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Abstract 

The FP-tree algorithm is currently one of the fastest approaches to frequent item set mining. Studies have also 

shown that pattern-growth method is one of the most efficient methods for frequent pattern mining. It is based on 

a prefix tree representation of the given database of transactions (FP-tree) and can save substantial amounts of 

memory for storing the database. The basic idea of the FP-growth algorithm can be described as a recursive 

elimination scheme which is usually achieved in the preprocessing step by deleting all items from the 

transactions that are not frequent. In this study, a simple framework for mining frequent pattern is presented with 

FP-tree structure which is an extended prefix-tree structure for mining frequent pattern without candidate 

generation, and less cost for better understanding of the concept for inexperienced data analysts and other 

organizations interested in association rule mining. 
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1. Introduction 

Data mining is the process of discovering interesting knowledge from large amounts of data stored in databases, 

data warehouses, or other information repositories. Data mining is an emerging field that has gained attention in 

research and industry and has recently also attracted considerable attention from database practitioners, 

researchers and data analysts. It has application in many fields such as marketing, financial forecasts and 

decision support (Jiawei, Micheline, and Jian, 2011). Data-mining algorithms and visualization tools are being 

used to find important patterns in data and to create useful forecasts. This technology is being applied in virtually 

all business sections including banking, telecommunication, manufacturing, marketing, and e-commerce (Zhao 

Hui and Jamie, 2005).  

 

In performing data mining tasks such as association, clustering, classification/prediction and outlier detection, 

various methods and techniques are used for knowledge discovery from databases.  Association rule is one of the 

important tasks of data mining which identifies interesting association and correlation among large data sets 

(Intan and Rolly, 2005).  Mining frequent patterns is an important aspect in association rule mining. The FP-tree 

algorithm is currently one of the fastest approaches to frequent item set mining. FP-Tree was first proposed by 

Han, Pei, and Yin (2000). FP-Tree is a compact representation of transaction database that contains frequency 

information of all relevant patterns in a dataset. 

 

Association rule mining has many important applications in life. An association rule is of the form X => Y, and 

each rule has two measurements: support and confidence. The association rule mining problem is to find rules 

that satisfy user-specified minimum support and minimum confidence. It mainly includes two steps: finding all 

frequent patterns; and generating association rules through the frequent patterns. 

The identification of sets of items, products, symptoms, characteristics, and so forth, which often occur together 

in a given database, can be seen as one of the most basic tasks in Data Mining (Intan and Rolly, 2005).  

 

Let   be a set of item. Let  be a set of database transactions where each transaction  is a 

nonempty item set such that . Each transaction has an identifier, called a . Let  be a set of items. A 

transaction  is said to contain   if   . An association rule is of the form A B, where 

. The rule   holds in the transaction set  with support , 

where  is the percentage of transactions in that contain  (i.e., the union of sets A and B). This is taken to 

be the probability,  The rule  has confidence  in the transaction set , where  is the percentage 

of transactions in containing  that also contain . This is taken to be the conditional probability,  

That is:   
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Rules that satisfy both a minimum support threshold  and a minimum confidence threshold 

 are called strong (Jiawei et al, 2011). By convention, we write support and confidence values so as 

to occur between 0% and 100%, rather than 0 to 1.0 (Jiawei et al, 2011). A set of items is referred to as an item 

set. An itemset that contains k items is a k-itemset. The set (computer, antivirus software) is a 2-itemset. The 

occurrence frequency of an itemset is the number of transactions that contain the item set. This is also known, 

simply, as the frequency, support count, or count of the item set. The set of frequent k-item sets is commonly 

denoted by . From equation (1) it follows that:  

 

                 

  

To define support and confidence more formally, let the total number of transactions be .  Support of  is the 

number of times it appear in the database divided by and support of  together is the number of times 

they appear together divided by . Therefore, using  to mean probability of  in the database, we have: 

 

                                (4) 

 

                     (5) 

 

Confidence of  is defined as the ratio of support of  together with the support of . 

 

                      (6) 

 

 is the probability of  once  has taken place, it is therefore called conditional probability of  

The objectives of the study is to construct an algorithm for FP-Tree that will be used to mine frequent itemsets 

without generating candidates, to reduce the search cost in frequent pattern-mining and apply the algorithm to a 

set of alphabets. The outline of the paper is as follows: section 1 introduces the FP-Tree in comparism with other 

methods. Section 2 is on review of related literature while section 3 discusses the FP-Tree Construction 

methodology. Section 4 highlights the application of FP-Tree Algorithm in a transaction database. Section 5 is on 

implementation with real datasets while section 6 is on conclusion. 

