
Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.6, 2014

54

HTML5 based Smart eService using Server Side JavaScript and

JADE environment

Dr. Enas Hadi Salih

Software Engineering Dept. / Al-Rafedain University Collage

dr.enashadi@yahoo.com

Abstract

This paper introduces the concept of Smart-eService to be the kernel building block of the Smart-

eGovernment. The presented Smart-eService has many privileges over the traditional eService such as fully

cross-platform, social, liable, negotiable, autonomous and mobile.

Smart-eService is implemented in this paper as a deliverable mobile agent that complies with HTML5

as a frontend and Node.js modules to interface JADE platform at the backend. The presented Smart-eService is

preemptive behavior rather than reactive or even proactive; preemptive interpreted as actions based upon hard

domain intelligence.

 HTML5 terminologies such as Real Multi-Threading and WebSockets have been exploited and deployed

to efficiently increase the performance of Smart-eService and sustain its attributes.

Keywords: Smartphone, smart-eGovernment, eService, Mobile Agent, Smart-eService, Node.js, HTML5, JADE

1. Introduction

eGovernment is defined as The employment of the Internet and the world-wide-web for delivering

governmental information and services to the citizens [1]. The kernel core of eGovernment is the eService which

it is what citizens expect from the eGovernment to deliver (i.e., provide/publish). eServices designed to be

consumed per requested citizen; this happened in two scenarios:

1- Deliver eService entirely to citizen side and consume it there; this approach imposes delivering

eService as a standalone application; this has to consider the compatibility of the delivered eService

module with the designation platform. Many serious challenges face this approach such as security

risks, enough knowledge to install/uninstall eService, and experience to troubleshoot malfunctioning of

installed eService; this is what ‘Apps store’ from Google and other providers are doing.

2- Decompose eService into backend component to be consumed on the server side, and frontend

component to be delivered and consumed at the citizen side; this approach throws less burden on the

citizen in term of starting the eService but it leaves the delivered eService with less functionalities and

having the same issue of compatibility issue.

 Both presented scenarios do not respond to the specification of Smart-eGovernment, which is the next

generation of eGovernment.

In Smart-eGovernment, eServices hold more smart behavior in its interaction with citizens and the

environment. Smart behavior can be viewed as the ability to acquire knowledge from external or internal

resources; furthermore, smart behavior is able to build semantic relationships over the acquired knowledge to

sustain the cognitive understanding of the environment.

In this paper, Smart-eService terminology is introduced and implemented using HTML5 technologies; this

grants Smart-eService significant features such as fully independent of the underlying platform; where only web

browser is needed to consume Smart-eService and it does not require knowledge to install/ uninstall or invoke

the eService; this is beside the fact that web browser runs with limited privileges which reduces the risk of

malfunctioning effect of the delivered Smart-eService while traditional eService which is installed within the

device can ruin the entire system.

Two software technologies have been deployed in this paper: first one is the intelligent software agent and

second technology is the HTML5 that promoted web browser to be an efficient execution environment, both

technologies are introduced briefly in this paper.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.6, 2014

55

2. eService Vs. smart-eService

eGovernment is a collection of eServices published for the public citizens as part of the commitments of a

government. eService can be defined in a broad sense as the provisioning of services over electronic network [2].

The production of eService considers three main components to produce reliable eServices [1, 2]:

• eService Implementation and Environment: eService should be implemented to be cross-platform

consumable software module; this is crucial in eGovernment due to the huge size of population.

eService implementation should be adaptive to the environment holds be citizens to be consumed

properly.

• eService Publishing and Discovery: eGovernment can be considered to be a large repository of

eServices. UDDI (Universal Description and Discovery Integration) is a software

• eService Delivery and Integration: this issue draw main schemes of accessibilities to eServices

published by the eGovernment where citizens can invoke and consume available eServices.

Smart-eService is an eService delivered from eGovernment repository to citizens’ machine to fulfill their

requests by autonomously contact information resources and retrieve knowledge. Smart-eService encompasses

the ability to perceive the environment and cognitively adapt to the rapid changing within the deploying

environment to fulfill citizen needs.

The ultimate objectivity of Smart-eService is to help citizens making decisions in certain problem domain

by acquiring knowledge to make that decision more effective; Markman in [3] introduced the effective thinking

in problem solving as high quality knowledge where problem solving is less about a flash of intuitive brilliance

and more about the application of knowledge [3].

