
Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 3, No.4, 2012

10

Dynamic Instruction Scheduling For Microprocessors Having
Out Of Order Execution

Suresh Kumar, Vishal Gupta*, Vivek Kumar Tamta

Department of Computer Science, G. B. Pant Engineering College, Pauri, Uttarakhand, INDIA

* E-mail of the corresponding author: vishalgupta87@gmail.com

Abstract
Dynamic Instruction Scheduling is very much needed for fast working of multiprocessor and reduction of
overhead by the processor. The Instruction scheduling logic mainly depends on associative searching of the
entries to the dynamic wakeup instructions for the execution. We also describes the scheduler concept
which also the concern for scalability and complexity of the multiprocessor. We have different Dynamic
Instruction Scheduling Logic highlighting the objectives, goals, advantages and challenges facing during
scheduling logic like energy issues and complexity issues as well as full description of dynamic instruction
Scheduling logic. In this paper, we will be presented in a comprehensive analysis to reschedule the
execution order of instructions for improve the performance of microprocessor.
Keywords: Dynamic Instruction Scheduling, Instruction Grouping, Issue Queue.

1. Introduction
General purpose microprocessors usually apply superscalar and out-of-order execution. These
microprocessors should dynamically extract instruction level parallelism (ILP) for high performance
because they are required to execute various types of programs efficiently and must also have to run a
number of legacy binary codes. However, dynamic instruction scheduling logic for out-of-order execution
has a serious problem in that it consumes a significant amount of energy due to the complicated nature of
its hardware logic. We propose a micro architectural technique and hardware implementation to reduce the
complexity and energy consumption of dynamic instruction scheduling logic by grouping instructions
together in the instruction queue. The concept of the proposed method is to group several instructions
together and let the dynamic instruction scheduling logic treats them as a single instruction. Thus, grouping
should be performed in the dispatch stage when instructions are written into the instruction queue. In the
present paper, we propose the grouping of two instructions by using dependence information. If issuing one
instruction is the only requirement for starting the other instruction, this pair will be grouped together. By
treating the grouped instructions as a single instruction, dynamic instruction scheduling logic becomes
capable of holding and issuing a greater number of instructions without increasing the size or number of
ports of the instruction queue or the selection logic.

2. Logic behind Scheduling

This shows the conventional dynamic instruction scheduling logic of a four-way out-of-order superscalar
processor. The right hand side of the figure shows the instruction queue, and the blue line indicates a single
entry, which is composed of the CAM logic for tag matching and the payload RAM (op codes, physical
register number, offsets, etc.). The left-hand side shows the selection logic.

The instruction queue has four read and write ports for dispatch and issue, respectively, and the selection
logic has the ability to select four instructions per cycle.

3. Proposed Technique

The objective of this study is to reduce the complexity and energy consumption of dynamic instruction

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 3, No.4, 2012

11

scheduling. We propose the grouping of several instructions together in order to reduce the required
hardware of dynamic instruction scheduling.

A. Grouping Condition

By grouping two instructions, waking up, selecting, and issuing only the first instruction leads to the
issuing of both instructions because the second instruction should be issued in the cycle following the first
instruction. We decided to group a single latency operation for the first instruction because this can
simplify the logic and the hardware used to support the proposed technique, which is described in Section
C. The candidate of grouping, the latency of which is single cycle, is an integer ALU operation. We are
required to implement the proposed technique in the instruction queue, in which the integer instructions are
dispatched. The details of hardware implementation of the proposed dynamic instruction scheduling logic
are described in Section C. Instruction pairs, which are candidates of the proposed grouping technique, can
be classified into the following two types.

[I] The issuing of one instruction is the only requirement for issuing the other instruction.

[II] Both instructions can be issued in the same cycle.

We first discuss about Type [I], which consists of two different types of pairs, each of which will be
explained using an example.

Instruction A: add r5 ← r3, r2

Instruction B: add r4 ← r5, R (1)

We can see that right operand of Instruction B is ready, and the left operand r5 is the destination of
Instruction A. Therefore, only the condition of issuing Instruction A enables Instruction B to be issued in
the next cycle.

The pair of instructions below also belongs to Type [I].

Instruction A : add r5 ← r3, r2

Instruction B : add r4 ← r5, r3 (2)

The left operand of Instruction B is the destination of Instruction A and is the same as Example (1).
Furthermore, the right operand r3 of Instruction B is the left operand of Instruction A, so if Instruction A is
ready for issue, r3 is also ready. For this reason, the above instructions can be grouped together, as in the
case of Example (1). Next, we describe Type [II]. The instructions of Example (3), given below, are both
ready for issue, because both the left and right operands are ready. Since both instructions are ready, they
can be grouped, although there are no data dependencies between these two instructions. In this case, the
previous instruction in program order is issued first. When grouping is not performed, these two
instructions might be able to be executed in the same cycle. Therefore, the second instruction will be issued
one cycle later and may cause performance degradation. However, in the proposed technique, it is
important to obtain a high throughput by grouping as many instructions as possible. Moreover, ready
instructions usually stay in the instruction queue for only a short time, and most of these instructions are not
critical to the performance. Thus, even if the second instruction is issued one cycle later, there is almost no
performance degradation. Therefore, we group ready instructions. Although more patterns that belong to
the above two types exist, we decided to group only three types of pairs described above.

