
Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.8, 2014

30

Complete Security Package for USB Thumb Drive

Sinan Adnan Diwan
1,4

, .Dr.Sundresan Perumal
2
, Ammar J.Fatah

3*

1. Wasit University,College of Computer and Mathematics,Computer Science dept. Wasit,Republic of Iraq

2. Limkokwing University of creative technology,information technology department

,cyberjaya,Selangor,Malaysia

3.Science Gate,Virtual Research Center ,System security dept.

4. Limkokwing University of Creative Technology,Information Technology Department,

Cyberjaya,Selangor,Malaysia

Abstract

This paper is devoted to design and implement a complete security platform for USB flash disks due to the

popularity of this device in exchanging data, it is a complete system security solution as it concerns the thumb

drive due to the manipulation of I/O operation not the file system. USB flash disks have been the major threat

for computer system beside the internet threats where viruses can spread from computer to computer or from

computer to network.

USB complete security system presented by this paper is composed of three essential elements: kernel filter

driver which will be installed in USB device driver stack to intercept all exchanged packets and send it to

encryption unit, kernel level encryption/decryption unit and configuration unit.

In contrary to most USB security modules the system presented by this paper will store only the round

number of the key generator with the encrypted data. Round number will be coded using MD5 algorithm to

increase the immunity of attacking data stored in the flash disks.

Keywords: USB protection, kernel driver, device stack, encryption/decryption, filter driver, MD5.

1. Introduction

USB memory sticks can be found almost everywhere. Today, they can be seen as the replacement for

floppy-disks, ZIP-drives and all that kind of media. A USB device is indeed a useful, economical way to transfer

data. In fact, according to Gartner IT research and advisory company, there were roughly 222 million USB

devices shipped in 2009. However, a recent study shows that though USB devices are a convenient means of

transferring information, they can also serve as channels to transmit potential threats.[1]

Sunnyvale (California, US) based security firm, Narus Inc. recently listed the 10 "cyber threat trends" for

2011 and beyond, claiming that as attacks through USB becomes inexpensive and data is circulated through

them at various public and private locations, the probability of computer Trojans and other malicious software is

increasing.[2]

According to Panda’s report, 25% of worm based malware spreads through the USB drives. Even more,

most of viruses are designed to spread via USB drives. Security Company confirms that cybercriminals are very

persistent and put a lot of efforts to make user’s life impossible.[3]

25% of latest created malware are configured to enter the system through portable storage devices, usually

USB drives.

Luis Corrons, the technical director of PandaLabs, the research arm of Panda Security comments: „Much of

the malware in circulation has been designed to distribute through these devices. Not only does it copy itself to

these gadgets, but it also runs automatically when a USB device is connected to a computer, infecting the system

practically transparently to the user.“ [2]

A recent Panda survey has shown that 27% attacks of worm based malware discovered last year used USB

hardware to get in. Corrons warns about the real threat to smartphones, cameras and music players. “All these

devices have memory cards or internal memories and therefore it is very easy for a cell phone to be carrying a

virus.[4,3]

Kaspersky Lab warns of a new type of malicious program, which currently gives up virus experts still riddle

the Stuxnet Trojan. Alex Gostev, Virenanalyst bei Kaspersky Lab, nimmt in drei Blogbeiträgen die neue

Windows-Zero-Day-Lücke genauer unter die Lupe. Alex Gostev, virus analyst at Kaspersky Lab, takes in three

blog posts, the new Windows zero-day vulnerability more closely. [5]

Der Trojaner Stuxnet, von Kaspersky Lab als Trojan-Dropper.Win32.Stuxnet identifiziert, infiziert USB-

Sticks mittels Lnk-Dateien und verbreitet sich anschließend durch die mobilen Datenträger über die Autorun-

Funktion von Windows. The Trojan Stuxnet, Kaspersky Lab as Trojan-Dropper.Win32.Stuxnet identified from

infected USB sticks by Link files and then spread through the mobile devices through the auto-run feature of

Windows.[7]

http://www.iiste.org/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.8, 2014

31

2. Windows Architecture and Device Stack

Windows NT allows several driver layers to exist between an application and a piece of hardware. Thus

drivers are grouped together in stacks that work together to completely process a request targeted at a particular

device object.[5] The operating system uses a data structure known as an I/O Request Packet (IRP), to

communicate with a kernel-mode device driver as it is presented in figure (1).[5]

Windows NT uses a layered driver model, starting in Bus driver tile it ends in upper filter driver, to

process I/O Requests Packet. In this model, drivers are organized into stacks. Each driver in a stack is

responsible for processing the part of the request that it can handle, if any. If the request cannot be completed,

information for the lower driver in the stack is set up and the request is passed along to that driver.[2,5]

This layered driver model allows functionality to be dynamically added to a driver stack. It also allows

each driver to specialize in a particular type of function and decouples it from having to know about other

drivers.[2,5]

