
Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.12, 2014

18

Algorithmic Framework for Frequent Pattern Mining with

FP-Tree

Georgina N. Obunadike
1&2*

 Audu Isah
2
 Arthur Umeh

3
 H. C. Inyiamah

4

1. Department of Mathematical Sciences and IT, Federal University, Dutsin-ma, Katsina State

2. Department of Mathematics and Statistics, Federal University of Technology, Minna, Niger State

3. Department of Information and Media Technology, Federal University of Technology, Minna, Niger State

4. Department of Computer Electronics, NNamdi Azikiwe University, Awka, Anambra State

*Email: nkoliobunadike@yahoo.com

Abstract

The FP-tree algorithm is currently one of the fastest approaches to frequent item set mining. Studies have also

shown that pattern-growth method is one of the most efficient methods for frequent pattern mining. It is based on

a prefix tree representation of the given database of transactions (FP-tree) and can save substantial amounts of

memory for storing the database. The basic idea of the FP-growth algorithm can be described as a recursive

elimination scheme which is usually achieved in the preprocessing step by deleting all items from the

transactions that are not frequent. In this study, a simple framework for mining frequent pattern is presented with

FP-tree structure which is an extended prefix-tree structure for mining frequent pattern without candidate

generation, and less cost for better understanding of the concept for inexperienced data analysts and other

organizations interested in association rule mining.

Keywords: Association Rule, Frequent Pattern Mining, Apriori Algorithm, FP-tree

1. Introduction

Data mining is the process of discovering interesting knowledge from large amounts of data stored in databases,

data warehouses, or other information repositories. Data mining is an emerging field that has gained attention in

research and industry and has recently also attracted considerable attention from database practitioners,

researchers and data analysts. It has application in many fields such as marketing, financial forecasts and

decision support (Jiawei, Micheline, and Jian, 2011). Data-mining algorithms and visualization tools are being

used to find important patterns in data and to create useful forecasts. This technology is being applied in virtually

all business sections including banking, telecommunication, manufacturing, marketing, and e-commerce (Zhao

Hui and Jamie, 2005).

In performing data mining tasks such as association, clustering, classification/prediction and outlier detection,

various methods and techniques are used for knowledge discovery from databases. Association rule is one of the

important tasks of data mining which identifies interesting association and correlation among large data sets

(Intan and Rolly, 2005). Mining frequent patterns is an important aspect in association rule mining. The FP-tree

algorithm is currently one of the fastest approaches to frequent item set mining. FP-Tree was first proposed by

Han, Pei, and Yin (2000). FP-Tree is a compact representation of transaction database that contains frequency

information of all relevant patterns in a dataset.

Association rule mining has many important applications in life. An association rule is of the form X => Y, and

each rule has two measurements: support and confidence. The association rule mining problem is to find rules

that satisfy user-specified minimum support and minimum confidence. It mainly includes two steps: finding all

frequent patterns; and generating association rules through the frequent patterns.

The identification of sets of items, products, symptoms, characteristics, and so forth, which often occur together

in a given database, can be seen as one of the most basic tasks in Data Mining (Intan and Rolly, 2005).

Let be a set of item. Let be a set of database transactions where each transaction is a

nonempty item set such that . Each transaction has an identifier, called a . Let be a set of items. A

transaction is said to contain if . An association rule is of the form A B, where

. The rule holds in the transaction set with support ,

where is the percentage of transactions in that contain (i.e., the union of sets A and B). This is taken to

be the probability, The rule has confidence in the transaction set , where is the percentage

of transactions in containing that also contain . This is taken to be the conditional probability,

That is:

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.12, 2014

19

Rules that satisfy both a minimum support threshold and a minimum confidence threshold

 are called strong (Jiawei et al, 2011). By convention, we write support and confidence values so as

to occur between 0% and 100%, rather than 0 to 1.0 (Jiawei et al, 2011). A set of items is referred to as an item

set. An itemset that contains k items is a k-itemset. The set (computer, antivirus software) is a 2-itemset. The

occurrence frequency of an itemset is the number of transactions that contain the item set. This is also known,

simply, as the frequency, support count, or count of the item set. The set of frequent k-item sets is commonly

denoted by . From equation (1) it follows that:

To define support and confidence more formally, let the total number of transactions be . Support of is the

number of times it appear in the database divided by and support of together is the number of times

they appear together divided by . Therefore, using to mean probability of in the database, we have:

 (4)

 (5)

Confidence of is defined as the ratio of support of together with the support of .

