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Abstract 

The envisaged revolutionary impact of the quantum computer has continued to elucidate diverse means to design and 

build physical quantum computers. In condensed matter physics, one of the means is to design materials to host two-

electron quantum dots (QDs) which can be manipulated into singlet-triplet (S-T) transition. This transition which is 

read as the quantum bits (qubits) that is considered as a possible logic gate for the quantum computers is enhanced 

by external magnetic field which is a potential source of decohenrence. In the study here therefore, the possibility of 

using a superexchange induced internal magnetic field to drive the S-T transition in QDs embedded in a kagome 

lattice system (KLS) is examined. The design is by embedding the two-electron QDs into the frustrated sites of the 

KLS and then filling the other sites with single electrons. The parameter space of this KLS to achieve the S-T in the 

QDs array are obtained from the superexchange interaction in correlated  variational  study of the system.  
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1. Introduction 

Since the Peter Shor’s demonstration in the mid 1990s of an efficient algorithm for factorizing prime numbers, the 

race to design and build quantum computers has continued to advance. Researchers have proposed several ways to 

implement quantum computers, ranging from systems that store information in trapped atoms (Pellizzari et. al., 

1995), ions (Cirac and Zoller, 1995; Monz et. al., 2009) or molecules (Hosaka et. al., 2010) to those based on 

condensed matter systems such superconductivity (Devoret and Martinis, 2004; Catelani et. al., 2011) and quantum 

dots (Akpojotor and Akpojotor, 2009). Such computers would rely on the phenomena of quantum coherence and 

quantum entanglement among a set of quantum bits (qubits). In general, quantum computers store information in 

qubits which are quantum combinations of ones and zeros. In practice, to perform quantum computation, it is 

sufficient to implement certain elementary one- and two-qubit operations, forming universal sets. These operations 

are analogous to the fundamental building block OR, AND, NOT operations of conventional microelectronics. Such 

a set of operations on qubits can be used to simulate any quantum computation with arbitrary precision (Sjöqvist, 

2008). A first goal for holonomic quantum computation is to find physical implementations of universal sets of gates 

that are all-geometric, that is, based entirely upon quantum holonomies. Traditionally, qubits have been recorded in 

some intrinsic property of an isolated system, like the spin of a trapped electron. The trouble is that any slight 

interaction with the environment will force the qubit to collapse into a specific state and lose information (Bonderson 

and Lutchyn, 2011). This is known as decoherence which has made large-scale quantum computers hard to construct 

because quantum systems easily lose their coherence through interaction with the environment (Sjöqvist, 2008). In 

their study in 1995, Pellizzari and co-workers use the theory of continuous measurement to analyze the effects of 

decoherence on a realistic model of a quantum computer based on cavity QED. They demonstrated how decoherence 

affects the computation and methods to prevent it. One possible solution to this problem is to use topological 

quantum computers, which store information in intertwined particle states, called anyons. If one imagines these 
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anyons as checkers on a board, a computation would consist of swapping the pieces in a precise sequence. The 

quantum information is not localized on individual checkers, but is instead encoded in the way the anyon trajectories 

weave around each other in spacetime. Topological qubits have yet to be fully realized, but they show promise as 

robust quantum storage units. (Bonderson and Lutchyn, 2011). Another highly sought after method which is being 

investigated to achieve quantum computers is to use man made quantum dots (QDs) fabricated in solid state 

materials. The basic idea is to develop a means to read the state of the quantum particles inside the dot which then 

become a viable quantum bit and a combination of them culminate in quantum procession of information (QPI).   

The electronic spins of a two-electron QD has a qubit of singlet or triplet state and the transition between these two 

states can be considered as a possible logic gate for the quantum computers. Consequently, the singlet-triplet (S-T) 

transition in the two-electron QDs has received a deluge of studies and there seems to be a general consensus that 

this transition is enhanced by the presence of external magnetic field (Ellenberger et al., 2006). In a challenging 

report in 2008, however, Amasha and co-workers observed a puzzling behavior in the spin-dependent tunneling of 

electrons into a quantum dot in the presence of an external magnetic field. When a magnetic field is applied parallel 

to the dot, it splits the energy levels (Zeeman splitting) on it. Ignoring the spin-orbit interaction, one would expect 

the tunneling rates for electrons with spin-up and spin-down to be the same, since the energy levels in the leads are 

similarly shifted by the field. Instead, Amasha and co-workers find that with increasing magnetic field, the tunneling 

rate for the spin-down state is less than that of the spin-up state, and is completely suppressed by ~7.5 T. But, by 

