ϕ

ϕ
ϕ &

&
& L

L
H

i
i

i

−
∂

∂∑  (24) 

For iδϕ  given by (7) and corresponding X , we find the following fractional supercharge associated with the 

symmetry transformations:  

 )
2

1
(

2
= 2

201

2

1

ϕϕϕ +&
q

Q  (25) 
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Note, like in [6], that QQ εε =)(
*

, i.e., qQQ =
*

, using (17), we can prove that Qq 2

1
−

 is a real charge.  

 

4. FSUSY of arbitrary order 

 In this section, we will give a generalisation of the FSUSY of order F  where 3≥F . For this, we introduce the 

expression of the superfield ),( θtΦ  of order F .  

 i
i

iF

i

qt ϕθθ 2

2
1

0=

=),( ∑
−

Φ  (26) 

 where θ  is a real generalized Grassmann variable satisfied 0=Fθ  and q  is the F-th root of unity ( F

i

eq

π2

= ). The 

superfield components verifies the following commutation relations:  

 θϕθϕ i
i

i q−=  

 iiF
i

iFi q ϕϕϕϕ −− =  (27) 

 the first relation in (27) implies that ΦΦ =*
. while the second relationship is used to introduce the following 

commutation relation:  

 iF
i

iFi q ϕϕϕϕ 1= −− &&  (28) 

for 2=F , the equations (27) and (28) reduces to the usual results of supersymmetry θϕθϕ 11 = − , 0=2
1ϕ  and 

1111 = ϕϕϕϕ && −  while 0000 = ϕϕϕϕ && . 

Les FSUSY transformations of order F  are generated by the generator of the FSUSY Q  whose expression is:  

 ])()([= 1221
3

0=

1 −−−−−
−

−

∂

∂
+

∂

∂
−∂− ∑ FFiFFi

F

i

t
F qqAQ

θ
θθ

θ
θθ  (29) 

where F

F

F

F

FqA

12

)1}!({)(=

−
−

−
−

−− . This implies that:  

 t
F

Q ∂=  (30) 

Acting on ),( θtΦ , we have  

 ),(=),( θεθδ tQt ΦΦ  (31) 

which gives on components:  

 1
2

2
    

2

2
1)(

1 1}!{)(= +

−
+

− −− i

ii

iF
i FqqAq εϕδϕ  

 1
2

22)(
     

2

21)(

21
2 1}!{)(= −

−
−

−
−−

− − F

FF

FF
F FqqA εϕδϕ  (32) 

 0
112

2
1)(

1 )(= ϕεδϕ &
−−

−
−

− − FF

F

F qAqq  
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 while 3}{0,1,..., −∈ Fi , 
q

q
F

F

−

−
−

−

1

1
=1}{

1

 and ε  is real infinitesimal parameter verify:  

 i
i

i qq εϕεϕεθθε =;=  (33) 

 To build invariant action under FSUSY transformations need the introduction of the fractional covariant derivative 

commuting with Q ε .  

 ])()([= 12211
3

0=

1 −−−−−−−
−

−

∂

∂
+

∂

∂
−∂− ∑ FFiFFiiF
F

i

t
F qBD

θ
θθ

θ
θθ  (34) 

 where ])1}!({)...(1)[(=

11

232

1

F

F

FFFF

F

FqqqB

−
−−

−−
−

−− . Q  et D  satisfies the following relations:  

 t
F

DqQDDQ ∂=             ;             =  (35) 

 DqDqQQ   =            ;             = εεεε  

After defining the two generators of FSUSY, we can now give the expression of the action S  invariant under the 

FSUSY transformations (32)  

 ΦΦ
−

− −∫ &Ddtd
FB

S
F θ1 

1}!{2

1
=  

 iFi
iFi

iF

iF

iF

i

FF qqqqFdtd
F

S −
−

−
−

−
−− ∑∫ −+

−
ϕϕϕθθ &&

)(2

2
)(

2

2
2

1=

2
0

11 1}!{{ 
1}!2{

1
=  

        }1}!{ 11
2

2
1)(

12

1

ϕϕ &−

−
−−− F

F

F qqqF  (36) 

 iFi
iFi

iF

iF

iF

i

qqqqFdtS −
−

−
−

−

∑∫ −+ ϕϕϕ &&
)(2

2)(

2

2
2

1=

2
0 1}!{{ 

2

1
=  

       }1}!{ 11
2

2
1)(

12

1

ϕϕ &−

−
−−− F

F

F qqqF  (37) 

Conclusion 

In this paper, we have extended the results founded in [1] and [2] of fractional symmetry (FSUSY) from D2  to D1 , 

and following [3] and [6], we are giving the fractional supercharge in 3=F . In the last section, we gave the 

generalized formulation of the generator of the FSUSY Q  and fractional covariant derivative D .   
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