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Abstract 

Our aim of this paper is to obtain some fixed point and common fixed point theorems in        space satisfying 

different rational contractive conditions. 
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1 INTRODUCTION   & Preliminaries  

Fixed point has become attractive to the authors working in non linear analysis when the study of non- 

expansive mappings concerning the existence of the fixed point. Since the non expansive mappings include 

contraction as well as contractive mappings. Browder [1] was the first mathematician who studies non –expansive 

mapping where he applied the results for proving the existence of   solution of certain integral equations. Recently 

study of fixed point theorems in Banach spaces is very interesting. In this paper we prove some fixed point theorems 

and common fixed point theorems in Banach spaces. Our results are generalization and extension of various known 

results. 

First we recall some known definitions and results which are helpful for proving our results. 

                 Let S and T are self maps of a Banach space X.  If         for some     , then   is called a 

coincidence point of S and T, and   is called a point of coincidence of S and T. 

               Let   and   are self maps of a Banach space    then   and   are said to be weakly compatible if 

        ||         ||     

whenever {  } is sequence in   such that 

                           
for some      
                 Let S and T are self maps of a Banach space X, then S and T are said to be weakly compatible if 

they commute at their coincidence points; i.e. if       for some      then        . 
               Let   be the set of real functions 

  (              ) [   )
  [   )  

satisfying the following conditions: 

i.    is non increasing in variables          . 

ii. There is an               such that          and if             satisfying 

a.    (           ) or     (           ) 
Then we have      . 

and if          satisfy 

b.     (           ) or     (           ) 
Then we have      . 

c. If     is such that 

   (         )         (         )        (         ) 
 Then    .  

2 Common Fixed Point Theorems for Self  Mappings in Banach spaces 
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In this section we prove some common fixed point results for four self mappings satisfying symmetric 

rational expression. Our aim of this section is to generalized and extended previous many known results. In fact our 

first result of this section is as follows, 

             Let          be continuous self mappings defined on the Banach  space X   into itself satisfies the 

following conditions: 

   ( )       ( )    ( )   ( )     ( )    

   (  )                   ( )  ( )    ( )  ( ) is  complete  subspace  of  X. 

   (   )     The    pair   {   }  and  {   }  are weakly compatible.  

   (  )    ||     ||
 
        [ ||     ||

 
  ||     ||

 
]  

        [||     ||
 
 ||     ||

 
]  

       [||     ||
 
 ||     ||

 
 ]  

    [||     ||
 
 ||     ||

 
 ]   

          [||     ||||     ||  ||     ||||     ||]  

 For all         (    )  and for non negative           [   )  such that                  
      hen         have unique common fixed point in X. 

Proof   For   any   arbitrary       in     we define the sequence  {  }       {  }  in    such that 

                                                             (     ) 

for all  n=  0, 1, 2, …..  

On taking                

  ||          ||
 
      ||           ||

 
     

From      (  )  we have 

  ||           ||
 
      [||         ||

 
  ||             ||

 
] 

            [||           ||
 
   ||           ||

 
 ] 

             [||         ||
 
  ||           ||

 
  ] 

            [||           ||
 
  ||             ||

 
 ] 

         [
||         || ||             ||

 ||           ||||           ||
] 

  ||         ||
 
       [||         ||

 
   ||         ||

 
 ] 
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            [||       ||
 
  ||           ||

 
]    

             [||         ||
 
 ||       ||

 
 ]  

           [||           ||
 
   ||         ||

 
]  

           [
||         || ||         || 

 ||       ||||           ||
]  

||         ||     √ 
(        )

(           )
  ||         || 

Let us denote √ 
(        )

(           )
   ,   

since                      which gives  

     √ 
(        )

(           )
       and that 

  ||         ||          ||         ||  

Similarly we can show that 

  ||         ||   
  ||           ||  

Processing the same way we can write, 

  ||         ||      
  ||     ||  

for any integer  m  we have 

 ||         ||       ||         ||    ||           ||    

           ||             ||  

 ||         ||        
  ||     ||      

    ||     ||    

                ||     ||   

 ||         ||         
 [              ] ||     ||  

 ||         ||       
  

   
 ||     ||  

as           gives  that 

 ||         ||       

Thus  {   }  is a Cauchy sequence in X. Since  ( ) is complete subspace of X then the subsequence              

is Cauchy sequence in  ( ) which converges to the some point say u in X. Let         then      . Since  {   }  
is converges to   and hence  {     }  also converges to same point    . 
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we set                     in     (  )  

  ||       ||
 
       [||         ||

 
  ||     ||

 
] 

            [||       ||
 
  ||       ||

 
] 

             [||         ||
 
 ||       ||

 
 ] 

           [||       ||
 
 ||         ||

 
 ] 

           [
||         ||||     || 

  ||       ||||       ||
] 

            ||     ||
 
            (              ) ||    ||

 
     

This is a contradiction, implies that  B      also  ( )   ( )             implies  that       ( ) . 