adjusting the metallic gates to make the quantum confinement potential more symmetric, they can make the 

tunneling rates for the spin-up and spin-down states identical. The implication is that the external magnetic influence 

is a possible additional source of decoherence which as already stated, is widely regarded as the major obstacle to 

designing quantum computer made of quantum dots in solid state systems. Therefore, to eliminate this additional 

source, it will be interesting to investigate the possibility of designing a host that can provide the desired magnetic 

field to induce the S-T transition in the embedded QDs. A preliminary report to theoretically demonstrate that this 

may be achieved in Kagome lattices systems (KLS) has earlier been presented (Akpojotor and Akpojotor, 2009). In 

that study, we demonstrated that it is possible to utilize decoherence as a positive influence on QDs. This is by 

embedding the two-electron ODs at appropriate sites in the the KLS to make them magnetically ordered. It is then 

possible to tune the lattice parameters to make KLS provide the magnetic field to achieve the singlet-triplet 

transitions in the QDs. We then characterize the role of these parameters in that study and thereby giving a useful 

description of the underlying physics.  That study was recently boosted by the study of Edlund et. al., (2011a; 2011b) 

which demonstrated a new method of the particle-particle potential that gives a targeted geometry as a unique ground 

state. As a proof of principle, they find the potential needed to produce a kagome lattice, where the particles form a 

lattice of interconnected triangles. Therefore in the current study, the possibility of designing a two-electron QDs 

array embedded in a kagome lattice system is further investigated. This will be done using the following plan. In 

section 2, there will be a theoretical description of the possible experimental set-up of the QDs array embedded in a 

KLS. The theoretical calculation of the parameter space to manipulate the KLS hence the QDs array into the S-T 

transition will be presented in section 3 while the presentation of results and discussion will be in section 4. This will 

be followed by a summary and a conclusion in section 5.  

 

2. Theoretical description of the possible experimental set-up of the QDs array  

In general, the Kagome lattice systems which are two-dimensional (2D) systems and are composed of corned-shared 

triangles are believed to be magnetically frustrated materials. Frustration here means all the constraints imposed by 

the Hamiltonian cannot be simultaneously fulfilled. The main interest of most studies of the prospect of QDs using 

KLS has been to fabricate artificial kagome lattices using QDs as the building block and then investigating the 

possibility of obtaining ferromagnetism in these systems (Kimura et. al., 2002). The approach here is in tandem with 

our earlier study (Akpojotor and Akpojotor, 2009) based on using the magnetic ordering of the kagome lattice system 

to induce the S-T transition in the QDs. Therefore, as done in that study, the first step is to eliminate the frustration in 

the spin ordering of the third site of a frustrated equilateral triangular lattice (see Figure 1a). This can be achieved by 

embedding a two-electron QDs at this third site (see Figure 1b). These triangular lattices with embedded quantum 

dots are then used to build an n x 3 cluster of KLS and thereby mapping the KLS into a bipartile-like lattice of an 

array of chains of the initial kagome atoms separated by an array of the QDs (See Figure Ic).  

Now if we start with the chains of the initial kagome atoms having Neel type antiferromagnetic ordering, then they 
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will orientate each of the electrons in the QDs in the opposite directions as depicted in Figure Ic. Then by 

manipulating all the chains of the initial kagome atoms to orientate in the same direction, the two electrons in the 

QDs will orientate in this direction (See Figure 4). Thus we see from this simplified scenario that if the Kagome 

atoms are manipulated into singlet-triplet transition, they may provide an internally generated magnetic field to 

induce the S-T transitions in the QDs.  

3. Theoretical calculation 

The most probable mechanism to manipulating the singlet-triplet transition is by superexchaneg interaction which 

emanates from the quantum mechanical process of virtual hopping of a spin from its site to a neighbouring site while 

a spin in this neighbouring site or the same spin will hop back to the initial site (Trotzky et. al., 2008, Bloch, 2008). 

This kind of hopping preserves the sites configurations but not the spin ordering of the atoms. It is therefore a virtual 

localization process that enables spin flips and can lead to singlet-triplet transition depending on the lattice 

parameters (Duan et. al, 2003; Akpojotor and Li, 2009).  In a recent study (Akpojotor, 2012), I demonstrated 

superexchange interaction in the double well and resonating valence bond (RVB) states in kagome lattice which is 

important for understanding the CuO2 plane of the superconducting cuprates and other magnetic frustrated materials. 

In earlier study (Akpojotor and Li, 2009), we have developed a phenomenological approach to a model of 

superexchange interactions in optical wells which theoretically demonstrated the seminal work of Trotzky et. al. 