 (6)

 is the probability of once has taken place, it is therefore called conditional probability of

The objectives of the study is to construct an algorithm for FP-Tree that will be used to mine frequent itemsets

without generating candidates, to reduce the search cost in frequent pattern-mining and apply the algorithm to a

set of alphabets. The outline of the paper is as follows: section 1 introduces the FP-Tree in comparism with other

methods. Section 2 is on review of related literature while section 3 discusses the FP-Tree Construction

methodology. Section 4 highlights the application of FP-Tree Algorithm in a transaction database. Section 5 is on

implementation with real datasets while section 6 is on conclusion.

2. Literature Review

Apriori algorithm is one of the oldest algorithms for association rule mining developed by Agrawal, Imielinski,

Swami (1993). The algorithm has received a great deal of attention since it’s introduction, many works has been

done to improve the algorithm. The apriori algorithm is resource intensive for large databases that have large set

of frequent items.

The FP-Tree was introduced to handle the lapses in apriori algorithm. Recent studies show that pattern-growth

method is one of the most efficient methods for frequent pattern mining (Agarwal, Aggarwal, and Prasad, 2001a;

Agarwal, Aggarwal, and Prasad, 2001b; Agrawal and Srikant, 1994; Bayardo, 1994; Burdick, 2001; Han and

Pei, 2001; Han, Pei, and Yin, 2000; and Pei, Han, Lu, Nishio, and Shiwei Tang, 2001). As a divide-and-conquer

method, this method partitions (projects) the database into partitions recursively, but does not generate candidate

sets. Efficiency can be achieved in mining with FP-tree using three techniques (Han, Pei, and Yin, 2000).

A performance study shows that the FP-tree method is efficient and scalable for mining both long and short

frequent patterns, and is about an order of magnitude faster than the apriori algorithm and also faster than some

recently reported new frequent pattern mining methods such as CHARM and Tree Projection methods (Jaiwei et

al, 2011).

This algorithm (FP-tree) mines frequent pattern without candidate generation. It uses an approach that is

different from that used in Apriori algorithm.

A performance evaluation carried out by Han, et al (2000) on a number of different algorithms for association

mining which include Apriori, CHARM, FP-Tree algorithm revealed that:

1) FP-Tree method was usually better than the best implementation of the Apriori algorithm

2) CHARM was usually better than Apriori and in some cases CHARM was better than FP-tree method

3) Apriori was generally better than other algorithms if the support required was high since high support

leads to a smaller number of frequent items which suits the Apriori algorithm

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.12, 2014

20

4) At low support the number of frequent items became large and none of the algorithms were able to

handle that gracefully (Jiawei et al, 2011).

3.FP-Tree Growth Methodology

FP-algorithm works by generating frequent pattern tree (FP-tree) and then mining the tree. The algorithm works

as follows:

1) Scan the transaction database once, as in the Apriori algorithm to find all the frequent items and their support

2) Sort the frequent items in descending order of their support

3) Start creating the FP-tree with a “null” root

4) Get the first transaction from the transaction database. Remove all non frequent items and list the remaining

item according to the order in the sorted frequent item.

5) Use the transaction to construct the first branch of the tree with each node corresponding to a frequent item

and showing the item’s frequency.

6) Get the next transaction from the transaction database. Remove all non frequent items and list the remaining

item according to the sorted order.

7) Insert the transaction in the tree using any common prefix that may appear.

8) Increase the item count

9) continue with step 6 until all the transactions in the database are processed (Jaiwei et al, 2000).

The motivation for the FP-growth algorithm is as follows:

1) Only the frequent items are needed to form the association rule. So, it finds frequent items and ignores the

others

2) The frequent items can be stored in compact structure, thus, the original transaction database does not need to

be used repeatedly.

3) If multiple transactions share a set of frequent items, it may be possible to merge shared sets with the number

of occurrences registered at count.

The advantages of the FP-tree algorithm are:

1) it avoids scanning the database more than twice to find the support count.

