Relationship between earthquake fault triggering and societal behavior using ant colony optimization

O P Mishra, P K Dutta, M.K. Naskar


In this analysis, we use the ant behaviour in simulating a framework for analysis of complex interplay amongst short time-scale deformation, long time- scale tectonics for positive stress coupling and slip interactions in earthquake genesis modeling. Using the proposed improved ant colony algorithm for global optimization the best solution ants within the search and the circulation of the optimal solution as the initial solution search, to expand its search, to avoid falling into local optimum  of  trigger zones analysis for earthquake occurrences. In order to validate the avalanche behaviour and corresponding nucleation we  best solution as the initial solution is adopted in order to widen searching scope to avoid getting into local optimum . In this proposed framework, an ant colony model is simulated to identify the physical framework of identifying trigger basins for the precursors to geodynamic model of propagation for precursory stress-strain signals. The disturbances at trigger basins cause the collapse of a subsystem leading to stress evolution and slip nucleation. Trigger basins help identify the zone of earthquake source nucleation as an index of ? and ? for strain analysis. The stress strain network can be interpreted by the increase in steady-state energy transmitted due to redistribution of stress accumulation into the earth tectonic framework. Sand pile behaviour model has been modeled through ant colony optimization for forecasting of likelihood time of triggering influences of lithosphere on the basis of critical zones of lithosphere where dump of elastic pressure is possible. The ant colony adaptive framework consisted of vertices representing the stress-strain component and edges, representing scored transformations for global coupling effects have been constructed for dynamic monitoring of stress and strain behaviour. Triggering basins serve as harbingers of large earthquake where stress-strain interactions have been analyzed by the quasi-static mechanics of seismic precursory stress-strain propagation in the crustal lithosphere. The study shows that dynamic variation of stress drop due to saved up pressure can be modeled by ant colony framework for steady state release due to trigger and global correlation framework. The simulation framework shows that with time, spatial triggering points can be negatively coupled and these interact with lesser impact, while positive coupling occurs only with more distant zones of stress generation for geodynamic frameworks, suggesting that the structural heterogeneities within the causative rocks associated with cracks and pores can dictate the pattern of stress – strain interactions and earthquake generating processes.

Keywords: crack–porous, ant colony, geo-dynamical framework, stress-strain transmission, emergence

Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

Paper submission email:

ISSN (Paper)2224-719X ISSN (Online)2225-0638

Please add our address "" into your email contact list.

This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.

Copyright ©