(2008) wherein superexchange interaction was first demonstrated with cold atoms in optical lattices.  The 

mathematical formulation in all these studies has been the highly simplified correlated variational approach which 

we have shown to be a powerful theoretical tool for investigating superexchange interactions (see the details of the 

method in Akpojotor, 2008;Akpojotor and Li, 2009; Akpojotor, 2012).  

The superexchange Hamiltonian is the the t-U-V-J model  
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where t is the hopping term, U is the on-site Coulombic interaction term, V is the nearest neighbour (NN) interaction 

term and J is the NN exchange interaction term.  

The wavefunction for the  n x 3 cluster is given by 
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where the electronic state >σσ ji ,/  means that one electron is on lattice site i with spin σ and the other electron is 

on lattice site j with spin σ , while the R (= X, Y, Z )  are the expansion coefficients with X for the singlet states, Y 

for the spin-up triplet states and Z for the spin-down triplet states.  

To obtain the matrix representation for the n x 3 cluster will be computational cumbersome. Therefore in the study 

here, only a small array (n = 3) yielding a 3 x 3 cluster will be considered and it is expected that this will give a 

useful insight into the trend. The superexchange matrix representation for this cluster is (Akpojotor, 2008;Akpojotor 

and Li, 2009; Akpojotor, 2012)  
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where U/4J is the on-site interaction strength which determines the response of the kinetic energy of the electrons to 

the varying on-site Coulombic interaction U, V/4J is the NN inter-site interaction strength which determines the 

response to the varying NN Coulombic interaction V and J/4J is the NN superexchange interaction strength which 

determines the response to the varying superexchange interaction J. All these quantities are physically dimensionless 

as they are ratios of the same unit.  

 

4. Presentation and discussion of results 

The energy spectrum of the superexchange interaction in the 3 x 3 cluster KLS hosting the array of QDs is obtained 

by diagonalizing Eq. (3.3). This energy spectrum provides both the ground state energies for the singlet states, Es and 

and the triplet states, Et. The smallest of them becomes the ground state of the system, that is, if Es < Et the spins in 

the KLS hence those of the QDs array will anti-align so that the QDs will read singlet states as shown in Figure 1c. 

However, when Es > Et the spins in the KLS hence those of the QDs array will align in the same direction, either all 

spin-up or all spin-down, so that the QDs will read triplet states.  We have observed in previous studies that the 

domineering term which is the exchange term J must be finite for the S-T transition to be initiated (Akpojotor, 2008, 

Akpojotor and Li, 2009 and Akpojotor, 2012).  This is easily shown by making J = 0 as shown in Table 1. The large 

energy differences between Es and Et implies that the spins will anti-align for all finite values of the negative U and  

negative V as well as even the physically unrealistic positive U and  positive V. The inclusion of this unrealistic 

regime of U and V is to have a complete investigation for all finite values of U and V.  

Since the J is the domineering parameter to drive the system into the S-T transition, the value of J at which the 

system transits into the triplet state will be called the transition point here, Tp. The value of J/4t at which there is the 

S-T transition as the other parameters, U and V, are varied, are shown in Table 2 with the lowest energies for both 

the singlet and triplet states. Observe in Table 2 that the Tp is not always sharp as there are parameters combinations 

that will result to mixed spin ordering. In Table 2, when U/4t = V/4t = 5, Es = Et = -5.0939 at the Tp of J/4t = 0.1170 

while when U/4t = 5 and V/4t = 0, Es = Et = -7.285 at the Tp of J/4t = 0.1037. Observe also in Table 2 that when U = 

V = 0, there is still a S-T transition at J/4t = 0.1261 as expected which clearly depicts the domineering role of J. For 

the role of the other lattice parameters, U and V, the former enhances the S-T transition while the latter suppresses it. 

For example, from Table 2, observe that at U/4t = V/4t = 5, the S-T transition is at J/4t = 0.1170 and this increases to 

J/4t = 0.3866 at U/4t = 0 and V/4t = 5 while it reduces to J/4t = 0.1037 at U/4t = 5 and V/4t = 0. It is pertinent to 

point out that the limitation of the range of U and V to U/4t = V/4t = 5 to U/4t = V/4t = -5 is simply because the 

trend from our numerical calculation is the same for all finite values of U and V. 