 Let       ( )  then w     setting                                 (  ) we get 

  ||         ||
 
     [||     ||

 
 ||             ||

 
] 

            [||         ||
 
 ||         ||

 
 ] 

             [||     ||
 
  ||         ||

 
] 

         [||         ||
 
  ||             ||

 
]  

         [
||     ||||             ||

 ||         ||||         ||
]   

             ||    ||
 
     (           ) ||    ||

 
        

This is a  contradiction, implies that,          this  means                     . 

since            so  by  weak  compatibility  of  (   )  it  follows  that,                  so we  get   

                            

Since             so by weak compatibility of  (   ) it follows that                  So we get  

                        . 

Thus from      (  ) we have 

  ||      ||
 
          [||     ||

 
 ||      ||

 
 ] 

            [||     ||
 
 ||     ||

 
 ] 

             [||     ||
 
 ||     ||

 
 ] 
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           [||     ||
 
 ||     ||

 
 ] 

           [
||     ||||     ||

 ||     ||||     ||
] 

  ||     ||
 
     (        )||     ||

 
 

which  contradiction 

implies  that          . 

Similarly we can show          by using        (  ). Therefore   

                             

Hence the point       is common fixed   point   of               

If we assume that  ( ) is complete  then the argument analogue to the previous completeness argument proves the 

theorem. If  ( ) is complete then     ( )   ( )   similarly if   ( ) is complete then     ( )   ( )   This 

complete prove of the theorem.   

            Let us assume that  z  is another fixed point of         in X different from u                 then 

  ||   ||
 
     ||     ||

 
 

         (  )          

  ||   ||
 
       (       )||   ||

 
       

which contradiction the hypothesis . 

 Hence u is unique common fixed point of           in X. 

Before giving our second result of this section we Let     denote the set of non negative real numbers and F 

a family of all mappings   (  )     such that   is upper semi continuous, non decreasing in each coordinate 

variable and, for any  (              )      

             Let          be continuous self mappings defined on the Banach space X   into itself satisfies the 

following conditions: 

   ( )       ( )    ( )   ( )     ( )    

   (  )     The    pair   {   }  and  {   }  are weakly compatible.  

   (   )        (     )   

(

 
 
 
 
 

 ||     ||
 
  ||     ||

 
 

||     ||
 
 ||     ||

 
 

||     ||
 
 ||     ||

 
 

||     ||
 
 ||     ||

 
 

||     ||
 

)

 
 
 
 
 

  

For all         (    ) and        hen         have unique common fixed point in X. 
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Proof   For   any   arbitrary      in     we define the sequence  {  }       {  }  in    such  that 

                                                       (       ) 

for all  n=  0, 1, 2, …..  

On taking                

   ||          ||
 
      ||           ||

 
      

From    (   )  we have 

 ||           ||
 
          

(

 
 
 
 
 

||         ||
 
  ||             ||

 
 

||           ||
 
   ||           ||

 
 

||         ||
 
  ||           ||

 
 

||           ||
 
  ||             ||

 
 

||           ||
 

)

 
 
 
 
 

    

||          ||
 
           

(

 
 
 
 
 

||         ||
 
   ||         ||

 
 

||       ||
 
  ||           ||

 
 

||         ||
 
 ||       ||

 
 

||           ||
 
   ||         ||

 
 

||         ||
 

)

 
 
 
 
 

   

from the property of   we have 

 ||         ||
 
       ||         ||

 
    

similarly we can show that 

 ||         ||     
  ||           ||   

 ||     ||  

processing the same way we can write, 

for any integer  m  we have 

   ||         ||       ||         ||    ||           ||    

           ||             ||  

 ||         ||        
  ||     ||      

    ||     ||    

                ||     ||   

 ||         ||         
 [              ] ||     ||  

 ||         ||       
  

   
 ||     ||  

as           gives  that 
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 ||         ||       

Thus  {   }  is a Cauchy sequence in X. Since  ( ) is complete subspace of X then the subsequence              

is Cauchy sequence in  ( ) which converges to the some point say u in X. Let         then      . Since  {   }  
is converges to   and hence  {     }  also  converges  to  same point    . 

