Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) Ly
Vol 3, No.4, 2012 ST

Dynamic I nstruction Scheduling For Microprocessors Having
Out Of Order Execution

Suresh Kumar, Vishal Guptavivek Kumar Tamta
Department of Computer Science, G. B. Pant Enging&ollege, Pauri, Uttarakhand, INDIA
* E-mail of the corresponding authatishalgupta87 @gmail.com

Abstract

Dynamic Instruction Scheduling is very much neeftediast working of multiprocessor and reduction of
overhead by the processor. The Instruction scheglidigic mainly depends on associative searchirtgef
entries to the dynamic wakeup instructions for éxecution. We also describes the scheduler concept
which also the concern for scalability and comglexif the multiprocessor. We have different Dynamic
Instruction Scheduling Logic highlighting the oljees, goals, advantages and challenges facinggluri
scheduling logic like energy issues and compleisisyies as well as full description of dynamic instion
Scheduling logic. In this paper, we will be presehin a comprehensive analysis to reschedule the
execution order of instructions for improve thefpenance of microprocessor.

Keywords: Dynamic Instruction Scheduling, Instruction Groupitssue Queue.

1. Introduction

General purpose microprocessors usually apply soplr and out-of-order execution. These
microprocessors should dynamically extract instamctlevel parallelism (ILP) for high performance
because they are required to execute various tgpgsograms efficiently and must also have to run a
number of legacy binary codes. However, dynamitrucsion scheduling logic for out-of-order executio
has a serious problem in that it consumes a sggmifiamount of energy due to the complicated naifire
its hardware logic. We propose a micro architettigehnique and hardware implementation to redbee t
complexity and energy consumption of dynamic irdian scheduling logic by grouping instructions
together in the instruction queue. The concepthef proposed method is to group several instructions
together and let the dynamic instruction schedulimgc treats them as a single instruction. Thusuging
should be performed in the dispatch stage whemuictsbns are written into the instruction queuethe
present paper, we propose the grouping of twounstns by using dependence information. If isswing
instruction is the only requirement for starting thther instruction, this pair will be grouped ttge. By
treating the grouped instructions as a single uesion, dynamic instruction scheduling logic became
capable of holding and issuing a greater numbensifuctions without increasing the size or numbker
ports of the instruction queue or the selectiondog

2. Logic behind Scheduling

This shows the conventional dynamic instructionesithing logic of a four-way out-of-order superscala
processor. The right hand side of the figure shilvesnstruction queue, and the blue line indicatsimgle
entry, which is composed of the CAM logic for tagtehing and the payload RAM (op codes, physical
register number, offsets, etc.). The left-hand sti@ws the selection logic.

The instruction queue has four read and write portslispatch and issue, respectively, and thectete
logic has the ability to select four instructiores gycle.

3. Proposed Technique
The objective of this study is to reduce the comxipfeand energy consumption of dynamic instruction

10

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) Ly
Vol 3, No.4, 2012 ST

scheduling. We propose the grouping of severalriogbns together in order to reduce the required
hardware of dynamic instruction scheduling.

A. Grouping Condition

By grouping two instructions, waking up, selectiregnd issuing only the first instruction leads te th
issuing of both instructions because the secortduictson should be issued in the cycle following first
instruction. We decided to group a single latenpgration for the first instruction because this can
simplify the logic and the hardware used to suppuetproposed technique, which is described ini@ect
C. The candidate of grouping, the latency of whiglsingle cycle, is an integer ALU operation. We ar
required to implement the proposed technique irirteuction queue, in which the integer instructi@re
dispatched. The details of hardware implementatiothe proposed dynamic instruction schedulingdogi
are described in Section C. Instruction pairs, Widte candidates of the proposed grouping techpizare
be classified into the following two types.

[1] The issuing of one instruction is the only rémument for issuing the other instruction.
[l] Both instructions can be issued in the sameey

We first discuss about Type [l], which consiststeb different types of pairs, each of which will be
explained using an example.

Instruction A: add r5— r3, r2
Instruction B: add r4—r5, R 1)

We can see that right operand of Instruction Beiady, and the left operand r5 is the destination of
Instruction A. Therefore, only the condition ofugsg Instruction A enables Instruction B to be &$un
the next cycle.