 

2. Literature Review 

Apriori algorithm is one of the oldest algorithms for association rule mining developed by Agrawal,  Imielinski,  

Swami  (1993). The algorithm has received a great deal of attention since it’s introduction, many works has been 

done to improve the algorithm. The apriori algorithm is resource intensive for large databases that have large set 

of frequent items.  

 

The FP-Tree was introduced to handle the lapses in apriori algorithm. Recent studies show that pattern-growth 

method is one of the most efficient methods for frequent pattern mining (Agarwal, Aggarwal, and Prasad, 2001a; 

Agarwal, Aggarwal, and Prasad, 2001b; Agrawal and Srikant, 1994;  Bayardo, 1994; Burdick,  2001; Han and  

Pei, 2001; Han, Pei, and Yin, 2000; and Pei, Han, Lu, Nishio, and Shiwei Tang, 2001). As a divide-and-conquer 

method, this method partitions (projects) the database into partitions recursively, but does not generate candidate 

sets.  Efficiency can be achieved in mining with FP-tree using three techniques (Han, Pei, and Yin, 2000). 

 

A performance study shows that the FP-tree method is efficient and scalable for mining both long and short 

frequent patterns, and is about an order of magnitude faster than the apriori algorithm and also faster than some 

recently reported new frequent pattern mining methods such as CHARM  and Tree Projection methods (Jaiwei et 

al, 2011). 

This algorithm (FP-tree) mines frequent pattern without candidate generation. It uses an approach that is 

different from that used in Apriori algorithm.  

 

A performance evaluation carried out by Han, et al (2000) on a number of different algorithms for association 

mining which include Apriori, CHARM, FP-Tree algorithm revealed that: 

1) FP-Tree method was usually better than the best implementation of the Apriori algorithm 

2) CHARM was usually better than Apriori and in some cases CHARM was better than FP-tree method 

3) Apriori was generally better than other algorithms if the support required was high since high support 

leads to a smaller number of frequent items which suits the Apriori algorithm 
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4) At low support the number of frequent items became large and none of the algorithms were able to 

handle that gracefully (Jiawei et al, 2011). 

 

3.FP-Tree Growth Methodology 

FP-algorithm works by generating frequent pattern tree (FP-tree) and then mining the tree. The algorithm works 

as follows: 

1) Scan the transaction database once, as in the Apriori algorithm to find all the frequent items and their support 

2) Sort the frequent items in descending order of their support 

3) Start creating the FP-tree with a “null” root 

4) Get the first transaction from the transaction database. Remove all non frequent items and list the remaining 

item according to the order in the sorted frequent item. 

5) Use the transaction to construct the first branch of the tree with each node corresponding to a frequent item 

and showing the item’s frequency. 

6) Get the next transaction from the transaction database. Remove all non frequent items and list the remaining 

item according to the sorted order. 

7) Insert the transaction in the tree using any common prefix that may appear. 

8) Increase the item count 

9) continue with step 6 until all the transactions in the database are processed  (Jaiwei et al, 2000). 

 

The motivation for the FP-growth algorithm is as follows: 

1) Only the frequent items are needed to form the association rule. So, it finds frequent items and ignores the 

others  

2) The frequent items can be stored in compact structure, thus, the original transaction database does not need to 

be used repeatedly. 

3) If multiple transactions share a set of frequent items, it may be possible to merge shared sets with the number 

of occurrences registered at count. 

 

The advantages of the FP-tree algorithm are: 

1) it avoids scanning the database more than twice to find the support count. 

2) It completely eliminate the costly candidate generation  

3) It is better than Apriori algorithm when the transaction database is huge and minimum support count is 

low 

4) FP-Growth uses a more efficient structure to mine pattern when the database grows 

 

4. FP-Tree Application 

FP-growth preprocesses the transaction database by initially scanning the database; in scanning database the 

frequencies of the items (support of single element item sets) are determined. All infrequent items (that is, all 

items that appear in fewer transactions than a user-specified minimum number) are discarded from the 

transactions, since, obviously, they can never be part of a frequent item set. 

