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Abstract 

Modeling of attenuation of Very High Frequency radio signal in residential environment can be very tedious as 
the channels are rarely characterized by vegetation of the same variety. This work focus on path loss measurement 
and attenuation modeling of the coherent scattered field intensity of VHF as it propagates through Mango and 
Jathropha trees. The two separate trees were illuminated uniformly with 2.15dBi dipole antenna connected to 60W 
transmitter while 1.7dBi short dipole connected to GSP-730 Spectrum Analyzer was used for reception. Path loss 
due to each canopy were estimated  relative to the scattering angles. Dry-matter fraction of the leave were 
determined using sensitive weigh balance and corresponding effective dielectric properties of the leaves and 
branches peculiar to each tree were estimated using semi-empirical formula. Specific attenuation models were 
developed separately for the two trees relative to dielectric properties of each tree leaves and branches. The results 
show that path loss due to single Mango tree canopy ranges from 100dB to 140dB and that of Jathropha ranges 
from 95dB to 135dB. The results also show that total specific attenuation of the two trees depends on frequency, 
wavelength and dielectric properties of the canopies constituents 
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1.   Introduction 

Tree planting in residential environment is encouraged by government and non-governmental agencies, 
considering the social, environmental and economic importance in terms of oxygen provision and quality of air 
improvement, climatic amelioration, water conservation and soon. Hence, vegetation become  an inherent 
component of most outdoor environment. Meanwhile, trees generally cause havoc  to radio waves signal 
propagation by scattering, absorbing, diffracting and degrading its power, these effects have been a major issue of 
concern to radio link planners and has been an area of  investigation for decades. In the past studies, efforts have 
been made by some radio researchers such as [1], [2], [3] and [4] to estimate the influence of tree canopy on radio 
waves propagation experimentally, and observations show that the scattering of radio waves from trees which are 
commonly found in residential environment is an important radio propagation mechanism. Hence the need for 
further investigation of the effects of tree canopy on radio waves propagation not only at Ultra High Frequency 
(UHF) but also at Very High Frequency (VHF) as these two frequency are well applied in radio wave broadcast. 
Proper evaluations and modeling of the effects of residential trees canopy on VHF radio wave in residential 
environment will enhance adequate link planning and budgeting of VHF radio link in residential Areas. .  

 

2.   Theory 

Vegetation is one of the significant features that affect radio wave propagation, it attenuates radio signal 
exponentially by scattering, diffraction and absorption  through it irregular structure of  leaves and branches 
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(L&B). Trees have mostly absorbing and scattering effects for propagation inside the trees layers and less 
diffraction effects mainly for the case of propagation over the trees as reported by [4], [5], [6], [7] and [8]. 
Scattering is important in many branches of Physics, though approaches differ depending on the relative length 
scales involved, the wavelength of the waves on one hand, and the size of the target (scatterer) on the other hand 
[9]. The scattering of electromagnetic waves by systems whose individual dimensions are small compared with a 
wavelength is a common and important occurrence. In such interaction it is convenient to think of the incident 
fields as inducing electric and magnetic multipoles that oscillate in definite phase relationship with the incident 
wave and radiate energy in directions other than the direction of incidence. The exact form of the angular 
distribution of radiated energy is governed by the coherent superposition of multipoles induced by incident fields 
and in general depends on the state of polarization of the incident wave. The differential cross section, summed 
over scattered polarization of electromagnetic wave by it target is given by [9] as 

ௗఙ
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and the total scattering cross section is  
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Coherent field incident inside canopy is given by [10] as; 

𝐸௜(𝑟) = 𝐸௢𝑒𝑥𝑝{−𝑗∅௜(𝑟)}                         (3) 

where 𝐸௢  is the amplitude and ∅௜ is the phase. Coherent field inside the canopy is governed by the propagation 
constant given by[10] as; 

𝐾 = 𝑘 +
ଶగ

௞
𝐹௘௤൫𝑘෠௦, 𝑘෠௜൯ = 𝑘ᇱ − 𝑗𝑘ᇱᇱ                       (4) 

the attenuation constant 𝑘ᇱᇱ is nonzero and the coherent field attenuates as it propagates through the canopy. The 
specific attenuation in dB/m is given by [10] as  