Smart actions are produced by software modules and applications installed in a device, for a software to be

smart it should be able to assist clients making wise decisions by building semantic network over the domain and

developing knowledge by traversing that network autonomously. Knowledge development is accomplished

without the intervention of clients.

3. eService Delivery Scenarios

 eService is a software module when consumed it produces valuable effects on hosting environment,

traditionally there are two approaches to have eService delivered to designation system: first is the direct

installation of the software service, here the service is written using platform dependent languages (e.g., C++,

J2ME, Special Java for Android); this service is published in global repositories which client should login and

download it. The second approach is accomplished by exploiting web browser where eService is written using

web languages like XML and JavaScript; this way eService can be delivered anywhere to the destination system

since there is web browserinstalled (i.e., some Web technologies like HTML5 provides new tags that need

updated versions of internet explorer).

4. eService Liability

 eService is a software entity that consumed over the clients’ machine by exploiting available resources; this

raises many alerts and risks of exposing personal and sensitive information, especially when considering

Smartphone that holds very sensitive information about the client/citizen. In this paper we define eService

feasibility as a set of beliefs initiated and developed at the run time:

: is the belief, and belief is a set of ontologies that represent initial restriction concepts (i.e., what are

authorized actions and responses).

 Intelligent Software Agent and JADE

Intelligent Software Agent is a software entity that can perceive the environment through its sensors and acts on

that perceiving autonomously. The perceiving is domain specific and a sophisticated process that needs

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.6, 2014

56

ontological representation for the concepts compasses the environment [4]. In Agent based system, the problem

domain is represented using ontology which is defined as the following:

 Where

C: are concepts defined over the problem domain

O: Object within the problem domain

R: Relationships between concepts

P: properties of Concepts

JADE is a developing environment written in Java languages to assist developing Agent systems. In [4] JADE is

presented in details, thus in this paper we are not going to introduce JADE and focus on building wrapper classes

only.

5. Smartphone

There are many definitions for the meaning of Smartphone but the most convenient shared definition is:

“Smartphone is a device with high level of computation power and large screen” [5].

Smartphones are devices combined both the functionalities of regular phone and other functionalities which

were only implemented on different devices such as the PDA, PC or Laptop. Smartphones significance came

from the operating system (e.g., android from Google and windows mobile from Microsoft); the operating

system provides enough resources to lunch applications that can collect knowledge for the user of the

Smartphone; this imposes the availability to connect information resources such as the internet or information

repositories[5][6]. Smartphones are running the latest versions of web explorers such as Chrome, Firefox,

Internet Explorer and others

6. HTML5 –The New Platform for Developing Software

HTML5 is a co-operation between the World Wide Web Consortium (W3C) and the Web Hypertext

Application Technology Working Group (WHATWG). New technologies have been introduced by HTML5 like

WebSocket and worker Multi-threading; these new technologies are a promising environment for developing

more complex and safer software modules; this is due to the limited access right granted to the web browser

which is the shell under which HTML5 based software modules are executed[7].

Enterprise web applications are tend to use web browser as Thin client; this is where all needed to execute web

applications functionalities are available in the web browser, and what is missing can be added as plugins (e.g.,

flash player). Most of today’s smartphones have web browsers that support HTML5, CSS3 and JavaScript

which represent the only requirement to develop more sophisticated software [7]

7. Google V8 engine and Server Side JavaScript (node.js)

V8 JavaScript engine is an open source JavaScript engine developed by Google in Denmark and shipping with

the Google Chrome browser. V8 adds a virtual JavaScript machine and a special operating system (i.e., Chrome

OS) which runs on x86 machines and Advanced RISC Machines (ARM) [8]. V8 increases performance by

compiling JavaScript to native machine code before executing it, rather than to a bytecode or interpreting it.

Further performance increases were achieved by employing optimization techniques such as inline caching [8,9].

Node.js is an open source toolkit for developing server side applications based on the V8 JavaScript engine.

Node.js is written in C++ which is the same language used to write V8 engine; this brings a lot or correlations

among programs written for server side and client side, anyway, Node.js extends JavaScript API to build web

applications at higher level of scalability and extreme performance due to the non-stop feature [9].