We set                     in     (  )  

  ||       ||
 
         

(

 
 
 
 
 

||         ||
 
  ||     ||

 
 

||       ||
 
  ||       ||

 
 

||         ||
 
 ||       ||

 
 

||       ||
 
 ||         ||

 
 

||       ||
 

)

 
 
 
 
 

   

            

             ||     ||
 
        ||     ||

 
     

which contradiction 

implies that  B      also  ( )   ( )             implies  that       ( ) . 

 Let       ( )  then w     setting                                 (   ) we get 

 ||         ||
 
              

(

 
 
 
 
 

||     ||
 
 ||             ||

 
 

||         ||
 
 ||         ||

 
 

||     ||
 
  ||         ||

 
 

||         ||
 
  ||             ||

 
 

||         ||
 

)

 
 
 
 
 

   

          ,    ||    ||     ||    ||       

This is a contradiction, implies that,          this  means                     . 

since            so  by  weak  compatibility  of  (   )  it  follows  that,                  so we  get   

                            

Since             so by weak compatibility of  (   ) it follows that                  So we get  

                         

Thus from    (   ) we have 
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 ||      ||
 
           

(

 
 
 
 
 

||     ||
 
 ||      ||

 
 

||     ||
 
 ||     ||

 
 

||     ||
 
 ||     ||

 
 

||     ||
 
 ||     ||

 
 

||     ||
 

)

 
 
 
 
 

 

 ||    ||     ||    || 

which  contradiction 

implies  that          . 

Similarly we can show          by using      (   ) . Therefore   

                             

Hence the point       is common fixed   point   of               

If we assume that  ( ) is complete then the argument analogue to the previous completeness argument proves the 

theorem. If  ( ) is complete then     ( )   ( )   similarly if   ( ) is complete then     ( )   ( )   This 

complete prove of the theorem.   

Uniqueness  Let us assume that  z  is another fixed point of         in X different from u                 then 

  ||   ||
 
     ||     ||

 
 

         (   )          

  ||   ||
 
      ||   ||

 
       

which contradiction the hypothesis . Hence u is unique common fixed point of           in X. 

Theorem 2.3  Let          be continuous self mappings defined on the Banach space X   into itself satisfies the 

following conditions: 

   ( )       ( )    ( )   ( )     ( )    

   (  )                   ( )  ( )    ( )  ( ) is  complete  subspace  of  X. 

   (   )     The    pair   {   }  and  {   }  are weakly compatible.  

   (  )   ||     ||
 
          

{
 
 

 
 ||     ||

 
  ||     ||

 
 

||     ||
 
 ||     ||

 
 

||     ||
 
 ||     ||

 
 

||     ||
 
 ||     ||

 
}
 
 

 
 

  

For all         (    ) and for non negative   [   )      hen         have unique common fixed point in X. 

Proof   For   any   arbitrary      in     we define the sequence  {  }       {  }  in    such  that 

                                                      (     ) 
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for all  n=  0, 1, 2, …..  

On taking                

  ||          ||
 
      ||           ||

 
    

From    (  )  we have 

 ||           ||
 
        

{
 
 

 
 ||         ||

 
  ||             ||

 
 

||           ||
 
   ||           ||

 
 

||         ||
 
  ||           ||

 
 

||           ||
 
  ||             ||

 
}
 
 

 
 

  

||         ||
 
        

{
 
 

 
 ||         ||

 
   ||         ||

 
 

||       ||
 
  ||           ||

 
 

||         ||
 
 ||       ||

 
 

||           ||
 
   ||         ||

 
}
 
 

 
 

  

 (   )||         ||
 
      ||         ||

 
    

   ||         ||     √
 

   
 ||         || 

Let us denote  √
 

   
  ,    

  ||         ||
 
       ||         ||

 
  