𝛼௖ = 20𝑘ᇱᇱ𝑙𝑜𝑔ଵ଴𝑒 = 0.686𝑘ᇱᇱ                        (5) 

The imaginary part 𝑘ᇱᇱ is the reciprocal of the distance  over which the amplitude is attenuated by a factor e which 
is given by [11] as 
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where, 𝜖௥ and 𝜇௥ are relative permittivity and relative permeability of the structural components of the tree canopy. 
Q is the ratio of displacement current density to the conduction current density given by [11] as; 

𝑄 =
ఠఌ

ఙ
              (7) 

The values of 𝜖௟௘௔௙ peculiar to each of the four branches is given by [12] as; 

𝜀௟௘௔௙ = 0.522(1 − 1.32𝑚ௗ)𝜀௦௪ + 0.51 + 3.84𝑚ௗ                                                                   (8) 

𝜀௦௪ is the dielectric permittivity for saline water according to Debye model and 𝑚ௗ is the dry-matter fraction of 
leaves given by [12] as 

𝜀௦௪ = 𝜀ஶ +
ఌೞିఌಮ

ଵି௜ఠఛ
+ 𝑖

ఙ

ఠఌబ
                                                                                                            (9) 
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The value of the different parameters are 𝜏 = 1.0 × 10ିଵଵ𝑠 , 𝜀ஶ = 5.27 , 𝜀௦ = 80.0 , 𝜀௢ = 8.854187817 ×

10ିଵଶ𝐹/𝑚 

 Since the saline water of the leaf causes the largest contributions to the disturbance of the incident electromagnetic 
field, a model (eqn.9) of the water content will serve as a basis [12]. 𝜎 is conductivity and taken to be (3-6)S/m.
 Saline water present in leaf is given by [12] as; 

𝑚ௗ =
ௗ௥௬ ௠௔௦௦

௙௥௘௦௛ ௠௔௦௦
                                                                                                                          (10) 

In this work 𝑚ௗ  was obtained using digital weighing balance. The value of the permittivity of branches was 
estimated in (9) using the fact that the dry-matter fraction (𝑚ௗ) of the branches stays rather constant during the 
whole year and since the leaves have values around 0.3-0.4 at the beginning of the autumn, the same value was 
assumed for the branches. where permittivity of branches is given by [12] as  

𝜀௕௥௔௡௖௛ = 0.24𝜀௦ఠ + 2.05                                                                                                      (11) 

The average value of 𝑚ௗ obtained from each tree canopy was used to determine the permittivity of branches. After 
obtaining the required data from both Mango and Jathropha canopies experimentally, appropriate substitutions 
were made to equations 7, 8, 9, 10 and 11 and the results obtained were further substituted to equation 6 to obtain 
each canopy components of attenuation propagation constant 𝑘ᇱᇱ which was used to determine  specific attenuation 
caused by each canopy constituents (Table 1& 2). 

3.     Review of Previous Work 

Theoretical approach was used by [13],[14] and [15] for single scattering to calculate the absorption effects of 
trees using Born approximation for cases where the dielectric permittivity of the scatterer is closed to unity. 
Twersky [13] described the effects of multiple scattering from discrete scatterer using statistical approach. Karam 
used the geometrical optics approximation that satisfies Feynman diagram to account for absorbing amplitude and 
phase effects from trees, using real physical conductivity and random distribution of branches and leaves as 
adopted in this work. Investigations of  tree canopy effects on radio channel characteristics have  been  more 
focused on coherent scattering due to its obvious  attenuation of radio waves propagation through foliage as 
deduced by [15] , [16]. [17], [18] and [19].   