V8 enables C++ applications to expose its own objects and functions to JavaScript where objects are wrapped in

V8 templates. Two types of templates are available: Function template and Object template, and C++ object’s

methods are accessed in an internal field stored within function template instances.[9]

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.6, 2014

57

8. Smart-eService implementation as Mobile Agent (The Proposal)

The proposed system is a collection of software technologies, methodologies and protocols to implement

eService as mobile agent module; this has been a worthful effort to promote the deployment environment

toward introducing smart and later on intelligent behaviors.

We have objectivities to be fulfilled in the proposed system as the following:

1- Implementing eService as smart, social, mobile and autonomous software module.

2- Implementing eService as fully platform independent software module that works on Smartphones,

laptops and other devices that have Chrome or Firefox internet explorer.

3- Implementing eService as on demand utility that can invoked without a need for installation

4- Implementing eService with attributes that grants eService the ability to exploit and develop domain

intelligence

As it has been introduced in previous sections of this paper, web browser has been evolving to be a rich

development environment for software applications; this is especially recognized with the emerging of

HTML5 tags (i.e., Multi-threading, primitive data types); we focused on developing eService as JavaScript

module which is transferred to requested client and launched in the internet explorer. Using JavaScript was

due the promotion of this language to be client side as well server side (i.e., Node.js is a server side

JavaScript environment).

Implementing eService as JavaScript supports the fulfillment of objectivities (2) and (3); this JavaScript

eService is designed to be FIPA-Compliant or in other words, to be compatible with JADE platform as in

figure (2), and this approach supports the fulfillment of objectivities (1) and (4):

Figure 1 : Node.js Architecture

Node Bindings

(socket, http,…,others)

Node Standard Library

JavaScript

C/C++
V

8

Thread

pool

(libeio)

Event

pool

(libev)

DNS

(c-

ares)

crypto

OpenSS

L

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.6, 2014

58

As figure (2) presents, eService is delivered to the requested client and behave as JADE agent; this has

been a challenge due to the need to equip JavaScript eService with a lot of functionalities (i.e., JADE is a

collection of classes used by Agent to accomplish its tasks); these are so hard to be implemented all using only

JavaScript, thus we have implemented it as two components: first one is a light client side JavaScript module

which is to be delivered over the internet to the client and Second one is heavy server side JavaScript module

which is designed and implemented as Node.js module called JADE-Wrapper library, as it is presented in figure

(3)

JADE-Wrapper library also contains many interfaces to JADE utilities (i.e., RMA agent, Sniffing agent and

others)

Node Standard libraries + Agent Framework

Jade- Wrapper library

V8

Figure 3: Node Stack with Proposed Embedded Jade-Wrapper library

MobileAgent(Smart-

Node.j

AgentProxy.j

ava

Firefox,

Chrome

SmartPhon

e

PC/Laptop

Linux Server

(VPS or

Dedicated)

JADE

Request

eService

Provide

eService

Agent Level Virtual Network

Figure 2: Proposed Scheme for Delivering eService as Mobile Agent

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.6, 2014

59

Figure (4) presents the conceptual view to the essential components that compose the proposed system.

JADE Proxy

Agent

Node.js

JADE
Node.js http-

server and

WebSocket

Smart-eService

backend as

Java Agent

HTML5

smart-

HTML5

Smart-

eService

Provides/Requires

ACLMessages

S

Provides/Requi

res

HTT

Async

FIPA/A

S

S

IP
C

/A
sy

n

IP
C

/A
sy

n

S

S

TCP

S S

P P

S

S S

Provides/Requi

res

Provides/Requi

res

Provides/Requi

res

Figure 4: Conceptual View to the Essential Concepts within the Proposed System

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.6, 2014

60

Figure (5) present server side Node.js module with stub code for JADE wrapper:

Figure (5) presents the implementation partial Node.js code JADE wrapper module with the conceptual view.