The pair of instructions below also belongs to Tilpe
Instruction A : add r5—r3, r2
Instruction B : add r4— r5, r3 (2)

The left operand of Instruction B is the destinatiaf Instruction A and is the same as Example (1).
Furthermore, the right operand r3 of Instructiois Bhe left operand of Instruction A, so if Insttion A is
ready for issue, r3 is also ready. For this reatiumabove instructions can be grouped togethen #w
case of Example (1). Next, we describe Type [IReTinstructions of Example (3), given below, ar¢hbo
ready for issue, because both the left and rigktanmls are ready. Since both instructions are rebdy
can be grouped, although there are no data depeeddretween these two instructions. In this ctiee,
previous instruction in program order is issuedstfirwhen grouping is not performed, these two
instructions might be able to be executed in tmeesaycle. Therefore, the second instruction wilidseied
one cycle later and may cause performance degoadatiowever, in the proposed technique, it is
important to obtain a high throughput by groupirgyraany instructions as possible. Moreover, ready
instructions usually stay in the instruction quéereonly a short time, and most of these instruiare not
critical to the performance. Thus, even if the secimstruction is issued one cycle later, theralisost no
performance degradation. Therefore, we group rémstyuctions. Although more patterns that belong to
the above two types exist, we decided to group time types of pairs described above.

Instruction A : add rk- R, R
Instruction B : add r2- R, R 3)
B. Improved Implementation

We resolve the low flexibility of the dispatch stagwvhich is a fundamental problem of the dynamic
instruction scheduling of Figure 1.

4. Experimental Setup

11

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) Ly
Vol 3, No.4, 2012 ST

We used the Simple Scalar Tool Set as the basdatioruenvironment. We extended Simple Scalar so
that the proposed microarchitecture was evaludted.estimating the energy consumption, we used the
Wattch extension. We used all of the programs ef $’PEC CPU2000 integer benchmark suite. The
programs were compiled by the DEC C compiler foph# AXP instruction set architecture (ISA). We
fast-forwarded two billion instructions and simaldt200 million instructions for all of the evaludte
programs.

Table 1 shows the processor configuration assumptised for the evaluation. In order to group ssver
instructions, we assumed an integer-load/store equBoth the integer and load/store instructions are
dispatched to this queue. By this assumption, wegtaup not only two integer ALU operations, biugaal
the integer ALU operation for the first instructiand a load instruction for the second instructiime size

of the integer-load/store queue was varied througti® evaluation from 16 to 128. We ignored thergn
consumption of the additional hardware as neglgibl

5. Result
A. Performance

As seen from the figure 3, the IPC degrades gradaal the instruction queue size decreases. This is
because the number of instructions to execute iiallphin order to exploit ILP is limited by thedk of
free entry of the instruction queue.

B. Energy Consumption

The proposed technique saves energy due to theeddastructions to select and issue, which sirngslif
the instruction scheduling logic. Figure 4 prese¢hesaverage energy savings of the instructiondudirey
logic of FULL (denotes new proposed logic). In 48f¢ FULL, the energy saving was 56%, 7%, 52%, and
58% for dispatch, wake-up, select, and issue, oitisqedy, compared to the conventional dynamic
instruction scheduling logic. Except for the wakesaiage, the reduction in energy consumption gelan

the case that energy consumption of the wake-ge ssadominant; we should consider halving the neimb
of entries of the proposed implementation in otdeeduce the energy consumption of the wake-ujzlog

7. Conclusion

In the present work, we introduced a dynamic irdtom scheduling concept that groups several
instructions. The proposed technique enables thgic Ito hold and issue more instructions without
increasing the size or number of ports and enasgguemption is also reduced by grouping the instrast

References

T. M. Austin, E. Larson, and D. Ernst. Simple scakn infrastructure for computer system modeling.
IEEE Computer, 35(2):59-67, 2002.