4.   Measurement  Equipment and Procedure   

In this work the wave propagation is in three-dimensional space and the two trees are modeled as finite cylindrical 
volume consisting of randomly located and oriented branches and leaves, modeled as dielectric cylinders and disks 
(Fig. 2a and Fig. 2b). Path loss and specific attenuation  due to coherent tree scattering of VHF radio waves by 
Jathropha and Mango canopies (Fig.1a and Fig.1b) were investigated by adopting forward scattering propagation 
mechanism approach (Fig.2c). A 6Watts transmitter was placed as the source of incident field  at two different 
heights of 1.7m and 2.25m consecutively and the reception height was fixed at 1.5m. Four major branches with 
multiple minor branches were identified on the Mango and Jathropha canopies. Measurement was initially taken 
at scattering angle of 90degree to the incident ray and further measurements were taken at additional 30degree 
interval to determine the power  loss due to scattering. Specific attenuation of each  branch relative to its dielectric 
property were estimated using existing equations .The differential cross sections for scattering with polarization 
average over initial polarizations were deduced for each canopy. 
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Fig. 1(a): Mango tree     Fig. 1(b):  Jathropha tree 

 

 

Fig.2a: Schematic diagram of the Mango canopy volume 

 

 

Fig. 2b: Schematic diagram of Jathropha canopy volume 
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 Fig. 2c:  Front view of the scattered waves 

5.   DATA ANALYSIS 

Table1: Mango tree canopy parameters and Properties  

 Tree type: Mango 

 Tree Height = 6.22m,  Canopy radius =3.815m, Trunk size =1.08m 

Scatterer type Radius 
(cm) 

Leave 
thickness 
(mm) 

Dry-
matter 
fraction 
(𝑚ௗ) 

Complex 
permittivity  
(𝜀௥) 

Specific Attenuation 
dBm @ 103.4MHz 

Specific 
Attenuation 
(dB/m) @ 
98.0MHz 

Leaves on Branch 1 2.25 0.024 0.5393 32.31- j0.167 0.647 0.570 

Leaves on Branch 2 2.25 0.035 0.3452 24.57- j0.128 0.429 0.380 

Leaves on Branch 3 2.26 0.027 0.4801 17.64- j0.086 0.237 0.209 
Leaves on Branch 4 2.24 0.032 0.4522 19.08- j0.095 0.273 0.244 

   
Scatterer type Length       

(m) 
Radius 
(cm) 

 Dry matter 
fraction (𝑚ௗ) 

Complex 
permittivity  (𝜀௥) 

Specific 
Attenuation 
(dBm) @ 
103.4MHz 

Specific 
Attenuation 
(dB/m)@ 
98.0MHz 

Branch 1 5.05 4.00 
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Branch 2 5.50 4.50 

Branch 3 4.70 5.00 

Branch 4 5.36 4.25 
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Table 2: Jathropha tree canopy parameters and Properties 

 Tree type: Jathropha 

 Tree Height = 3.59m,  Canopy radius =2.065m, Trunk size =0.73m   

Scatterer type Radius 
(cm) 

Leave 
thickness 
(mm) 

Dry-matter 
fraction 
(𝑚ௗ) 

Complex permittivity  
(𝜀௥) 

Specific Attenuation 
(dBm) @ 103.4MHz 

Specific 
Attenuation 
(dB/m) @ 
98.0MHz 

Leaves on Branch 1 6.50 0.015 0.3216 25.78- j0.135 0.467 0.412 

Leaves on Branch 2 6.35 0.019 0.2645 28.71- j0.153 0.561 0.491 

Leaves on Branch 3 6.30 0.017 0.2872 27.54- j0.146 0.523 0.461 

Leaves on Branch 4 6.45 0.016 0.3078 26.48- j0.139 0.489 0.427 

    

Scatterer type Length  
(m) 

Radius (cm) Dry matter fraction 
(𝑚ௗ) 

Complex permittivity  
(𝜀௥) 

Specific Attenuation 
@ 103.4MHz 

Specific 
Attenuation 
(dB/m) @ 
98.0MHz 

Branch 1   2.38 4.00 
  0

.2
95

3 

21
.7

3-
 j0

.1
4 

0.
49

 

0.
46

6 

Branch 2   2.64 3.70 

Branch 3   2.37 3.50 

Branch 4   2.37 3.00 

 

6.   Results and Discussion 
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Fig.1a: Path loss due to Jathropha at 98MHz  Fig1b :Path loss due to Jathropha at 103.4MHz 

Fig 1a and 1b show the measure path loss due to Jathropha tree relative to the scattering angles at distance of 6m 
away from the canopy and at transmitting height of 1.7m and 2.25m with transmitting frequency of 98MHz and 
103.4MHz respectively. the path loss ranges from 95dB to 135dB and averagely higher at Transmitting height  of 
1.7m than 2.25m due to tree canopy branches and leaves geometry at different height. 
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Fig.2a: Path loss due to Mango canopy at 98MHz       Fig2b: Path loss due to Mango canopy at 103.4MHz 