Instruction A : add r1 ← R, R

Instruction B : add r2 ← R, R (3)

B. Improved Implementation

We resolve the low flexibility of the dispatch stage, which is a fundamental problem of the dynamic
instruction scheduling of Figure 1.

4. Experimental Setup

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 3, No.4, 2012

12

We used the Simple Scalar Tool Set as the base simulation environment. We extended Simple Scalar so
that the proposed microarchitecture was evaluated. For estimating the energy consumption, we used the
Wattch extension. We used all of the programs of the SPEC CPU2000 integer benchmark suite. The
programs were compiled by the DEC C compiler for Alpha AXP instruction set architecture (ISA). We
fast-forwarded two billion instructions and simulated 200 million instructions for all of the evaluated
programs.

Table 1 shows the processor configuration assumptions used for the evaluation. In order to group several
instructions, we assumed an integer-load/store queue. Both the integer and load/store instructions are
dispatched to this queue. By this assumption, we can group not only two integer ALU operations, but also
the integer ALU operation for the first instruction and a load instruction for the second instruction. The size
of the integer-load/store queue was varied throughout the evaluation from 16 to 128. We ignored the energy
consumption of the additional hardware as negligible.

5. Result

A. Performance

As seen from the figure 3, the IPC degrades gradually as the instruction queue size decreases. This is
because the number of instructions to execute in parallel in order to exploit ILP is limited by the lack of
free entry of the instruction queue.

B. Energy Consumption

The proposed technique saves energy due to the reduced instructions to select and issue, which simplifies
the instruction scheduling logic. Figure 4 presents the average energy savings of the instruction scheduling
logic of FULL (denotes new proposed logic). In 48-entry FULL, the energy saving was 56%, 7%, 52%, and
58% for dispatch, wake-up, select, and issue, respectively, compared to the conventional dynamic
instruction scheduling logic. Except for the wake-up stage, the reduction in energy consumption is large. In
the case that energy consumption of the wake-up stage is dominant; we should consider halving the number
of entries of the proposed implementation in order to reduce the energy consumption of the wake-up logic.

7. Conclusion

In the present work, we introduced a dynamic instruction scheduling concept that groups several
instructions. The proposed technique enables that logic to hold and issue more instructions without
increasing the size or number of ports and energy consumption is also reduced by grouping the instructions.

References

T. M. Austin, E. Larson, and D. Ernst. Simple scalar: An infrastructure for computer system modeling.

IEEE Computer, 35(2):59–67, 2002.

Hiroshi Sasaki, Masaaki Kondo and Hiroshi Nakamura. Energy-Efficient Dynamic Instruction scheduling

logic through instruction grouping. IEEE Transactions on VLSI Systems, Vol. 17, No. 6, 2009

A. Buyuktosunoglu, T. Karkhanis, D. H. Albonesi, and P. Bose. Energy efficient co-adaptive instruction

fetch and issue. In ISCA, pp. 147–156, 2003.

R. Canal and A. Gonz´alez. Reducing the complexity of the issue logic. In ICS, pp. 312–320, 2001.

D. Folegnani and A. Gonz´alez. Energy-effective issue logic. In ISCA, pp. 230–239, 2001.

P. Michaud and A. Seznec. Data-flow prescheduling for large instruction windows in out-of-order

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 3, No.4, 2012

13

processors. In HPCA, pp. 27–36, 2001.

J. J. Sharkey and D. V. Ponomarev. Efficient instruction schedulers for smt processors. In HPCA, 2006.

J. J. Sharkey, D. V. Ponomarev, K. Ghose, and O. Ergin. Instruction packing: reducing power and delay of

the dynamic scheduling logic. In ISLPED, pp. 30–35, 2005.

S. A. Taylor, M. Quinn, D. Brown, N. Dohm, S. Hildebrandt, J. Huggins, and C. Ramey. Functional

verification of a multiple-issue, out-of-order, superscalar alpha processor - the dec alpha 21264

microprocessor. In DAC, pp. 638–643, 1998.

Figure 1: Conventional dynamic scheduling

Figure 2: Showing grouping of Instructions

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 3, No.4, 2012

14

Figure 3: Average IPC

Figure 4: Average Energy of FULL

Fetch & Decode width 4
Branch prediction Combined bimodal (4K-

entry) gshare (4K-entry),
selector(4K-entry)

BTB 1,024 sets, four-way
Mis-prediction penalty three cycles
Reorder buffer size 96
Memory latency 100 cycles
Bus width 16B
Bus clock 1/4 of processor the core
Instruction queue size
- floating-point

32

Commit Width 4

Table 1: Processor configuration

This academic article was published by The International Institute for Science,

Technology and Education (IISTE). The IISTE is a pioneer in the Open Access

Publishing service based in the U.S. and Europe. The aim of the institute is

Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage:

http://www.iiste.org

The IISTE is currently hosting more than 30 peer-reviewed academic journals and

collaborating with academic institutions around the world. Prospective authors of

IISTE journals can find the submission instruction on the following page:

http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified

submissions in a fast manner. All the journals articles are available online to the

readers all over the world without financial, legal, or technical barriers other than

those inseparable from gaining access to the internet itself. Printed version of the

journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open

Archives Harvester, Bielefeld Academic Search Engine, Elektronische

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial

Library , NewJour, Google Scholar

http://www.iiste.org/
http://www.iiste.org/Journals/