Hiroshi Sasaki, Masaaki Kondo and Hiroshi Nakami@ergy-Efficient Dynamic Instruction scheduling

logic through instruction grouping. IEEE Transant@mn VLS| Systems, Vol. 17, No. 6, 2009

A. Buyuktosunoglu, T. Karkhanis, D. H. Albonesi,daR. Bose. Energy efficient co-adaptive instruction
fetch and issue. In ISCA, pp. 147-156, 2003.

R. Canal and A. Gonzalez. Reducing the complefitye issue logic. In ICS, pp. 312-320, 2001.

D. Folegnani and A. Gonz alez. Energy-effectiveigstogic. In ISCA, pp. 230-239, 2001.

P. Michaud and A. Seznec. Data-flow prescheduling large instruction windows in out-of-order

12

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) pLLy
Vol 3, No.4, 2012 ST

processors. In HPCA, pp. 27-36, 2001.

J. J. Sharkey and D. V. Ponomarev. Efficient irttamn schedulers for smt processors. In HPCA, 2006.

J. J. Sharkey, D. V. Ponomarev, K. Ghose, and @inEmstruction packing: reducing power and deddy
the dynamic scheduling logic. In ISLPED, pp. 30-2805.

S. A. Taylor, M. Quinn, D. Brown, N. Dohm, S. Hilblandt, J. Huggins, and C. Ramey. Functional
verification of a multiple-issue, out-of-order, supcalar alpha processor - the dec alpha 21264
microprocessor. In DAC, pp. 638—-643, 1998.

Instruction queune

-E,:, CAM Payload
:_C:’ Entry 1
o n
= ry
a
[a7]
(73]
YY v ¥

Figure 1: Conventional dynamic scheduling

Instruction quene

¥V
g |
B0 CAM Payloadl Payload 2
_E [
= Entry 1
a
[21]
(73]
Y ¥
"2 " "

Figure 2: Showing grouping of Instructions

13

Computer Engineering and Intelligent Systems
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.4, 2012

7T L3
I I
| 11,25 ol b
I I ’/7;..1-—-
I I
1.2
| I
I = 1L15
I m | "f
: g1 —+— Normal
o
: E :1.1]5 —i— New
1 i
I 1 T T T T
20 40 &0 a0 100
_______________________ .
| Numbers of Entry — |
1 I
Figure 3: Average IPC
100
80 7 P m Dispatch
&0 7 = Wakeup
40 1 Select
- m [s=sue
20
o - T
48 Vs 48

Figure 4: Average Energy of FULL

Fetch & Decode width

4

Branch prediction

Combined bimodal (4K-
entry) gshare (4K-entry),
selector(4K-entry)

BTB 1,024 sets, four-way
Mis-prediction penalty three cycles

Reorder buffer size 96

Memory latency 100 cycles

Bus width 16B

Bus clock 1/4 of processor the core

Instruction queue size
- floating-point

32

Commit Width

4

Table 1: Processor configuration

14

www.iiste.org

gLy

(13

This academic article was published by The International Institute for Science,
Technology and Education (IISTE). The IISTE is a pioneer in the Open Access
Publishing service based in the U.S. and Europe. The aim of the institute is
Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage:
http://www.iiste.org

The 1ISTE is currently hosting more than 30 peer-reviewed academic journals and
collaborating with academic institutions around the world. Prospective authors of
IISTE journals can find the submission instruction on the following page:
http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified
submissions in a fast manner. All the journals articles are available online to the
readers all over the world without financial, legal, or technical barriers other than
those inseparable from gaining access to the internet itself. Printed version of the
journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalITOCS, PKP Open
Archives Harvester, Bielefeld Academic Search Engine, Elektronische
Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial
Library , NewJour, Google Scholar

m EB O INDEX (\@‘ COPERNICUS
I N T E RN A TTITIT ON AL

INFORMATION SERVICES
ULRICHSWES, JournalTOCs @

N A ;
. E'z B Elektronische
lBAS(E T— Q0@ Zeitschriftenbibliothek O

open
>)
OCLC v)

The world’s libraries. — U cDigitalLibrary —
Connected. WorldCat e

Ny

'- ¥
GEORGETOWN UNIVERSITY
LIBRARY

http://www.iiste.org/
http://www.iiste.org/Journals/