In fig.2a  and fig 2b, the measured path loss due to Mango tree scattering ranges from 100dB  to 140dB with path 
loss averagely higher at 2.25m than  1.7m at both frequency of 98MHz and 103.4MHz. The variation in path loss 
with height in the case is also due to tree canopy  geometry. 
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Fig.4a: Specific attenuation coefficient of Mango Leaves & branches     Fig. 4b: Specific attenuation  coefficient 
of Mango  Leaves 

Specific Attenuation coefficient parameters due to each canopy constituents (branches and leaves) relative to the 
frequency of 98MHz and 103.4MHz were measured and computed (Table 1and 2). Fig. 3a and Fig. 3b show the 
comparison of specific attenuation coefficient of Jathropha leaves and branches combined and that of leaves alone 
at the measured frequencies. In Fig. 3a, the specific attenuation of both branches and leaves on each branch ranges 
from 0.85dB to 1.5dB while that of leaves alone ranges from 0.41dB to 0.56dB as depicted in Fig. 3b and it 
averagely higher at 103.4MHz than 98MHz. This shows that specific attenuation of VHF is canopy constituents 
and frequency depend. Fig. 4a and Fig. 4b show that the specific attenuation of mango leaves and branches ranges 
from 0.4dB to 0.93dB and that of leaves only ranges from 0.2dB to 0.65dB. The results show averagely higher 
specific attenuation at higher frequency.  
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Fig.6a: Fitted curve of spec. att. coeff. of Leaves & Branches at 103.4MHz   Fig.6b: Fitted curve of spec. att. 
coeff. of  Leaves  only at 103.4MHz 

Fig. 5a and Fig. 5b show the attenuation model developed for both Jathropha and Mango trees constituents. First, 
for branches with leaves (Fig 5a)  and later for leaves only (Fig. 5b) respectively at 98MHz. The two graphs show 
decrease in specific attenuation coefficient with increase in imaginary values of attenuation constant of the mango 
branch and leave. The developed models give  gradient coefficient of 4.5115dB/m for branches and leaves and 
4.573dB/m for leaves respectively with coefficient of determination (R2) of 0.998 and 0.996. In Fig. 6a  and Fig. 
6b, specific attenuation coefficient also decreases with increase in the imaginary values of attenuation constant of 
Jathropha tree with gradient coefficient of 4.834dB/m  for branches and leaves and 4.998dB/m for  leaves only 
with  coefficient of determination (R2) of 0.998 at 103.4MHz . 
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Fig. 7a: Mango differential cross section at  98MHz      Fig. 7b: Mango differential cross section 103.4M 
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Fig.8a: Jathropha differential cross section at 98MHz.  Fig. 8b: Jathropha differential cross section  at 103.4MHz 

Fig. 7a, 7b, 8a  and 8b show the differential cross section sum over scattered polarization of branches and leaves 
of the two tress under investigation. All observations in the case show that the polarization has it maximum at 
angle 𝜃 = 𝜋

2ൗ . At this angle the scattered radiation is 100% linearly polarized perpendicular to the scattering plane 

and an appreciable range of angles on either side of 𝜃 = 𝜋
2ൗ  is quite significantly polarized.  

7.   Conclusion 

Path loss and specific attenuation coefficient of a coherent scattered field of VHF radio wave as it propagates 
through stand alone Mango and Jathropha trees at 98MHz and 103.4MHz have been analyzed. The results show 
that Path loss is more significant at scattering angles with higher leaves density and the total specific attenuation 
depends on frequency of transmission, height of the transmitter, wavelength of the  transmitted signal and dielectric 
properties of the trees canopies constituents.  Also, VHF signal is linearly polarized perpendicular to the scattering 
angle and maximum at angle 180 degree for residential trees canopies. The proposed tree scattering model will 
enhanced prediction of path loss and specific attenuation of VHF radio wave propagation through trees of different 
variety in residential environment and also assist in VHF radio link planning and budgeting in residential places. 
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