Figure 5: Conceptual View and its Corresponding Partial code In Node.js

Input: SERVER_IP, SERVER_PORT

var httpServer = require(‘http’);

var net = require('net');

var webSocketServer = require(‘ws’).Server;

var httpInstance = httpServer.createServer(function

(request, response){

// respond to http based requests

var aclHttp = translate(request);

 pushToQueue(aclHttp);

});

httpInstance.listen(SERVER_IP, SERVER_PORT);

var m_wss = new webSocketServer({

Server: httpInstance, port: SERVER_PORT+1 });

wss.on(‘connection’, function(ws) {

 ws.on(‘message’, function(message){

 var aclMessage = translate(message);

 pushToQueue(aclMessage);

});

 If (outgoingQueue != null){

 Ws.send(outgoingQueue.pull());

 }

});

var client = net.connect(1010,'localhost');

while(runFlag){

var tmpAclMessage = pullFromQueue();

client.write(tmpAclMessage.toString());

}

client.end();

HTTP

Server

Web

Socket

Server

Agent

Transporte

r

s

s

s

s

IP
C

/A
sy

n

c

IP
C

/A
sy

n

c

HTTP

TCP/8

Requires

<httpConnection

>

Requires

<WebSocket>

Requires

<ACLMsg>

Provides

<ACLMsg>

Provides

<httpRequest>

Requires

<httpRequest>

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.6, 2014

61

Figure (5) presents partial HTML5 code to load and start Smart-eService

Figure 6: JavaScript to Load and Start Smart-eService as Mobile Agent

HTML5

Smart-eService

logic

HTML5

smart-eService

Loader

TCP/8

HTTP

IP
C

/A
sy

n

c

if ("WebSocket" in window) {

 window.onload = function (){

} else {

 // The browser doesn't support WebSocket

 console.log("WebSocket NOT supported by your

Browser!, you need to update it");

 }}};

onmessage = function (event) {

var ws = new WebSocket("ws://SERVER_IP:1010");

 ws.onopen = function () {

 ws.send("Ready"); // Inform backend

 postMessage("Ready"); // Inform local

javascript

 };

ws.onmessage = function (evt) {

 var received_msg = evt.data;

 postMessage(Translate(msg));

 };

 ws.onclose = function () {

 postMessage("Connection is closed...");

 };

// Invoke and start mobile agent frontend

 var worker = new

Worker('eService_mobile_agent.js');

 var count = 0;

 // Handle agent messages

 worker.onmessage = function (event) {

 proccessAgentEvents(event.data);

 }

 // deliver events to the agent

 worker.postMessage(' _event');

 }

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.6, 2014

62

Algorithm (1) is the backend Java Agent which is designed and implemented using JADE environment

public class AgentProxy extends Agent {

Begin
 Declare RequestQueue as private Queue<String>

 public void setup()

 Begin
 Instantiate RequestQueue as ConcurrentLinkedQueue<String>();

 Instantiate ResponseQueue as ConcurrentLinkedQueue<String>();

 Instantiate TempQueue as ConcurrentLinkedQueue<ACLMessage>();

Object [] receivedArguments = getPassedArguments();

 RequestQueue = (Queue<String>) receivedArguments[0];

 addBehaviour(new CyclicBehaviour()

 Begin

 public void action()

 Begin

 if(reqQueue.size() > 0)

 while(reqQueue.size() >0)

 Begin

 Var mobileAgentMsg = RequestQueue.poll();

 ACLMessage msg = (ACLMessage)

Translate(mobileAgentMsg);

 TempQueue.push(msg);

 End

 End

 End
 addBehaviour(newCyclicBehaviour()

Begin
 Var msg2 = (ACLMessage) TempQueue.poll();

String str = GetResponseAsString(msg2);

ResponseQueue.push(str);

End);
 End);

 End

Algorithm 1: Backend Java Agent Interaction to JavaScript Mobile Agent

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.6, 2014

63

Figure (7) presents a screenshot of starting Node.js module in a Virtual Private Server (VPS) , till this research

Node.js does not have JADE wrapper despite the fact that JADE is a widespread Agent development

environment.

Figure 7: screenshot of console output when calling Server.js

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.6, 2014

64

Figure (8) presents JADE GUI has been started with ProxyAgent and a Mobile Agent instance

Figure 8: JavaScript Mobile Agent Started in Container MobileHost01

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.6, 2014

65

in figure(8) JavaScriptMobileAgent01_Agent is launched due a call from the client side over http connection or

WebSocket connection. Figure (9) presents sniffing utility been deployed to capture ACLMessages exchanged

between ProxyAgent at the backend and the Mobile Agent eService at the frontend.

 Figure (10) presents ACLMessages exchanged between Smart-eService and Java Agent running at the server

side.

