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Abstract  

In the present paper some fixed point and common fixed point theorems in complete Fuzzy 2-metric spaces and 

fuzzy 3- metric spaces are established which are motivated by Gahler [13-15], Sharma, Sharma and Isekey 

[30],Sharma , S.[31],  
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2. Introduction: 

In 1965, the concept of fuzzy sets was introduced by Zadeh [36]. After that many authors have expansively 

developed the theory of fuzzy sets and applications. Especially, Deng [8], Erceg [10], Kaleva and Seikhala [23], 

Karamosil and Michalek [25], have introduced the concept of fuzzy metric spaces in different ways. Recently, many 

authors [1,6,11,17,20,21,22,27,28,31,32 ] have also studied the fixed point theory in the fuzzy metric spaces and 

[2,3,4,5,19,26,33] have studied for fuzzy mappings which opened  an avenue for further development of analysis in 

such spaces and such mappings. Consequently in due course of time some metric fixed point results were generalized 

to fuzzy metric spaces by various authors. 

Gahler in a series of papers [13, 14, and 15] investigated 2-metric spaces. Sharma, Sharma and Iseki [30] studied for 

the first time contraction type mappings in 2-metic space. We [34, 35] have also worked on 2-Metric spaces and 2- 

Banach spaces for rational expressions. 

We know that that 2-metric space is a real valued function of a point triples on a set X, which abstract properties 

were suggested by the area function in Euclidean spaces. Now it is natural to expect 3-Metric space, which is 

suggested by the volume function.         

        

SOME FIXED POINT THEOREMS IN FUZZY 2-METRIC SPACES 

Definition (3 A): A binary operation *: [0, 1] x [0,1] x [0,1]  [0,1] is called a continuous t-norm if ([0,1],*) is an 

abelian topological monodies with unit 1 such that a1 * b1 * c1 ≥ a2 * b2 * c2 whenever 

 a1 ≥ a2, b1 ≥ b2, c1≥ c2 for all a1, a2, b1, b2 and c1, c2 are in [0,1].  

Definition (3 B): The 3-tuple (X, M, *) is called a fuzzy 2-metric space if X is an arbitrary set, * is continuous t-

norm and M is fuzzy set in X
3 
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Definition (3C): Let (X, M, * ) be a fuzzy 2-metric space. A sequence {xn} in fuzzy 2-metric space X is said to be 

convergent to a point x  X,  

0,1),,,(lim tandXaallfortaxxM n
n




 

(2) A sequence {xn} in fuzzy 2-metric space X is called a Cauchy sequence, if  

0,,1),,,(lim ptandXaallfortaxxM npn
n




 

 (3) A fuzzy 2-metric space in which every Cauchy sequence is convergent is said to be complete.  

Definition 3 D): A function M is continuous in fuzzy 2-metric space, iff whenever  

For all a  X and t > 0. 

0),,,,(),,,(lim,, tandXatayxMtayxMthenyyxx nn
n

nn 


 

Definition (3E): Two mappings A and S on fuzzy 2-metri space X are weakly commuting iff 

0,),,,,(),,,( tXandautaSuAuMtaSAuASuM   

Theorem 3.1. Let (X,M, ) be a complete fuzzy 2-metric space. Let f and g be weakly compatible self maps of X 

satisfying 

(3.1) M(gx,gy,a,kt)   M(fx,fy,a,t) where 0 k 1, a>0 

(3.2) g(X)   f(X) . 

If one of g(X) or f(X) is complete then f and g have a unique common fixed point. 

Proof. Let     X. Since g(X)   f(X). Choose      X such that g(  )= f(  ). In general, choose       such that  

             .Then by (3.1), we have 

M(             ) = M(             )   M(            
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)  .......... M(          
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Therefore, for any p, 
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)   ...   M(   ,f     

 

        
). 

As  n   . {   } = {  } is a Cauchy sequence in fuzzy 2-metric space and so, by completeness of X, {  } = {   } 

is convergent. We call the limit z, then                       = z .  As f(X) is complete, so there exist a point 

p in X such that fp=z. Now, from (3.1),  

As n   , M(gp,g  ,a,kt)  M(fp,f  ,a,t), 

M(gp,z,a,kt)  M(fp,z,a,t) 
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M(gp,z,a,kt)  M(z,z,a,t), 

M(gp,z,a,kt)  1, 

M(gp,z,a,kt)    

gp=z=fp. 