 

5. Summary and Conclusion 

The proposed quantum computer will be a device which is used for computation that makes the direct use of 

quantum mechanical phenomenon such as entanglement and superposition to perform operations on different kinds 

of data. Therefore the quantum computer, following the laws of quantum physics, would gain enormous processing 

power through the ability to be in multiple states, and to perform tasks using all possible permutations 

simultaneously. The reason being that quantum computers exploit the fact that a quantum system can be in a 

superposition of two states, say 1 and 0, at the same time. n such qubits could be combined or entangled to represent 

2
n
 values simultaneously, which could lead to the parallel processing of information on a massive scale. However, 

qubits are very fragile and can be adversely affected by decohenrece due to the environment which can degrade the 

quantum nature of the qubits. Thus the use of external magnetic field to enhance the performance of QDs will create 

decoherence. Though there are a number of suggestions in the literature to eliminate or reduce decoherence such as 
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encoding quantum information in the so-called decoherence-free subspacewill (Monz et. al., 2009) and designing 

equispaced energy levels QDs (Ejere and Akpojotor, 2013), the decoherence due to the external magnetic field 

cannot be eliminated by these methods. Therefore designing QDs hosted in materials that can be manipulated to 

provide the magnetic field to drive the singlet-triplet transition in the QDs becomes a viable option (Akpojotor and 

Akpojotor, 2009). In the study here, it has been demonstrated that by embedding the two-electron QDs in the 

frustrated sites of KLS to form a bipartile-like lattice of an array of chains of the initial kagome atoms separated by 

an array of the QDs, a superexchange interaction at the appropriate parameter space will provide the magnetic field 

to drive the QDs array into the S-T transition. Interestingly, in addition to the singlet and triplet states, the QDs array 

can also be manipulated to be in mixed states (Akpojotor, 2013). This is the superposition state which is expected to 

increase the computing power of the quantum computer.  
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Figure 1 (Colour online): (a) The triangular lattice indicating that the spin at the third site is frustrated thereby 

making it a geometrically frustrated spin system (b) The triangular lattice indicating the embedment of a quantum dot 

hosting two electrons with opposite spins at the third site thereby cancelling the  geometrical frustration (c) The 

combination of the triangular lattice with embedded quantum dots to possibly form an n x 3 cluster of Kagome lattice 

with the embedded quantum dots forming an qubit array for a quantum computer channel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 (Colour online): Two dimensional (2D) configuration of the lattice sites (a) A 3 x 3 cluster of Kagome 

lattice with the embedded quantum dots (b) An n x 3 cluster of Kagome lattice with the embedded quantum dots. 
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Figure 3 (Colour online): Artistic impression of the 1D lattice of double wells used by Trotzky et. al., (2008) to 

observe superexchange interactions. In this representation, each double well contains a spin up (amber spheres) atom 

and a spin down (blue spheres) atom. Courtesy: Immanuel Bloch 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 (Colour online): The triplet spin ordering of the two electrons of the quantum dots induced by the spin 

ordering of the one-electron spin lattice sites chain (a) Spin-up triplet states and (b) Spin-down triplet states. 
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Table 1    The lowest energy for singlet state Es, lowest energy for triplet state Et and their energy difference when 

the J = 0 as the on-site interaction strength and NN interaction strength are varied. 

 

On-site  

interaction 

strength U/4t 

NN  

interaction 

strength V/4t 

Lowest 

energy for 

singlet state  

Es 

Lowest 

energy for 

triplet state 

Et 

Energy 

difference 

 

5 

5 -5.1273 -5.0623 -0.0650 

0 -7.4543 -7.1231 -0.3319 

-5 -15.9159 -15.4031 -0.5128 

 

0 

5 -5.3024 -5.0623 -0.2400 

0 -8.0000 -7.1231 0.8769 

-5 -16.2849 -15.4031 0.8818 

 

-5 

5 -12.7641 -5.0623 7.7071 

0 -13.6090 -7.1231 6.4859 

-5 -17.8760 -15.4031 2.4729 

 

Table 2    The parameter space to achieve the singlet-triplet transition in the arrays of quantum dots as the on-site 

interaction strength and NN interaction strength are varied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On-site  

interaction 

strength U/4t 

NN  

interaction 

strength V/4t 

NN exchange 

interaction 

strength  

J/4t 

Lowest 

energy for 

singlet state  

Es 

Lowest 

energy for 

triplet state 

Et 

 

5 

5 0.1170 -5.0939 -5.0939 

0 0.1037 -7.2852 -7.2852 

-5 0.0723 -15.6613 -15.6613 

 

0 

5 0.3866 -5.1740 -5.1741 

0 0.2647 -7.5568 -7.5570 

-5 0.1262 -15.8541 -15.8545 

 

-5 

5 5.1210 -12.3906 -12.3908 

0 2.2699 -12.8811 -12.8812 

-5 0.4098 -16.8810 -16.8813 


