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Abstract 
The partial replacement of rare earth cation by sodium introduces large size and charge mismatch at A-site 
affecting the bulk modulus and thermal properties of RMnO3 which in turn makes them suitable candidates for 
thermoelectric applications. Thermal, elastic, cohesive properties of sodium doped Rare Earth manganites R1-

xNaxMnO3 (R
3+= La, Pr, Tb) has been studied by means of a Modified Rigid Ion Model (MRIM) and AIM theory. 

Lattice specific heat (Cp) of Pr0.8Na0.2MnO3, and Tb0.85Na0.15MnO3 as a function of temperature (1K≤T≤ 350K) is 
found to be in agreement with the published data. The trend of variation of Debye temperature (θD), thermal 
expansion (α), bulk modulus (B) and cohesive energy (φ) with A-site cationic radius is predicted probably for the 
first time for these technologically important doped rare earth manganites. 
Keywords: Thermal Expansion, Specific Heat, Thermal properties, Colossal Magnetoresistance Materials, 
Magnetoelectric materials. 
 
1. Introduction 
The multiferroic materials with the coexistence of (anti)ferromagnetic and (anti)ferroelectric properties are one 
of the best candidates to enhance the magnetoelectric (ME) effects. It is reported that substitution of monovalent 
ions (K+, Rb+, Na+, Ag+) for La in LaMnO3 results in increased magneto-resistance and large magneto-caloric 
effect [Tao et al. 2000; Tang et al. 2000]. The ferroelectric polarization has been found to develop in 
Tb0.85Na0.15MnO3 with the polarization vector pointing along the longest crystallographic direction [Chan, et al. 
2007]. Pr0.8Na0.2MnO3 is a charge ordered system which is a paramagnetic insulator at ambient conditions and 
exhibits an electrically insulating pseudo-CE type antiferromagnetic (AFM) state at low temperatures. Under 
high externe pressures, structural changes in Pr0.8Na0.2MnO3 are accompanied by an insulator–metal transition 
[Hejtmaek, et al. 2001]. At normal conditions, the system undergoes a charge ordering transition at TCO = 215 K, 
followed by an antiferromagnetic arrangement of the pseudo-CE type at TN = 175 K. Experimentalists have 
studied the magnetic properties of these compounds well but no attempts were made to determine their thermal 
and elastic properties. 
The ionic radius of Na+Å (ionic radius =1.39Å CN 12) is larger than largest lanthanide La3+ (ionic radius =1.36Å 
CN 12) and the effect of this doping in RMnO3 (R=La, Pr, Tb) is to increase the A-site cation radius and eg one 
electron bandwidth of the manganites [Tao et al. 2000; Tang et al. 2000]. The insulator–metal transition 
temperature TI-M is expected to increase and possible stabilization of ferromagnetic state at room temperature can 
be achieved paving the way for magnetoelectric applications. So, it seems worthwhile to investigate the static 
cohesive, elastic (bulk modulus (B)) and thermodynamic properties like Debye temperature (θD) Specific heat 
(Cp) and volume thermal expansion ( )) at low temperatures and at room temperature as well of these 

technologically important manganites. 
We investigate here three potential magnetoelectric compounds La0.85Na0.15MnO3, Pr0.8Na0.2MnO3, and 
Tb0.85Na0.15MnO3 for their elastic, cohesive and thermal properties. The studied samples of Tb0.85Na0.15MnO3, 
Pr0.8Na0.2MnO3 exhibited Pbnm symmetry within the orthorhombic setting and La0.85Na0.15MnO3 showed 
rhombohedral symmetry [Malavasi , et al. 2005]. 
 
2. Interaction Potential 

The potential to describe the interatomic interactions of these materials within modified Rigid Ion Model 
(MRIM) is formulated as 
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Here 'kkr  appearing in the first term on the right represents separation between the nearest neighbours while rkk  

and r kk ''  appearing in the following two terms are the second neighbour seperation. )( 'kk rr  is the ionic radii of  

k (k') ion. n (n') is the number of nearest (next nearest neighbour) ions. In ABO3 (like CaMnO3) perovskite 
structure, k represent the cations (A, B) and k΄ denote the type of (O1, O2) ion. The summation is performed over 
the ion pair (A-O) and (B-O). bi and ρi are the hardness and range parameters for the i

th cation-anion pair (i = 1, 2) 
respectively and βi

kk'
 is the Pauling coefficient (Pauling, 1945). Zk (Zk´) and Nk (Nk´) are the valence and the 

number of electrons in the outermost orbit of k(k') ion respectively. The rkk' and rkk (rk'k') are obtained for some 
doping concentration (x) of Ln=La, Ce, Pr, Nd, Th, Bi by using the well known Vegard’s law [24] using the cell 
parameters of undoped compounds like CaMnO3 and NdMnO3. The contributions of van der Waal’s (vdW) 
attraction for the dipole-dipole interaction is determined by using the Slater- Kirkwood Variational (SKV) 
method (Slater and Kirkwood 1931) 
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where e and m are the charge and mass of the electron respectively. )(
kk ′αα is the polarizability of k (k') ion. 