2) It completely eliminate the costly candidate generation

3) It is better than Apriori algorithm when the transaction database is huge and minimum support count is

low

4) FP-Growth uses a more efficient structure to mine pattern when the database grows

4. FP-Tree Application

FP-growth preprocesses the transaction database by initially scanning the database; in scanning database the

frequencies of the items (support of single element item sets) are determined. All infrequent items (that is, all

items that appear in fewer transactions than a user-specified minimum number) are discarded from the

transactions, since, obviously, they can never be part of a frequent item set.

In addition, the items in each transaction are sorted, so that they are in descending order according to their

frequency in the database. Figure 1 and figure 2 shows an FP-tree construction process. Figure 1 shows a sample

database on the left. The frequencies of the items in this database, sorted in descending order are shown in the

middle. Using a user specified minimal support of 3 transactions; items f and g can be discarded. After the

deletion and sorting the items in each transaction in the database in descending order according to their

frequencies, a reduced database is obtained as shown on the right in figure 1.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.12, 2014

21

Figure 1: Transaction database and Frequency table sorted in ascending order according to their frequency

support

Figure 2: FP-Tree for the reduced Transaction database (Main FP-Tree)

The FP-tree in figure 2 was constructed from the (reduced) database shown in figure 1 on the right. After the

deletion of the infrequent items from the transaction database, the database is turned into an FP-tree as shown in

figure 2. Also in figure 2 above, each path represents a set of transactions that share the same prefix; each node

corresponds to one item, and all nodes referring to the same item are linked together in a list, so that all

transactions containing a specific item can easily be found and counted by traversing this list. The list can be

accessed through a head element, which also states the total number of occurrences of the item in the database.

4.1 Mining Frequent Items

To mine the frequent pattern from FP-tree start from the lowest level of the FP-tree (as an initial suffix pattern),

construct its conditional pattern base (a “sub-database,” which consists of the set of prefix paths in the FP-tree

co-occurring with the suffix pattern), then construct its (conditional) FP-tree, and perform mining recursively on

the tree. The pattern growth is achieved by the concatenation of the suffix pattern with the frequent patterns

generated from a conditional FP-tree.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.12, 2014

22

Figure 3: The identified paths to node e

Mining of the FP-tree is summarized in figure 3 and figure 4; the sub-trees were generated by considering item e,

which is the last item in the bottom of the tree (in figure 2). occurs in three FP-tree branches of Figure 2. (The

occurrences of e can easily be found by following its chain of node-links.) as shown in figure 3. The paths

formed by these branches are Considering e as a suffix, its corresponding three prefix paths

are which form its conditional pattern base. Using this conditional pattern base as a

transaction database, we build an e-conditional FP-tree, which contains three single paths as shown in figure 5.

However, in this FP-tree all items are infrequent (and thus all item sets containing item e and one other item are

infrequent). Hence in this example, no recursive processing would take place. This is of course, due to the

chosen example database and the support threshold.

Figure 4: A conditional FP-Tree Extracted from the main FP-Tree in figure 2

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.12, 2014

23

Figure 5: Generated FP-Tree after deletion of node e from the conditional FP-Tree in figure 4

The FP-growth method transforms the problem of finding long frequent patterns into searching for shorter ones

in much smaller conditional databases recursively and then concatenating the suffix. It uses the least frequent

items as a suffix, offering good selectivity. The method substantially reduces the search costs. When the database

is large, it is sometimes unrealistic to construct a main memory based FP-tree. An interesting alternative is to

first partition the database into a set of projected databases, and then construct an FP-tree and mine it in each

projected database. This process can be recursively applied to any projected database if its FP-tree still cannot fit

in main memory.

5. Implementation with Real Datasets

In order to implement the FP-Tree algorithm the standard benchmark datasets from the UCI Machine Learning

Repository termed Supermarket was used in Weka Environment. The analysis was performed in comparism with

apriori algorithm with the real supermarket dataset, it was observed that the FP-tree algorithm is faster and more

effective than the apriori algorithm in mining association rule. All reports of the iterations and number of rules

generated are as shown in Figure 7 and figure 8. The graph in figure 9 shows that the FP-Tree outperforms the

apriori algorithm as the number of iteration performed in finding frequent pattern is less and less time was also

used to complete the iterations.