Similarly we can show that 

  ||         ||      
  ||           ||  

Processing the same way we can write, 

  ||         ||       
  ||     ||   

for any integer  m  we have 

||         ||       ||         ||    ||           ||    

           ||             ||  

 ||         ||        
  ||     ||      

    ||     ||    

                ||     ||   

 ||         ||         
 [              ] ||     ||  

 ||         ||       
  

   
 ||     ||  
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as           gives  that 

 ||         ||       

Thus  {   }  is a Cauchy sequence in X. Since  ( ) is complete subspace of X then the subsequence              

is Cauchy sequence in  ( ) which converges to the some point say u in X. Let         then      . Since  {   }  
is converges to   and hence  {     }  also converges to same point    . 

we set                     in     (  )  

||       ||
 
        

{
 
 

 
  ||         ||

 
  ||     ||

 
 

||       ||
 
  ||       ||

 
 

||         ||
 
 ||       ||

 
 

||       ||
 
 ||         ||

 
}
 
 

 
 

  

            

            ||    ||              ||    ||    

which contradiction 

implies that  B      also  ( )   ( )             implies  that       ( ) . 

 Let       ( )  then w     setting                               (  ) we get 

||         ||
 
            

{
 
 

 
  ||     ||

 
 ||             ||

 
 

||         ||
 
 ||         ||

 
 

||     ||
 
  ||         ||

 
 

||         ||
 
  ||             ||

 
}
 
 

 
 

  

            

 ||    ||         ||    ||       

which contradiction  

 implies that,          this  means                     . 

since            so  by  weak  compatibility  of  (   )  it  follows  that,                  so we  get   

                            

Since             so by weak compatibility of  (   ) it follows that                  So we get  

                         

Thus from      (  ) we have 

http://www.iiste.org/


Computer Engineering and Intelligent Systems                                                                                                                                 www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol.5, No.1, 2014 

 

67 

||      ||
 
                 

{
 
 

 
  ||     ||

 
 ||      ||

 
 

||     ||
 
 ||     ||

 
 

||     ||
 
 ||     ||

 
 

||     ||
 
 ||     ||

 
}
 
 

 
 

 

 ||     ||
 
          ||     ||

 
 

which  contradiction 

implies  that          . 

Similarly we can show          by using     (  ). Therefore   

                             

Hence the point       is common fixed   point   of               

If we assume that  ( ) is complete then the argument analogue to the previous completeness argument proves the 

theorem. If  ( ) is complete then     ( )   ( )   similarly if   ( ) is complete then     ( )   ( )   This 

complete prove of the theorem.   

Uniqueness  Let us assume that z is another fixed point of         in X different from u                 then 

   ||   ||
 
     ||     ||

 
 

           (  )          

   ||   ||
 
        ||   ||

 
     

which contradiction the hypothesis . Hence u is unique common fixed point of           in X. 

3  FIXED POINT THEOREM SATISFYING RATIONAL TYPE CONTRACTION CONDITION IN 

PARTIAL ORDERED BANACH SPACES 

Fixed point for multivalued functions is a vast chapter of functional analysis. In particular, the function  (   ) has 

been used in many works in this area. Some of these works are noted in Choudhury [2], Fisher [5] and Fisher and 

Iseki [6].  

 We will use the following relation between two non empty subsets of a partially ordered set. 

Let (   ) be a metric space. We denote the class of non empty and bounded subsets of X by  ( ). For     
  ( ), function  (   ) and  (   ) are defined as follows: 

 ||   ||
 
      { ||   ||            }    

 ||   ||
 
      {  ||   ||            }   

If     {   }   then we write  ||   ||
 
   ||   ||

 
 and  ||   ||

 
  ||   ||

 
. Also in addition, if   {   }, 

then ||   ||
 
  ||   || and ||   ||

 
  ||   || . Obviously, ||   ||

 
 ||   ||

 
. For all        

  ( ), the definition of   ||   ||
 
 yields the following:  

   ||   ||
 
  ||   ||

 
   

  ||   ||
 
 ||   ||

 
  ||   ||

 
   

  ||   ||
 
    iff         {   }   

  ||   ||
 
           . 
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            ( ) Let A and B be two non empty subsets of a partially ordered set (   )  The relation between A 

and B is denoted and defined as follows:  

      if for every      there exists       such that        
 In 1984, M.S. Khan, M. Swalech and S. Sessa [7] expanded the research of the metric fixed point theory 

to a new category by introducing a control function which they called an altering distance function.  

We will utilize the following control function which is also referred to a Altering distance function. 

             ( )  A function     [   )    [   )   is called an Altering distance function if the following 

properties are satisfied:  

i.    is monotone increasing and continuous, 

ii.  ( )       if and only if      . 

 The above control function has been utilized in a large number of works in metric fixed point theory. 