Nk (Nk') are the effective number of electrons responsible for the polarization of k (k') ion. 
The model parameters, hardness (b) and range (ρ) parameters are determined from the equilibrium condition 
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here K is the crystal-structure-dependent constant, B is bulk modulus and r0 is the equilibrium nearest neighbor 
distance. Our other formulations are taken from our previous papers [Thakur et al. 2012: Srivastava et al. 2009]. 
The bulk modulus was calculated using the Atom in Molecules (AIM) Theory [Pendas, et al. 2000]. 
 
3. Results and Discussions 
To reveal the specific heat, the values of input data like unit cell parameters (a, b, c) and some interionic 
distances are taken from refs. [Malavasi , et al. 2005, Yang, et al. 2008, Kozlenko et al. 2003] for (La, 
Tb)0.85Na0.15MnO3, Pr0.8Na0.2MnO3.  We have applied MRIM to compute the model parameters and Debye 
temperature of these manganites and AIM theory [Pendas, et al. 2000] to compute bulk modulus on the similar 
lines as described earlier [Thakur et al. 2012: Srivastava et al. 2009]. The results are reported in Table 1 and are 
compared with the available data there [Srivastava et al. 2009; Kovaleva , et al. 2002, Kamilov, et al. 2007].  
The cohesive energy is the measure of strength of the force binding the atoms together in solids. This fact is 
exhibited from our cohesive energy results which indicate increase in stability with decrease of A-site cation 
radius (Table 1). Besides, we studied the temperature evolution of the lattice specific heat (Cp) of 
Tb0.85Na0.15MnO3over the temperature range 1K ≤ T ≤ 100K (Fig. 1(a)) and of Pr0.8Na0.2MnO3 in 10K ≤ T ≤ 
350K (Fig. 1(b)). It is found to show satisfactory match with the experimental values of Yang et al. (2006) and 
Hejtmaek et al (2001) at higher temperatures using HT Debye temperature and at low temperature using LT 
Debye temperature respectively which again establishes the validity of using two Debye temperature model 
[Thakur et al. 2012: Srivastava et al. 2009] to describe the specific heat of manganites. A sharp peak can be seen 
in Figure 1(b) in the experimental curves at their respective Neel temperature due to spin interactions. This 
feature can be revealed in the calculated curves by including the ferromagnetic spin interactions in the 
framework of our MRIM. It can be concluded that MRIM is successful in predicting the thermal properties of 
doped manganites and the findings indicate that cohesive energy decreases and Debye temperature 
increases with the decrease of A-site cation radius. The increase in θD indicates that an anomalous hardening 
of the lattice or decrease in T3-term in the specific heat occurs with the decrease of A-site cation radius. The 
specific heat correspondingly decreases with decreasing A-site cation radius. These results of specific heat 
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and volume thermal expansion are crucial in deciding the compatibility of different components of 
thermoelectric devices and they reveal the electron lattice coupling as well of these compounds, suggesting 
strong coupling between their various degrees of freedom. 
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TABLE 1.  Cation radius at A-site, Bulk modulus, model parameters, cohesive and thermal properties of R1-xNaxMnO3. R and O indicate 
Rhombohedra and Orthorhombic structure respectively. 

R/x rA(Å) 
/Structure 

(B) (GPa) 
(LT) 

b1  x 10-

19   (J) 
b2  x 10-19 

(J) 
ρ1 

(Å) 
ρ2 

(Å) 

Φ (eV) 
(MRIM) 

ΘD  (K) 
LT 

ΘD (K) 
(RT) 

(10

-

5/K) (RT) 

La/0.15 
For x=0 

1.365/R 107.7 
108 a 

0.323 1.243 0.185 0.335 -139.0 
-139.4 b 

371.3 
370c 

560.5 4.53 
3.0c 

Pr/0.2 1.192/O 125.0 0.212 1.027 0.180 0.353 -144.5 405.9 577.7 4.54 
Tb/0.15 1.117/O 194.9 0.069 0.246 0.134 0.192 -155.8 491.9 692.0 3.87 

a ref. (Srivastava et al. 2009), b  ref. ( Kovaleva, et al. 2002),  c  ref. ( Kozlenko, et al. 2003) for  La0.85Ag0.15MnO3 
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FIGURE 1. (a) C/T against temperature for Tb0.85Na0.15MnO3 with the experimental data of Yang et al (2006) 
(b) Variation of Cp with temperature of Pr0.8Na0.2MnO3 and experimental data of Hejtmaek et al (2001)  
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