Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) Ly
Vol 3, No.3, 2012 Is'e

Optimal Nonlocal means algorithm for denoising ultrasound
image

Md. Motiur Rahmart, Md. Gauhar Arefili, Mithun Kumar PK:, Dr. Md. Shorif Uddif

1. Dept. of Computer Science & Engineering , Mawlat@ghani Science and Technology
University, Santosh, Tangail-1902, Bangladesh
2. Dept. of Computer Science & Engineering , Jahamgjan University, Savar, Dhaka-1342 ,
Bangladesh
* E-mail:garefin005@gmail.com

Abstract

We propose a new measure for denoising image loyleging mean distance of all pixels in an image in
non-local means (NL-means) algorithm. We computt amalyze the original NL-means algorithm which
total all the distance of the patches but, our psed algorithm calculates the mean value of albdie of

all the patches and then than get the sum of siadce. Our proposed algorithm exhibit better tesith
comparison of the existing NL-means algorithm.
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1. Introduction

Non-local means algorithm systematically use aBgiae self-predictions that an image can be pexvid
[1]. But local filters or frequency domain filterseanot avail to do that. Non-Local means (NL-m@ans
approach introduced by Buades et al. to denoise&0ral images corrupted by an additive white Ganss
noise [2]. NL-means filter normally calculate tlotal patch distances of the image, computed a wesiigh
average of all the pixels in the image and dentiseimage [1][3]. We propose a method that could
denoise the image by calculating mean value opalth distances of the image and denoise the image
better than previous filter.

The aim is to recover the original image from asgoneasurement,

W =u@) +ni) e e, @)

where, V(i) is the result value, u(i) is the “original” value and(i) is the noise perturbation at a pixel i.
The best way to model the effect of noise on ataiginage is to add some gaussian white noisehdn t
casen(i) are i.i.d. Gaussian values with zero mean anidnees® [2].

The denoising methods must not change the origmagie. But, for the better understanding of an
image those method allows to loss data to redueentlise from the image [4]. Human vision can only
understand the better recognition of the intensftghe pixel value of an image [5][6]. That's whjne
propose method is allows calculate mean patchrdistg avoiding the total patch distances.
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Section IlI. gives the introduction of the NL-meatgorithm. Section Ill. discuses the NL-means dtbar
with mean distance calculation of pixel neighbod®d7]. Section IV. compare the performance of the
NL-means algorithm and proposed NL-mean algorithm.

2. Non-L ocal Means Algorithm

2.1. Non local means

Recently, a new patch-based non local recoverydpgmahas been proposed by Buades et al [2]. This ne
paradigm replaces the local comparison of pixelghieynon local comparison of patches. The currew p
does not depend on the distance between neithgalsgiatances nor in intensity distance. NL-mefilbesr
analyzes the patterns around the pixels.

2.2 Algorithm

In the actualNL-meansalgorithm filter the restored intensityL(u)(x;) of pixel x€Q"™ is the weighted
average of all the pixel intensitiex) in the image®™(a bounded

domainQ®™ < R4M):

NLU)(¥) = X W06 xulx)- o (2

XjDlem

where the family of weightfv(x,x)}; depend on the similarity between the pixgland x and satisfy the
usual condition® < w(x, x) <1 and w(xx)=1. The weight evaluates the similarity between titerisities
of the local neighborhoods (patché) andN, centered on pixelbg andx.

For each pixek; in A;, the Gaussian-weighted Euclidean distafjci g,a is computed between the two
patchesu(N;) andu(N;) of image as explained in [8]. This distance is thaditionalL,-norm convolved
with a Gaussian kernel of standard deviatiormhe kernel is used to assign spatial weighth¢opatch
elements. The central pixels in the patch contebubre to the distance than the pixels surroundiédeo
central pixel.

The weightsv(x;, x;) are then computed as follows:

W(x,x;) :ieXp- HU(Ni)_lj(Nj)lE’a ()
Zi h

where Z is the normalizing constant afdacts as a filtering parameter controlling the geof the
exponential function. ,
[lu(N ) =u(N I,

Zi=Y exp _T“ (A
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The NL-means not only compares the gray level isimgle point but also compute the geometrical
configurations of whole neighborhoods [4]. Fig.hbwing this fact, the pixe43 has the same gray level
value of pixelp, but the neighborhoods are much different andefloee the weightv(p, 8) is nearly
zero[9][10].

3. NL-means algorithm with mean distance calculation

In previous section we discuss about the origitgdrghm of NL-means. In the equation (2) it estteth
value NL(u)(x), for a pixel x, is computed as a weighted average of all thelpixethe image. In this
proposed algorithm of NL-means we determinate tdaeNL(u)(x), for a pixel x is calculate weighted
mean distance of all the pixels in the image. Tioppsed algorithm is only compute the mean dissofe
the neighborhoods, total all the distances and ittereraged all the weights of neighborhoods.

In NL-means the current pixel does not depend endistance between neither spatial distances nor in
intensity distance. This filter analyzes the pasearound the pixels. The similarity between tweefs x

and x depends on the similarity of the intensity grayelevectors uf;) and ul;), where N denotes a
square neighborhood of fixed size and centered pixe@l k [3]. This similarity is determinate as a
decreasing function of the weighted Euclidean dista of equation (3), where a>0 is the standard
deviation of the Gaussian kernel. In the distanedcutation we compute mean distance of all
neighborhoods and then calculate the total ofisthdces.