Some recent references are Choudhury [2], Doric [4], Dutta and Choudhury [3], Naidu [8] and Sastry and Babu [9]. 

This control function has also been extended and applied to fixed point problems in probabilistic metric spaces, and 

fuzzy metric spaces.  

 The purpose of this chapter is to establish the existence of fixed point if multivalued mappings in partially 

ordered metric spaces. The mappings are assumed to satisfy certain inequalities which involved the above mentioned 

control functions. Further we have established that in the corresponding singlevalued cases of partial ordered 

condition of the metric space can be omitted if the function is continuous. 

             Let (   ) be a partially ordered set and suppose that there exists a norm || || in X such that 

(   ) is a Banach space. Let        ( )  be a multivalued mapping such that the following conditions are 

satisfied; 

   ( ) there exists       such that {   }       , 

   (  )  for              implies       , 

   (   )  if       is a non decreasing sequence in X, then       for all n, 

   (  )   (||     ||
 
 )     (    {

||    ||
 
 ||    ||

 

  ||   ||
 
||    ||

 
 ||    ||

 

  ||   ||
 })    

        (    {
||    ||

 
 ||    ||

 

||    ||
 
 ||    ||

 
 
})  

        (||   ||)   

For all comparable        where          (   ) such that                  and    is an altering distance 

function. Then T has a fixed point. 

       By the assumption     ( ) there exists          such that        . By the assumption    (  )      
    . Then there                such that         Continuing the process we construct a monotone increasing 

sequence  {   }  in X such                 for all         Thus we have 

                                           
If there exists a positive integer N such that            then    is a fixed point of T. Hence we shall assume that 

          for all       
Using the monotone property      and the condition  .1 (iv), we have for all     , 

   (||         ||)     (||         ||  )    

  (||         || )     (    {

||      ||  ||          || 

  ||       ||
 

||        ||  ||        || 

  ||       ||

})          

                 (    {
 ||      ||  |

|          ||  

||        ||  |
|        || 

})    

                (||       ||)    

   (||         ||)     (    {

||       || ||         ||

  ||       ||
 

||       || ||         ||

  ||       ||

})  
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         (    {
  ||       || ||         || 

||       || ||         ||
})  

        (||       ||)   
  

   ( (         ))     (    {||         ||  })    

         (    {
||       || ||         || 

||       ||  
})  

        (||       ||)   
There arise two four cases.  

Case – 1 if we take       {
||       || ||         || 

||       ||  
}      ||       ||  

 then, 

      (||         ||)   
 

  –   
   (||       ||)    

 Case - 2, if we take     {
||       || ||         || 

||       ||  
}    ||         ||  

  then, 

    (||         ||)  
     

     – 
    (||       ||)   

 Case - 3, if we take     {
||       || ||         || 

||       ||  
}      ||       ||  

     (||         ||)    
     

     – 
     (||       ||)    

 Case - 4, if we take      {
||       || ||         || 

||       ||  
}       then, 

    (||         ||)   
 

     
   (||       ||)   

Since                 in both cases, this implies  

    (||         ||)       (||       ||)      (2.1) 

 where          { 
 

  –   
 
     

     – 
 
     

     – 
 
 

     
} . 

Therefore, ||         ||     ||       || for all      and  {||       ||}   is monotone decreasing sequence 

of non negative real numbers. Hence there exists an       such that, 

 ||       ||                      ( ) 

Taking the limit as       in      (  )and using the continuity of   , e have 

     ( )       ( )   
which is a contradiction unless        .  

Hence,  

           ||       ||          ( ) 

Next we show that  {   }   is a Cauchy sequence. If otherwise, there exists an       for which we can find two 

sequences of positive integers  { ( )}  and {  ( )}  such that for all positive integers k,   ( )     ( )      and 

||  ( )    ( )||    . 

