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Abstract 

The orthonormal annular ellipse Zernike polynomials are important for wavefront analysis of annular ellipse 

aperture (elliptical aperture with an elliptical obscuration) for their property of orthgonalization over such 

aperture and representing balanced aberration. In this paper, the relationship between the Zernike annular ellipse   

polynomials and third order Siedel aberrations were studied. Then the standard deviations of balanced and 

unbalanced primary aberrations have been calculated for this aperture. 
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1. Introduction 

There are huge references describe the Zernike polynomials for circular aperture. Deferent researchers were 

focused in transforming these Polynomials to be appropriate for other apertures. V.N. Mahajan and G. M. Dai 

derived the Zernike polynomials for other apertures like annular circle aperture, elliptical aperture, square 

aperture, rectangular aperture, hexagonal aperture [1-3].  

These different groups of Zernike polynomials were used in many researches to find different properties. In 1982 

Virendra N. Mahajan considered imaging systems with circular and annular pupils aberrated by primary 

aberrations, and he discussed both classical and balanced (Zernike) aberrations[4]. 

In 1992, James C. Wyant found that the first-order wavefront properties and third-order wavefront aberration 

coefficients for circular aperture can be obtained from the Zernike polynomials coefficients[5]. 

In this work, the third order wavefront aberration coefficients for the elliptical aperture with elliptical 

obscuration (annular ellipse aperture) were found in terms of Zernike annular ellipse polynomials which have 

been found in a previous paper[6]. Also the balanced and unbalanced primary aberrations with annular ellipse 

aperture were considered. 

2. Rotationally Symmetric Systems 

The wavefront aberration function may be analyzed into several components by expanding the function as a 

power series. For the relatively simple case of a rotationally symmetric system, one expansion of the wavefront 

aberration is as follows [7]: 
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 This takes into account the distance of the image point from the optic axis(r) and expresses the pupil sphere 

coordinates (x,y) in polar terms, where   is the distance from the optic axis, and angle  is measured from the 

vertical meridian. The coefficient W  before each polynomial is subscripted with three numbers that indicate, 

from left to right, the power of the r,   and cos terms, respectively. The first three terms describe first order 

wavefront errors (piston, tilt, and defocus respectively). The next five terms correspond to the third order Seidel 

aberrations, (Spherical, comma,  fied curvature, astigmatism, and distorsion respectively). Addition of fifth order 

or higher terms will improve the polynomial approximation to the wavefront aberration, though the higher terms 

normally account for a much smaller portion of the aberration.  
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Figure.1 Coordinates for defining transverse ray aberrations [7]. 

If there is no field dependence in these terms, they are not true Seidel aberrations. Wavefront measurement using 

an interferometer provides data at a single field point only. This causes field curvature to look like focus, and 

distortion to look like tilt[8,9]. 
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3. Zernike polynomials 

The Zernike polynomials were recommended for describing wave aberration functions over circular pupils with 

unit radius. Individual terms, or modes, of a Zernike polynomial are mutually orthogonal over the unit circle and 

are easily normalized to form an orthonormal basis. These polynomials were lost their orthogonolity for pupils 

other than circular.  

In a previous paper the annular Zernike polynomials for annular ellipse were found, (see fig. 1),from that of 

circular Zernike polynomials [6], and table (1) represents the first nine orthogonal polynomials for annular 

aperture of aspect ratio(ratio of the primary to the secondary axes)=b and obscuration ratio (the ratio of radii of 

outer and inner ellipses)=k. and table 2, represents the first nine orthonormal polynomials for annular ellipse 

aperture of aspect ratio=b and obscuration ratio=0.5. 

 

  

 

 

 

 

Fig.2. annular ellipse aperture inside a unit circle. 
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Table 1. the first nine orthogonal polynomials for annular aperture of aspect ratio=b and obscuration 

ratio=k[6]. 

Orthogonal Zernike polynomials 
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Table (2).First nine orthonormal Zernike polynomials for unit elliptical aperture obscured by elliptical 

obscuration, with aspect ratio=b and obscuration ratio=k=0.5[6]. 
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4. Standard deviation 

The Variance of the classical aberration is defined by the relation[10] 
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=

22 )( WW                                                                   (3) 

Where W and 
2W represent the mean and the mean square value of the aberration function and, for 

annular ellipse aperture, they were given by[6] 
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the standard deviation is the square root of the Variance, 

, and it can be found by making benefit of the 

important property of Zernike polynomials, which is orthogonality. 

By having a glance to eq.s (4 ) and (5), it can be concluded that the variance of the aberration is given simply by 

the sum of the squares of the Zernike coefficient excluding  the piston coefficient, since Zernike annular ellipse 

polynomials form an orthogonal set in the limits of the unit annular ellipse aperture.  