A B

Figure 10: ACL Messages exchange between JavaScript Smart-eService and Java

Figure 9:

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.6, 2014

66

9. Conclusion

1- JavaScript running under V8 engine introduces efficient open source development environment

in developing large applications. Along the implementation of the Mobile Agent using JavaScript

language, many JavaScript engines have been tested (i.e., Firefox, Internet Explorer, Safari, Opera), and

V8 Chrome shown recognized performance level.

2- Implementing Smart-eService as JavaScript mobile agent has added significant attributes to the

eService like autonomous, social and other features mentioned in above sections. Embedding intelligent

software terminologies within enterprise web application is expanding the opportunities of having

smarter enterprise software modules.

3- JavaScript is an open source language; this introduces new challenge in implementing eService

using JavaScript where client, with little experience in JavaScript, can hack eService manually or

automatically, in the proposed system we divided the processing into frontend and backend; this

methodology hardens the penetration into the eService.

4- Smart-eService mobility is valid only during the web session, when requester closes the session

Smart-eService shuts down all its behaviors (e.g., interacting the environment, socializing other agents

and mobility); this issue has cons and pros where from a side it increase code safe execution; this due to

the limited authorization of web browser and from another side it affects the availability of the Agent.

5- eService Mobility is guaranteed when implementing Smart-eService using JavaScript language;

this is due to the standard terminologies adopted by all smart devices (Smartphone, Smart PDA, …,

and others) that have updated web browser installed. Smart-eService can be viewed as a web service

that runs on Node.js, and maintain all invocation and deploying standards such as XML (Extensible

Markup Language), SOAP (Simple Object Access Protocol), HTTP (Hyper Text Transfer Protocol)

and WebSocket.

6- Implementing Smart-eService using JavaScript increases the potential of Web application to hold

Intelligent Infrastructure of the next generation of eService, which is the Intelligent-eService

10. References

1- Hossein Bidgoli, “Handbook of Information Security, Key Concepts, Infrastructure, Standards,

and Protocols”, John Wiley & Sons, Inc., USA, 2006, ISBN-13: 978-0-471-64830-7.

2- Roland T. Rust, and P.K. Kannan, “E-Service: New Directions in Theory and Practice”, M.E.,

Sharpe, Inc., USA, 2002, ISBN: 0-7656-0806-5.

3- Art Markman, “ Smart Thinking: Three Essential Keys to Solve Problems, Innovate, and Get

Things Done”, Penguin Group, USA, 2012.

4- Fabio Bellifemine, Giovanni Caire, and Dominic Greenwood,” Developing Multi-Agent Systems

with JADE”, John Wiley & Sons Ltd, USA, 2007, ISBN-13: 978-0-470-05747-6

5- Michael Juntao Yuan, “ Nokia Smartphone Hacks”, O’Reilly Media, Inc., USA, 2005, ISBN: 0-

596-00961-5.

6- John W. Rittinghouse and James F.Ransome, “Cloud Computing: Implementation, Management,

and Security”, Taylor and Francis Group, LLC, USA, 2010, ISBN: 978-1-4398-0680-7

7- Jason Lengstorf and Phil Leggetter, “ Realtime Web Apps: with HTML5 WebSocket, PHP, and

jQuery”,

8- Oswald Campesato and Kevin Nilson, “Web 2.0 Fundamentals: With AJAX, Development

Tools, and Mobile Platforms”, Jones and Bartlett, USA, 2011, ISBN-13: 978-0-7637-7973-3.

9- Pedro Teixeira, “ Professional Node.js: Building Javascript Based Scalable Software”, John

Wiley & Sons, Inc, Indians, USA, 2013, ISBN: 978-1-118-18546-9

The IISTE is a pioneer in the Open-Access hosting service and academic event

management. The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage:

http://www.iiste.org

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting

platform.

Prospective authors of journals can find the submission instruction on the

following page: http://www.iiste.org/journals/ All the journals articles are available

online to the readers all over the world without financial, legal, or technical barriers

other than those inseparable from gaining access to the internet itself. Paper version

of the journals is also available upon request of readers and authors.

MORE RESOURCES

Book publication information: http://www.iiste.org/book/

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open

Archives Harvester, Bielefeld Academic Search Engine, Elektronische

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial

Library , NewJour, Google Scholar

http://www.iiste.org/
http://www.iiste.org/journals/
http://www.iiste.org/book/