As f and g are weakly compatible. Therefore fgp=gfp i.e. fz=gz. Now, we show that z is fixed point of f and g. From 

(3.1), 

As n    M(gz,g  ,a,kt)  M(fz,f  ,a,t), 

M(gz,z,a,kt)  M(fz,z,a,t), 

M(gz,z,a,kt)  M(gz,z,a,t), 

gz=z=fz. 

Hence z is a common fixed point of f and g. For uniqueness, let w be another fixed point of f and g. Then by (3.1), 

M(gz,gw,a,kt)   M(fz,fw,a,t), M(z,w,a,kt)   M(z,w,a,t) and z=w.  

Therefore z is unique common fixed point of f and g. 

Theorem 3.2. Let (X,M,  ) be a fuzzy 2-metric space. Let f and g weakly compatible self maps of X satisfying 

condition (3.1) and (3.2). If one of g(X) or f(X) is complete then f and g have a unique common fixed point. 

Proof  From the proof of above theorem. We conclude that {   } ={  } is a Cauchy sequence in X. Now suppose 

that f(X) is a complete subspace of X. Then the subsequence of {  } must get a limit in f(X). Call it be u and f(v) = 

u. As {  } is a Cauchy sequence containing a convergent subsequence, therefore the sequence {  } also converges 

implying thereby the convergence of subsequence of the convergent sequence. Now, from (3.1), 

As n    M(gv,g  ,a,kt)  M(fv,f  ,a,t), 

M(gv,u,a,kt)  M(fv,u,a,t), 

M(gv,u,a,kt)  M(u,u,a,t), 

 M(gv,u,a,kt)  1, 

 M(gv,u,a,kt)    

   gv=u=fv. 

Which shows that pair (f,g) has a point of coincidence . Since, f and g are weakly compatible, fgv = gfv, i.e. fu = gu. 

Now, we show that u is a fixed point of f and g. From(3.1). 

As n   M(gu,g  ,a,kt)  M(fu,f  ,a,t), 

M(gu,u,a,kt)  M(fu,u,a,t), 

M(gu,u,a,kt)  M(gu,u,a,t), 

gu=u=fu. 
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Hence u is a fixed point of f and g. For uniqueness, let w be another fixed point of f and g. Then by (3.1), ), 

M(gz,gw,a,kt)   M(fz,fw,a,t), M(z,w,a,kt)   M(z,w,a,t) and z=w. Therefore z is unique common fixed point of f and 

g.  

SOME FIXED POINT THEOREMS IN FUZZY 3-METRIC SPACES 

Definition (4.A): A binary operation *: [0, 1]
4
  [0, 1] is called a continuous t-norm if 

([0, 1], *) is an abelian topological monoid with unit 1 such that  

22221111 dcbadcba   Whenever a1 ≥ a2, b1 ≥ b2  , c1 ≥ c2 and d1 ≥ d2 for all a1, a2, b1, b2, c1, c2 and d1, 

d2 are in [0,1].  

Definition (4.B):  The 3-tuple (X, M, *) is called a fuzzy 3-metric space if X is an arbitrary set, * is a continuous t-

norm monoid and M is a fuzzy set in X
4
 x [0, ] satisfying the following conductions:  
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Definition (4.C): Let (X, M, *) be a fuzzy 3-metric space:  

(1)A sequence {Xn} in fuzzy 3-metric space X is said to be convergent to a point x  X, if 

   0,,1),,,,(lim tandXbaallfortbaxxM n
n




 

  (2)A sequence {xn} in fuzzy 3-metric space X is called a Cauchy sequence, if  

0,,,1),,,,(lim ptandXbaallfortbaxxM npn
n




 

 (3)A fuzzy 3-metric space in which every Cauchy sequence is convergent is said to be complete.  