Assume that  ( ) is the smallest such positive integer we get,   ( )   ( )      

  ||  ( )    ( )||     

and 

    ||  ( )    ( )  ||      

Now, 

     ||  ( )    ( )|| 

        ||  ( )    ( )  ||    ||  ( )     ( )||    
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that is, 

      ||  ( )    ( )||     ||  ( )     ( )|| 

Taking the limit as        in the above inequality and      ( )we have 

           ||  ( )    ( )||          ( ) 

Again, 

   ||  ( )    ( )||   ||  ( )    ( )  ||   

      ||  ( )     ( )  ||   ||  ( )     ( )|| 

and, 

   ||  ( )     ( )  ||  ||  ( )     ( )||  

                   ||  ( )    ( )||   ||  ( )    ( )  ||  

Taking the limit as       in the above inequality and      ( ) and       ( ) we have, 

         ||  ( )     ( )  ||          ( ) 

Again, 

 ||  ( )    ( )||   ||  ( )    ( )  ||    ||  ( )     ( )||  

and, 

 ||  ( )    ( )  ||   ||  ( )    ( )||    ||  ( )    ( )  || 

Taking the limit          in the above inequality and    ( )and    ( ) we have, 

           ||  ( )    ( )  ||              ( ) 

Similarly we have that 

         ||  ( )    ( )  ||          ( ) 

For each positive integer  , {  ( )}  and  {  ( )}  are comparable. Then using the monotone property of    and the 

condition (  )  we have 

   (||  ( )     ( )  ||)    (||   ( )     ( )||
 
)   

 

 (||   ( )     ( )||
 
)     

(

 
 
    

{
 
 

 
 
||  ( )    ( )|| 

 ||  ( )    ( )|| 

  ||  ( )   ( )||
 

||  ( )    ( )|| 
 ||  ( )    ( )|| 

  ||  ( )   ( )|| }
 
 

 
 

)

 
 

    

        (    {
||  ( )     ( )||

 
 ||  ( )     ( )||

 
 

 ||  ( )     ( )||
 
 ||  ( )     ( )||

 

})   

       (||  ( )    ( )||)  

By using (iv) and on taking limit as       in the above inequality and      ( ) and using the continuity of     we 

have, 

    ( )       ( )  
which is contradiction by virtue of a property of  . 

Hence {   } is a Cauchy sequence. From the completeness of X, there exists a       such that  

                         ( ) 
By the assumption (iii),       , for all n. 

Then by the monotone property of   and the condition (iv), we have 

    (||       ||)       (||     ( )||  ) 

By using (iv) and on taking limit as       in the above inequality from      ( )and      ( ) and using the 

continuity of     we have, 
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  (||    ||
 
)      (||    ||

 
)       (||    ||

 
)   

which implies that,  ||    ||
 
      or that  {   }      . Moreover, z is a fixed point of T. 

               Let (   ) be a partially ordered set and suppose that there exists a norm || || in X such that (   ) 
is a Banach space. Let       ( ) be a multivalued mapping such that the following conditions are satisfied; 

   ( ) there exists      such that {   }         
   (  )  for              implies      , 

   (   ) if       is a non decreasing sequence in X, then       for all n, 

    (  ) ||     ||
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      ||   ||   

For all comparable        where           (   ) such that                 . Then T has a fixed point. 

Proof  On taking    be an identity function in Theorem    .1, and then the above result is true and noting to prove.  

The following corollary is a special case of Theorem  .1 when T is a singlevalued mapping. 

               Let (   ) be a partially ordered set and suppose that there exists a norm || || in X such that (   ) 
is a Banach space. Let         be a mapping such that the following conditions are satisfied; 

   ( ) there exists       such that {   }      , 

   (  )  for                            , 

   (   ) if       is a non decreasing sequence in X, then       for all n, 

    (  )       (||     ||
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For all comparable       where        (   ) such that             and     is an altering distance 

function. Then T has a fixed point. 

In the following theorem we replace condition    (   ) of the above corollary by requiring   to be continuous. 

            Let (   ) be a partially ordered set and suppose that there exists a norm || || in X such that (   ) is 

a Banach space. Let         be a mapping such that the following conditions are satisfied; 

   ( ) there exists       such that {   }          
   (  )   for              implies       , 

   (   )     (||     ||
 
 )     (    {

||    ||
 
 ||    ||

 

  ||   ||
 

||    ||
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  ||   ||
 
})    

        (    {
||    ||

 
 ||    ||

 

||    ||
 
 ||    ||

 
 
})  

        (||   ||)   

For all comparable        where            (   ) such that                   and    is an altering distance 

function. Then   has a fixed point. 

Proof: We can treat T as a multivalued mapping in which case    is a singleton set for every        Then we 

consider the same sequence {   }  as in the proof of            , Arguing exactly as in the proof of              
we have that {   }  is a Cauchy sequence and         (  )     . Then the continuity of T implies that, 

            (    )            (  )        
and this proves that z is a fixed point of T. 
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