 

In addition, the items in each transaction are sorted, so that they are in descending order according to their 

frequency in the database. Figure 1 and figure 2 shows an FP-tree construction process. Figure 1 shows a sample 

database on the left. The frequencies of the items in this database, sorted in descending order are shown in the 

middle. Using a user specified minimal support of 3 transactions; items f and g can be discarded. After the 

deletion and sorting the items in each transaction in the database in descending order according to their 

frequencies, a reduced database is obtained as shown on the right in figure 1. 
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Figure 1: Transaction database and Frequency table sorted in ascending order according to their frequency 

support 

 
Figure 2: FP-Tree for the reduced Transaction database (Main FP-Tree) 

 

The FP-tree in figure 2 was constructed from the (reduced) database shown in figure 1 on the right. After the 

deletion of the infrequent items from the transaction database, the database is turned into an FP-tree as shown in 

figure 2. Also in figure 2 above, each path represents a set of transactions that share the same prefix; each node 

corresponds to one item, and all nodes referring to the same item are linked together in a list, so that all 

transactions containing a specific item can easily be found and counted by traversing this list. The list can be 

accessed through a head element, which also states the total number of occurrences of the item in the database.  

 

4.1   Mining Frequent Items  

To mine the frequent pattern from FP-tree start from the lowest level of the FP-tree (as an initial suffix pattern), 

construct its conditional pattern base (a “sub-database,” which consists of the set of prefix paths in the FP-tree 

co-occurring with the suffix pattern), then construct its (conditional) FP-tree, and perform mining recursively on 

the tree. The pattern growth is achieved by the concatenation of the suffix pattern with the frequent patterns 

generated from a conditional FP-tree. 
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Figure 3: The identified paths to node e 

 

Mining of the FP-tree is summarized in figure 3 and figure 4; the sub-trees were generated by considering item e, 

which is the last item in the bottom of the tree (in figure 2).   occurs in three FP-tree branches of Figure 2. (The 

occurrences of e can easily be found by following its chain of node-links.) as shown in figure 3. The paths 

formed by these branches are   Considering e as a suffix, its corresponding three prefix paths 

are  which form its conditional pattern base. Using this conditional pattern base as a 

transaction database, we build an e-conditional FP-tree, which contains three single paths as shown in figure 5. 

However, in this FP-tree all items are infrequent (and thus all item sets containing item e and one other item are 

infrequent). Hence in this example, no recursive processing would take place. This is of course, due to the 

chosen example database and the support threshold. 

 
Figure 4:  A conditional FP-Tree Extracted from the main FP-Tree in figure 2 
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Figure 5: Generated FP-Tree after deletion of node e from the conditional FP-Tree in figure 4  

 

The FP-growth method transforms the problem of finding long frequent patterns into searching for shorter ones 

in much smaller conditional databases recursively and then concatenating the suffix. It uses the least frequent 

items as a suffix, offering good selectivity. The method substantially reduces the search costs. When the database 

is large, it is sometimes unrealistic to construct a main memory based FP-tree. An interesting alternative is to 

first partition the database into a set of projected databases, and then construct an FP-tree and mine it in each 

projected database. This process can be recursively applied to any projected database if its FP-tree still cannot fit 

in main memory. 

 

5. Implementation with Real Datasets 

In order to implement the FP-Tree algorithm the standard benchmark datasets from the UCI Machine Learning 

Repository termed Supermarket was used in Weka Environment. The analysis was performed in comparism with 

apriori algorithm with the real supermarket dataset, it was observed that the FP-tree algorithm is faster and more 

effective than the apriori algorithm in mining association rule. All reports of the iterations and number of rules 

generated are as shown in Figure 7 and figure 8. The graph in figure 9 shows that the FP-Tree outperforms the 

apriori algorithm as the number of iteration performed in finding frequent pattern is less and less time was also 

used to complete the iterations.  

 
Figure 7: Report of the FP-Tree algorithm 
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Figure 8: Report of the Apriori Algorithm 

 

 
Figure 9: No of Iteration versus time taken to complete the iterations 

 

6. Conclusion 

FP-tree algorithm directly mines frequent item sets without generating candidates. By gathering sufficient 

statistics into a suitable data structure (called an FP tree), all the frequent patterns are generated without going 

back to the database. Only two passes through the database that are required to generate the FP Tree, and from 

the FP Tree, all frequent patterns are generated. The FP-tree encourages a divide and conquer approach to data 

mining. The FP-Tree is a compressed representation of the database.  

 

The FP-growth method transforms the problem of finding long frequent patterns into searching for shorter ones 

in much smaller conditional databases recursively and then concatenating the suffix. It uses the least frequent 
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items as a suffix, offering good selectivity. The method substantially reduces the search costs and thus is 

regarded as one of the most efficient methods for frequent pattern mining. The algorithm of the FP-Tree and its 

application is hereby simplified for better understanding by anyone interested in data mining that will want to 

understand the concept of this method. 
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