5. Present work 

5.1 (Relationship Between Zernike Polynomials of Annular Ellipse Aperture and Third Order 

Aberration) 

First-order wavefront properties and third-order wavefront aberration coefficients (eq. 2) for annular ellipse 

aperture can be obtained from the first nine Zernike annular ellipse polynomials (table.1), as follows 
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Re-arranging these terms gives 
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Simplifying the last equation using the following identity, 
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While for coma 
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then substituting (8-10 ) in (7) gives the wavefront aberration terms as 
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The magnitude , sign , and angle of the field independent aberration function coefficients are listed in table (3) 

.Note that focus has the sign chosen to minimize the magnitude of the coefficient, and astigmatism uses the sign 

opposite to that chosen for focus . 
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Table.3 The magnitude, sign, and angle of field independent wavefront aberration  

Angle Magnitude Description Term 
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5.2 Standard deviation of balanced and unbalanced primary aberrations 

As the Zernike annular ellipse polynomials were found, they were representing balanced polynomials. Now, it is 

appropriate to find the standard deviation of the balanced and unbalanced Siedel aberrations as follows: 

The aberrations tilt in x and y (distortion) and focus (curvature of field) are having the same form in annular 

ellipse as that in circular aperture. 

the fifth orthonormal polynomial for annular ellipse with obscuration ratio (k=0.5) represents  balanced 

astigmatism and it can be written as (from table (2) ) 
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and  so the balanced astigmatism standard deviation is 
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To determine  of Seidel astigmatism, the aberration should be written in terms of the annular ellipse 

polynomials: 
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where c is a constant independent of the pupil coordinate. 
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As stated before,is the square root of the variance which is in turn can be found by summing the  squares of 

the coefficients of the polynomial except that of A1, then 
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annular ellipse pupil of obscuration ratio k=0.5. 
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By summing squares and then taking square root 
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Table (7 ) summarize  the values of standard deviation  of a primary and a balanced primary aberration for 

annular ellipse aperture with obscuration ratio =0.5. 

 

Table (4 ) values of standard deviation   of a primary and a balanced primary aberration for annular ellipse 

aperture with obscuration ratio =0.5. 
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6. Discussion and Conclusions 

 

As stated, before, if there is no field dependence, the terms of aberration function are not true Seidel wavefront 

aberration, i.e. field curvature looks like focus and distorsion looks like tilt. 

Field independent third order aberration function coefficients for annular ellipse aperture were found as a 

function of Zernike annular coefficients as shown in table 3. This table shows that the tilt aberration magnitude 

and direction is look like those of circular aperture in that they relate to the coefficients Z1, Z2, Z6 , and Z7, but 

here Z6  and Z7 were multiplied by  and 1 instead of  2 in circular (see reference[5]). 

The focus error is different from that for circular in including the term (2+1)Z4 , or (3(b
4
-1)(k

4
+1))Z4. This 

happened because of the unequal axes of the aperture which caused asymmetrical coefficients for x
2
 and y

2
 in the 

fifth term of Zernike annular polynomials, and it is obvious that this term is equal to zero when b=1. 

The same reason causes Z4 to accompany by 1/2 in astigmatism. While the terms of coma and spherical 

aberrations are save there their forms of magnitude and direction as like as that of circular aperture. 

Table 4 shows the values of standard deviation,  primary and balanced aberrations for annular ellipse aperture 

with obscuration ratio=0.5.  

Fig. 3 shows values of standard deviations as a function of b (aspect ratio). It is clear that the tilt and astigmatism 

are independent on b, i. e. they were constants. This behavior is similar to that for elliptical and circular apertures 

(return to reference [3]). The behavior of focus standard deviation is down till the value of b reachs 0.8 then it 

rice. 

 This curve can be compared with the curve drown from values of  Mahagan and Die for ellipse[3], as illustrated 

in fig. 5. It’s clear that  of focus error for annular ellipse with k=0.5 is more than that for ellipse till b reaches 

the value of 0.3 then it becomes lower. Here, as in the rest figures, the straight line represents the value of s for 

circular aperture and it is drawn just for comparison. 

Returning to coma aberration, it is seen that the standard deviation is increased with b, and fig 6 shows that  is 

lower than that for ellipse till b reaches to the value of 0.7 then it becomes higher. 

Standard deviation for spherical aberration  is so small for annular ellipse with k=0.5 as compared to that of 

ellipse (see fig. 9). 

The curves of balanced standard deviation versus b are also plot as illustrated in fig .4, and they were compared 

with those of ellipse and circular as illustrated in fig. 7 for balanced comma, and in fig. 8 for balanced 

astigmatism and fig. 10 for balanced spherical aberration. 
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aperture(se), and annular ellipse aperture(sa) with obscuration ratio=0.5. 
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Fig.10 standard deviation () versus aspect ratio(b) with balanced spherical aberration for circular aperture(bsc), 

elliptical aperture(bse), and annular ellipse aperture(bsa) with obscuration ratio=0.5. 
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