In the windows Driver Model, each hardware device has at least two device drivers. One of these

drivers, which is the function driver (FDO), is which it appears to be thought as the device driver; it understands

all the details about how to make the hardware work. It’s responsible for initiating I/O operations, for handling

the interrupts what occur when those operations finish, and for providing a way for the end user to exercise any

control over the device that might be appropriate. [1,4,5]

2.1 Functional driver

Function driver, this type of drivers can be either class or mini drivers, but they always act as an interface

between abstract I/O request and the low-level physical driver code, function driver knows how to interpret all

requested operations from the application level and upper drivers in the device stack, and without this driver the

physical device can't even operate normally. [5,6,7]

2.2 Filter Drivers

A Filter Driver is a special type of layered driver. What sets a filter driver apart from the layered driver is

that it is invisible. They attach themselves to any other driver and intercept requests directed at the lower driver's

Device objects. It is developed primarily to allow the addition of new functionality beyond what is currently

available. The filter driver may either use the services of the original target of the I/O request, or use the services

of other kernel-mode drivers to provide value-added functionality.[4,5,8]

Filter drivers are divided into two classes, upper and lower class filters, what is above the function driver is

upper driver while what is below the function driver is lower driver. Upper filter drivers see IRPs before the

function driver, and they have the chance to support additional features that the function driver doesn’t know

about. Lower filter drivers see IRPs that the function driver is trying to send to the bus driver. [5]

IRP

Upper filter driver

Function driver

Lower filter driver

Bus driver

FiDO

FDO

FiDO

PDO

Figure 1 : Layering of device objects & drivers in the Windows Driver Model

http://www.iiste.org/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.8, 2014

32

Figure (2) shows the life cycle of a communication session between user mode windows application

and the hardware level device. The IRP constructed by the I/O manager will encapsulated both requested

operation (i.e., READ, WRITE) and the data to be sent to the device. [5]

Filter driver will intercept all IRPs exchanged between windows application and the hardware device

and it is up to the designer to decide either to manipulate the data within the IRP or just sent down the stack [3,5]

Figure (3) shows how filter driver will direct all IRPs passed through to a special handling function (for

example DispatchAny), this handling function will receive all IRPs sent by the application and the operating

system to the hardware device (for example USB device).

Applications

Win32
subsystem

I/Q Manager
Class Upper Filter

Hardware abstraction

layer

Hardware

Dispatch routine IRP passed to

driver

Device
divers

Device lower filter

Device Upper Filter

Function drivers

Class Lower Filter

Win32 API calls

User mode

Kernel mode

Figure 2 : Shows the communication scheme between the application and the

hardware

Hal Calls

http://www.iiste.org/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.8, 2014

33

Figure (4) shows a kernel level code segment that represents the filter driver handler function where all

IRPs end to. It is the filter driver handler function to decide what to do with the received IRPs, it could be any

processing (encryption/decryption, compression, or any other added functionality). Writing filter driver in the

first place to modify the behavior of a device in some way. Therefore, it should have a dispatch functions that do

something with some of the IRPs that are directed this way. Normally not all IRP types are to be processed so,

many are to be passed down the stack.[1,3,5]

extern "C"

NTSTATUS DriverEntry (PDRIVER_OBJECT DriverObject

 Punicode_STRING RegistryPath)

 {

 Int i;

 DriverObject->DriverExtension->AddDevice=Add

 for (i= 0; i < arraysize (DriverObject->MajorFunction) ; ++i)

 DriverObject->MajorFunction[i]= DispatchAnv;

DriverObject-> MajorFunction [IRP_MJ_POWER] = DispatchPower;

DriverObject->MajorFunction [IRP_MJ_POWER]= DispatchPnp;

Return STATUS_SUCCESS;

}

Figure 3: Shows code segment responsible of intercepting and directing IRP traffic

Intercept ALL

IRPs traffic sent

across device

driver stack and

send it to

DispatchAny

routine

http://www.iiste.org/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.8, 2014

34

Figure (4) shows DispatchAny() function created to receive all IRPs moving down the stack, it is up to

the programmer to pass it down or to reject it as a filteration process.

3. The Proposed USB complete protection model

The core idea in this paper is to secure both the USB device and the data stored in that device due to

manipulation of power and PNP packets, where the entire communication sessions established between USB

plug and play devices and the computer system are monitored and secured by specially designed filter driver.

The security model presented by this paper is not to secure sensitive data stored in a USB device as an

isolated offline procedure, in other words data would not be manipulated at the file system level due to the

complications of the file system auditing capabilities which are crucially required at this level.

Secure device driving is the ultimate objective of the model presented in this work, where USB devices'

traffic is to be manipulated at the packet level before even assembling data file. Windows I/O manager

communicates to the mounted hardware devices through its corresponding installed drivers (i.e., provided by the

hardware manufacturer). It is the responsibility of the drivers to do the real communication with the hardware

while I/O manager responsibility is only to relay IRPs to/from user level applications and device driver stack

(i.e., device stack layered device drivers in a sequential manner).