Definition (4.D) A function M is continuous in fuzzy 3-metric space if  

0,),,,,(),,,,(lim,, tandXbatayxMtbayxMthenyyxx nn
n

nn 


 

Definition (4.E): Two mappings A and S on fuzzy 3-metric space X are weakly commuting iff,  

0,,),,,(),,,,( tXandbautaSuAuMtbaSAuASuM   
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Theorem 4.1. Let (X,M, ) be a complete fuzzy 3-metric space. Let f and g be weakly compatible self maps of X 

satisfying 

(4.1) M(gx,gy,a,b,kt)   M(fx,fy,a,t) where 0 k 1, a,b >0 

(4,2) g(X)   f(X) . 

If one of g(X) or f(X) is complete then f and g have a unique common fixed point. 

Proof. Let     X. Since g(X)   f(X). Choose      X such that g(  )= f(  ). In general, choose       such that  

             .Then by (4.1), we have 

M(               ) = M(               )   M(              
 

 
)  

                               = M(                
 

 
)  .......... M(            

 

  
). 

Therefore, for any p, 

M(               )   M(              
 

 
)   ...   M(       ,f         

 

 
) 

                                 M(            
 

   
)   ...   M(   ,f       

 

        
). 

As  n   . {   } = {  } is a Cauchy sequence in fuzzy 3-metric space and so, by completeness of X, {  } = {   } 

is convergent. We call the limit z, then                       = z .  As f(X) is complete, so there exist a point 

p in X such that fp=z. Now, from (3.1),  

As n   , M(gp,g  ,a,b,kt)  M(fp,f  ,a,b,t), 

M(gp,z,a,b,kt)  M(fp,z,a,b,t) 

M(gp,z,a,b,kt)  M(z,z,a,b,t), 

M(gp,z,a,b,kt)  1, 

M(gp,z,a,b,kt)    

gp=z=fp. 

As f and g are weakly compatible. Therefore fgp=gfp i.e. fz=gz. Now, we show that z is fixed point of f and g. From 

(4.1), 

As n    M(gz,g  ,a,b,kt)  M(fz,f  ,a,b,t), 

M(gz,z,a,b,kt)  M(fz,z,a,b,t), 

M(gz,z,a,b,kt)  M(gz,z,a,b,t), 

gz=z=fz. 

Hence z is a common fixed point of f and g. For uniqueness, let w be another fixed point of f and g. Then by (4.1), 

M(gz,gw,a,b,kt)   M(fz,fw,a,b,t), M(z,w,a,b,kt)   M(z,w,a,b,t) and z=w.  

Therefore z is unique common fixed point of f and g. 
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Theorem 4.2. Let (X,M,  ) be a fuzzy 3-metric space. Let f and g weakly compatible self maps of X satisfying 

condition (4.1) and (4.2). If one of g(X) or f(X) is complete then f and g have a unique common fixed point. 

Proof. From the proof of above theorem. We conclude that {   } ={  } is a Cauchy sequence in X. Now suppose 

that f(X) is a complete subspace of X. Then the subsequence of {  } must get a limit in f(X). Call it be u and f(v) = 

u. As {  } is a Cauchy sequence containing a convergent subsequence, therefore the sequence {  } also converges 

implying thereby the convergence of subsequence of the convergent sequence. Now, from (4.1), 

As n    M(gv,g  ,a,b,kt)  M(fv,f  ,a,b,t), 

M(gv,u,a,b,kt)  M(fv,u,a,b,t), 

M(gv,u,a,b,kt)  M(u,u,a,b,t), 

 M(gv,u,a,b,kt)  1, 

 M(gv,u,a,b,kt)    

   gv=u=fv. 

Which shows that pair (f,g) has a point of coincidence . Since, f and g are weakly compatible, fgv = gfv, i.e. fu = gu. 

Now, we show that u is a fixed point of f and g. From(4.1). 

As n   M(gu,g  ,a,b,kt)  M(fu,f  ,a,b,t), 

M(gu,u,a,b,kt)  M(fu,u,a,b,t), 

M(gu,u,a,b,kt)  M(gu,u,a,b,t), 

gu=u=fu. 

Hence u is a fixed point of f and g. For uniqueness, let w be another fixed point of f and g. Then by (4.1), ), 

M(gz,gw,a,b,kt)   M(fz,fw,a,b,t), M(z,w,a,b,kt)   M(z,w,a,b,t) and z=w. Therefore z is unique common fixed point 

of f and g.  
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