Figure 7: Report of the FP-Tree algorithm

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.12, 2014

24

Figure 8: Report of the Apriori Algorithm

Figure 9: No of Iteration versus time taken to complete the iterations

6. Conclusion

FP-tree algorithm directly mines frequent item sets without generating candidates. By gathering sufficient

statistics into a suitable data structure (called an FP tree), all the frequent patterns are generated without going

back to the database. Only two passes through the database that are required to generate the FP Tree, and from

the FP Tree, all frequent patterns are generated. The FP-tree encourages a divide and conquer approach to data

mining. The FP-Tree is a compressed representation of the database.

The FP-growth method transforms the problem of finding long frequent patterns into searching for shorter ones

in much smaller conditional databases recursively and then concatenating the suffix. It uses the least frequent

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.12, 2014

25

items as a suffix, offering good selectivity. The method substantially reduces the search costs and thus is

regarded as one of the most efficient methods for frequent pattern mining. The algorithm of the FP-Tree and its

application is hereby simplified for better understanding by anyone interested in data mining that will want to

understand the concept of this method.

References

Agrawal R., Imielinski, T. Swami A., (1993): "Mining Associations rules between Sets of Items in Large

Databases”, Proceedings of the ACM SIGMOD Int'l Conference on Management of Data, Washington D.C.,

USA

Agrawal R. and Srikant R. (1994) “Fast algorithms for mining association rules”, In J. B. Bocca, M. Jarke, and

C. Zaniolo, editors, Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pages 487–499. Morgan Kaufmann.

Agarwal R. C. , Aggarwal C. C., and Prasad V. V. V. (2001a) “Depth first generation of long patterns”. In Proc.

6th ACM SIGKDD Int. Conf. on Knowledge discovery and data mining, pages 108–118. ACM Press.

Agarwal R. C., Aggarwal C. C., and Prasad V. V. V. (2001b) “A tree projection algorithm for generation of

frequent item sets”, Journal of Parallel and Distributed Computing, 61:350–371,

Bayardo R. J. (1998), “Efficiently mining long patterns from databases”,. In 1998 ACM SIGMOD Intl.

Conference on Management of Data, pages 85–93. ACM Press.

Burdick D., Calimlim M., and Gehrke J. (2001), “MAFIA: A maximal frequent itemset algorithm for

transactional databases”, In 2001 Intl. Conference on Data Engineering,ICDE, pages 443–452.

Han J. and Pei J. (2001) “Mining frequent patterns by pattern-growth: Methodology and implications”. In ACM

SIGKDD Explorations. ACM Press.

Han J., Pei J., and Yin Y.(2000) “Mining frequent patterns without candidate generation. In W. Chen, J.

Naughton, and P. A. Bernstein, editors, 2000 ACM SIGMOD Intl. Conference On Management of Data, pages

1–12.ACM Press.

Intan and Rolly (2005). “A Proposal of an Algorithm for Generating Fuzzy Association Rule Mining in Market

Based Analysis”, Proceedings of the 3rd International Conference on Computational Intelligence,Robotics and

Autonomous System. Issues and an Application, Geographical Analysis 27:4, (2005) pp 286-305.

Jiawei H., Jian P., and Yiwen Y. (2000) “Mining Frequent Patterns without Candidate Generation”, In Proc.

Conf. on the Management of Data (SIGMOD’00, Dallas, TX), ACM Press, New York, NY, USA

Jiawei H., Micheline K., and Jian P. (2011)”Data mining: Concept and Techniques” 3
rd

 edition, Elsevier,

Pei J., Han J., Lu H., Nishio S., and Shiwei Tang D. Y. (2001) “H-mine:hyper-structure mining of frequent

patterns in large databases”, In 2001 IEEE Conference on Data Mining. IEEE.

ZhaoHui T. and Jamie M. (2005), “Data Mining with SQL Server 2005”,Wiley Publishing Inc, Indianapolis,

Indiana, 2005.

The IISTE is a pioneer in the Open-Access hosting service and academic event management.

The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage:

http://www.iiste.org

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.

Prospective authors of journals can find the submission instruction on the following

page: http://www.iiste.org/journals/ All the journals articles are available online to the

readers all over the world without financial, legal, or technical barriers other than those

inseparable from gaining access to the internet itself. Paper version of the journals is also

available upon request of readers and authors.

MORE RESOURCES

Book publication information: http://www.iiste.org/book/

Academic conference: http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open

Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek

EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library , NewJour, Google Scholar

http://www.iiste.org/
http://www.iiste.org/journals/
http://www.iiste.org/book/
http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