Figure 1: Similar neighborhoods pixels give a large  weig¥(p,ql) and w(p,g2), while much
different neighborhoods give a small weight w(p,q3)

Mean ( L(ND)-U(NIE, ) * size(patch)
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After calculating the mean distance of the intéesitof the local neighborhoods (patché§)and N;
centered on pixels andyx;, it need to multiply with the size of local neigithood, because it need to have
actual distances of all neighborhoods.

From Figure 2. we can read the pixel g4 has theesgiray level value of pixel p, but it's neighborkiso
make the w(p,g4) is smaller weighted. Here our psgpNL-means algorithm turn the g4 pixel intensity
less and g3 pixel intensity high [11]. That's whigually the image is more readable and it makesthise
removed.

The original NL-means algorithm donoises an imagestmoothing and calculating the total distances of
neighborhoods [4]. It improves the visibility of amage than local filters. But the propose algaonith
compute the mean distance of all neighborhoods, théulate the total and makes the image moréleisi
and more easily edge detectable [10].

4. Performance and analysis

In this section we will compare NL-means algoritlamd proposed algorithm under three well defined
criteria: the noise removing, the visual qualitytieé restored image and the mean square erroristhae
Euclidean difference between the restored andraigmages [5][12].

For programming and calculation purposes of thenNlans algorithm, in a larger “search window” of
size SxS pixels we restrict the search of similaxdaws [13]. In all the experimentation we haveefixa
similarity square neighborhood, Nf 5x5 pixels and a search window of 11x11 pixHI&l? is the number
of pixels of the image, then the final complexifytive algorithm is about 25 x 121 ¥ N[3].

Large Euclidean distances lead to nearly zero hgigcting as an automatic threshold because the fa
decay of the exponential kernel.

These formulas are corroborated by the visual éxmats of Figure 3. This figure displays the visual
different

between those methods for the standard image B&Rax 512). In this figure we can identify the
NL-means filter reduce the noise and blur the image the propose filter reduce the noise [4], tiher
image and detected some edges of the image. Itsrthkeimage quality increase and more suitable for
human eyes.

59



Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) pLLy
Vol 3, No.3, 2012 IS’

Figure 2 Similar neighborhoods pixels w(p,ql1) and w(p,q2jegh large weights, while much different
neighborhoods w(p,q3) and w(p,q4) give a small Wweig

Table 1. displaying the improvement of the sigimahoise ratio (SNR), root mean square errors (RMSE
and peak signal to noise ratio (PSNR) of two stitend noisy images.

Signal to Noise Ratio (SNR) compares the level ediéd signal to the level of background noise. The
higher the ratio the less obtrusive the backgrawide is.

Let, see the improvement of ultra sound phantongen(@56x256) and a normal ultrasound image.
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a)The speckle noisy image(512x512) , b) OriginatiNéans filtered image in left and Proposed filtered
image in right(h=10)

¢) Original NL-means filtered image in left and Propddiltered image in right(h=2.5)

Figure 3. (a) .02 speckle noise is add to the lemye, (b) NL-means filtered image using degree of
filter, h =10, (c) Proposed filtered image usingde of filter, h =2.5

a)The ultrasound phantom image(256x28§Qriginal NL-means filtered image in left and Pospd
filtered image in right(h=10)
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c¢) Original NL-means filtered image in left and posed filtered image in right(h=1)

Figure 4. (a) ultrasound phantom image (b) NL-mditesed image using degree of filter, h =10
(c)Proposed filtered image using degree of filter,1

@ (b)

(©

Figure 5. (a) Normal ultrasound image (b)NL-meaheréd image using degree of filter, h =10 (c)
Proposed filtered image using degree of filter1h =

ZZ ()Qz,j + y|2])
SNR=10.log,,~—— S s (5)
ZZ(Xi,j_yi,j)

i=1 j=1

where M and N are the width and height of the imadee larger SNR values correspond to good quality
image.
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The Root Mean square error (RMSE), is given by
RMSE |(—— 33 (¢ ¥ ) ©
= (mgz:l X, 7% )

Peak Signal to Noise Ratio (PSNR) is computed using

PSNR= 20.log,,(g° max/RMSH

where g is the maximum intensity in the unfiltered imag&he PSNR is higher for a better transformed
image.

Table T Measurement Matrix

Image name| Degree  Filter SNR RMSE PSNR
of filter
Phantom 10 NL-means 8.31 15.74 24.23
(Figure 4) Proposed 8.55 15.35 24.44
1 NL-means 8.35 15.67 24.26
Proposed 9.64 13.58 2551
Normal 10 NL-means 9.91 19.61 22.32
Ultra sound Proposed 11.16 17.24 23.43
(Figure 5) 1 NL-means 10.37 18.71 22.73
Proposed | 13.30 14.00 25.24

Since, we can measure from Figure4. and Figurié @oes not rely on any visual interpretation this
numerical Measurement is the most objective onemall root mean square error does not assure a high
visual quality, the high SNR assure high visuahlgy of image. From the above discussion it can
measure that the NL-means calculation with meaawii is better method to denoise image.

5. Conclusions

Human vision is very sensitive to high-frequencfoimation. Image details (e.g., corners and lifres)e
high frequency contents and carry very importariorination for visual perception. Accordingly, the
purpose of this study was to determine the pretereuf filter of NL-means algorithm and for image
enhancement in a clinical soft-copy display settimgl to establish a promising set of algorithm dee
with various ultrasound image.
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