The work introduced by this paper is composed of many software modules to grant developers the

ability to develop each component separately, the main components are:

1- USB lower filter driver : to capture USB traffic

2- Kernel level Encryption Unit: to encrypt/decrypt USB traffic

Configuration unit: to configure the encryption algorithm and interact with kernel module.

.

http://www.iiste.org/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.8, 2014

35

USB protection model presented in this paper is using symmetrical stream cipher algorithm using system of

three linear shift registers (LFSR) as figure (6) shows.

The proposed package is upgradable in term of the ability to change the encryption algorithm due to the isolation

of operation module and the encryption module.

At each encryption session the round of the key-generator will be registered and saved with the encrypted data in

the USB device. This round number could be very useful for the attacker in his/her way to compromise the

encryption algorithm, so, this paper also has deployed a security software to encode the round number before

saving it with the encrypted data. It is the MD5 module that has been deployed as the figure (7) shows.

Figure 6: shows the key generator used by USB protection system

http://www.iiste.org/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.8, 2014

36

4. USB File Filter Driver

A file system filter driver is a kernel driver that has the same architecture and components of all kernel

drivers, the only difference is the processing components where filter driver adds value to or modifies the

behavior of a file system which is represented by stream of packets moving up and down the device stack. A file

system filter driver is a kernel-mode component that runs as part of the Microsoft Windows NT executive.

indows operating systems treat all devices as a file to which write/read operations can be conducted. So, the file

system filter driver can filter I/O operations for one or more

http://www.iiste.org/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.8, 2014

37

file systems or file system devices. Depending on the nature of the driver, filter can mean

log, observe, modify, encrypt/decrypt, compress/decompress, or even prevent. Typical applications for file

system filter drivers include antivirus utilities, encryption programs, and hierarchical storage management

systems.

In this paper filter driver will be used to add security to the file system by encrypting file system send

by applications which is encapsulated as stream of IRPs sent by I/O manager.

5. Discussion

All hardware devices visibility is done through the device driver, without a driver it is impossible to

communicate the device. In windows many kernels are contacting the device for example I/O manager, PNP

manager and Power manager each of which has its own packet and interpretation, the common thing among

those kernels is their packets have to pass through device driver, so, any manipulation to entire traffic of IRPs

would not affect only the file system or power manipulation but it will affect all system behavior.

The generated information of flash disk will have a great immunity against wide range of viruses due to the

fact that viruses have to interpret data before attacking it, otherwise viruses will not be activated, this is the style

used be Trojan viruses and other kind.

As it concerns the spyware it has embed itself into the device stack at the authorized machine, and this issue

has been resolved by many tapping proof security modules in windows 7. For the flash disk loaded with data

generated by this system, the spyware has nothing to get on any other machines because the flash disk can't be

read, so, how can the spyware intervene data exchanged with the un authorized system.

6. Conclusions

1- USB devices can be manipulated easily by filter driver without being noticed by traditional anti-virus, this

paper has installed USB filter drive and has manipulated the traffic exchanged with the USB device without

even a notice from the anti-virus installed on the test machine.

2- USB security system can be guaranteed for the USB device when an attacker tries to get the information on a

different machine, so this model presented by this paper can secure the USB device mobility but it can't

protect it from other intrusion techniques on the same machine like installing upper level filter driver where

information can be captured easily.

7. References

1- Krs: http://www.krs.ca/2011/01/17/malware-virus-now-targets-usb-devices/

2- Sunny: Sunnyvale (California, US) based security firm, threat report, Narus Inc. 2011

3- Microsoft Division, “Microsoft Windows 2000 Driver Design Guide”, Microsoft press,2000

4- Kasper001: www.kaspersky.com/de/news?id=207566365

5- Art Baker and Jerry Lozano, “The Windows 2000 Device Driver Book”, second edition , prentice-Hall, 2001

6- Andrew S. Tanenbaum, “Modern Operating Systems”, second edition , prentice-Hall 2001.

7- Charis Cant, “writing Windows WDM device drivers”, Berkeley, 1999

8- Walter Oney, “Programming the Microsoft Windows Driver Moderl”, second edition ,2003

http://www.iiste.org/

The IISTE is a pioneer in the Open-Access hosting service and academic event

management. The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage:

http://www.iiste.org

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting

platform.

Prospective authors of journals can find the submission instruction on the

following page: http://www.iiste.org/journals/ All the journals articles are available

online to the readers all over the world without financial, legal, or technical barriers

other than those inseparable from gaining access to the internet itself. Paper version

of the journals is also available upon request of readers and authors.

MORE RESOURCES

Book publication information: http://www.iiste.org/book/

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open

Archives Harvester, Bielefeld Academic Search Engine, Elektronische

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial

Library , NewJour, Google Scholar

http://www.iiste.org/
http://www.iiste.org/journals/
http://www.iiste.org/book/

